3-bounded property in a triangle-free distance-regular graph ${ }^{\text {an }}$

Yeh-jong Pan ${ }^{1}$, Chih-wen Weng ${ }^{1}$
Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC

Received 11 May 2006; accepted 15 October 2007
Available online 19 November 2007

Abstract

Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Assume the intersection numbers $a_{1}=0$ and $a_{2} \neq 0$. We show that Γ is 3 -bounded in the sense of the article [C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics 18 (1997) 211-229]. (C) 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq 3$ and distance function ∂. Recall that a sequence x, y, z of vertices of Γ is geodetic whenever

$$
\partial(x, y)+\partial(y, z)=\partial(x, z) .
$$

A sequence x, y, z of vertices of Γ is weak-geodetic whenever

$$
\partial(x, y)+\partial(y, z) \leq \partial(x, z)+1
$$

Definition 1.1. A subset $\Omega \subseteq X$ is weak-geodetically closed if for any weak-geodetic sequence x, y, z of Γ,

$$
x, z \in \Omega \Longrightarrow y \in \Omega
$$

[^0]0195-6698/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2007.10.002

Weak-geodetically closed subgraphs are called strongly closed subgraphs in [8]. We refer the reader to $[7,3,5,9,12,4]$ for information on weak-geodetically closed subgraphs.

Definition 1.2. Γ is said to be i-bounded whenever for all $x, y \in X$ with $\partial(x, y) \leq i$, there is a regular weak-geodetically closed subgraph of diameter $\partial(x, y)$ which contains x, y.

The properties of D-bounded distance-regular graphs were studied in [13], and these properties were used in the classification of classical distance-regular graphs of negative type [14]. Before stating our main result we give one more definition.

By a parallelogram of length i, we mean a 4-tuple $x y z w$ consisting of vertices of Γ such that $\partial(x, y)=\partial(z, w)=1, \partial(x, z)=i$, and $\partial(x, w)=\partial(y, w)=\partial(y, z)=i-1$.

It was proved that if $a_{1}=0, a_{2} \neq 0$ and Γ contains no parallelograms of length 3 , then Γ is 2-bounded [12, Proposition 6.7], [9, Theorem 1.1]. The following theorem is our main result.

Theorem 1.3. Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Assume the intersection numbers $a_{1}=0$ and $a_{2} \neq 0$. Then Γ is 3-bounded.

Note that if Γ has classical parameters (D, b, α, β) with $D \geq 3, a_{1}=0$ and $a_{2} \neq 0$, then Γ contains no parallelograms of any length. See [6, Theorem 1.1] or Theorem 3.3 in this article.

2. Preliminaries

In this section we review some definitions, basic concepts and some previous results concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more background information.

Let $\Gamma=(X, R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function ∂, and diameter $D:=\max \{\partial(x, y) \mid x, y \in X\}$. By a pentagon, we mean a 5-tuple $x_{1} x_{2} x_{3} x_{4} x_{5}$ consisting of vertices in Γ such that $\partial\left(x_{i}, x_{i+1}\right)=$ 1 for $1 \leq i \leq 4$ and $\partial\left(x_{5}, x_{1}\right)=1$.

For a vertex $x \in X$ and an integer $0 \leq i \leq D$, set $\Gamma_{i}(x):=\{z \in X \mid \partial(x, z)=i\}$. The valency $k(x)$ of a vertex $x \in X$ is the cardinality of $\Gamma_{1}(x)$. The graph Γ is called regular (with valency k) if each vertex in X has valency k.

A graph Γ is said to be distance-regular whenever for all integers $0 \leq h, i, j \leq D$, and all vertices $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}=\left|\left\{z \in X \mid z \in \Gamma_{i}(x) \cap \Gamma_{j}(y)\right\}\right|
$$

is independent of x, y. The constants $p_{i j}^{h}$ are known as the intersection numbers of Γ.
Let $\Gamma=(X, R)$ be a distance-regular graph. For two vertices $x, y \in X$, with $\partial(x, y)=i$, set

$$
\begin{aligned}
& B(x, y):=\Gamma_{1}(x) \cap \Gamma_{i+1}(y), \\
& C(x, y):=\Gamma_{1}(x) \cap \Gamma_{i-1}(y), \\
& A(x, y):=\Gamma_{1}(x) \cap \Gamma_{i}(y) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& |B(x, y)|=p_{1 i+1}^{i}, \\
& |C(x, y)|=p_{1 i-1}^{i}, \\
& |A(x, y)|=p_{1 i}^{i}
\end{aligned}
$$

are independent of x, y.
For convenience, set $c_{i}:=p_{1{ }_{i-1}}^{i}$ for $1 \leq i \leq D, a_{i}:=p_{1 i}^{i}$ for $0 \leq i \leq D, b_{i}:=p_{1+1}^{i}$ for $0 \leq i \leq D-1$ and put $b_{D}:=0, c_{0}:=0, k:=b_{0}$. Note that k is the valency of Γ. It is immediate from the definition of $p_{i j}^{h}$ that $b_{i} \neq 0$ for $0 \leq i \leq D-1$ and $c_{i} \neq 0$ for $1 \leq i \leq D$. Moreover

$$
\begin{equation*}
k=a_{i}+b_{i}+c_{i} \quad \text { for } 0 \leq i \leq D \tag{2.1}
\end{equation*}
$$

From now on we assume that $\Gamma=(X, R)$ is distance-regular with diameter $D \geq 3$. Recall that a sequence x, y, z of vertices of Γ is weak-geodetic whenever

$$
\partial(x, y)+\partial(y, z) \leq \partial(x, z)+1
$$

Definition 2.1. Let Ω be a subset of X, and pick any vertex $x \in \Omega . \Omega$ is said to be weakgeodetically closed with respect to x whenever, for all $z \in \Omega$ and for all $y \in X$,

$$
\begin{equation*}
x, y, z \text { are weak-geodetic } \Longrightarrow y \in \Omega \tag{2.2}
\end{equation*}
$$

Note that Ω is weak-geodetically closed with respect to a vertex $x \in \Omega$ if and only if

$$
C(z, x) \subseteq \Omega \quad \text { and } \quad A(z, x) \subseteq \Omega \quad \text { for all } z \in \Omega
$$

[12, Lemma 2.3]. Also Ω is weak-geodetically closed if and only if for any vertex $x \in \Omega, \Omega$ is weak-geodetically closed with respect to x. We list a few results which will be used later in this paper.

Theorem 2.2 ([12, Theorem 4.6]). Let Γ be a distance-regular graph with diameter $D \geq 3$. Let Ω be a regular subgraph of Γ with valency γ and set $d:=\min \left\{i \mid \gamma \leq c_{i}+a_{i}\right\}$. Then the following (i), (ii) are equivalent.
(i) Ω is weak-geodetically closed with respect to at least one vertex $x \in \Omega$.
(ii) Ω is weak-geodetically closed with diameter d.

In this case $\gamma=c_{d}+a_{d}$.
Lemma 2.3 ([9, Lemma 2.6]). Let Γ be a distance-regular graph with diameter 2, and let x be a vertex of Γ. Suppose $a_{2} \neq 0$. Then the subgraph induced on $\Gamma_{2}(x)$ is connected of diameter at most 3 .

Theorem 2.4 ([12, Proposition 6.7], [9, Theorem 1.1]). Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $a_{1}=0, a_{2} \neq 0$ and Γ contains no parallelograms of length 3 . Then Γ is 2-bounded.

Theorem 2.5 ([12, Lemma 6.9], [9, Lemma 4.1]). Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $a_{1}=0, a_{2} \neq 0$ and Γ contains no parallelograms of any length. Let x be a vertex of Γ, and let Ω be a weak-geodetically closed subgraph of Γ with diameter 2. Suppose that there exists an integer i and a vertex $u \in \Omega \cap \Gamma_{i-1}(x)$, and suppose $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$. Then for all $t \in \Omega$, we have $\partial(x, t)=i-1+\partial(u, t)$.

3. Q-polynomial properties

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$. Let \mathbb{R} denote the real number field. Let $\operatorname{Mat}_{X}(\mathbb{R})$ denote the algebra of all the matrices over \mathbb{R} with the rows and columns indexed by the elements of X. For $0 \leq i \leq D$ let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{R})$ defined by the rule

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1, & \text { if } \partial(x, y)=i ; \\
0, & \text { if } \partial(x, y) \neq i
\end{array} \quad \text { for } x, y \in X .\right.
$$

We call A_{i} the distance matrices of Γ. We have

$$
\begin{aligned}
& A_{0}=I, \\
& A_{i}^{t}=A_{i} \text { for } 0 \leq i \leq D \text { where } A_{i}^{t} \text { means the transpose of } A_{i}, \\
& A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h} \quad \text { for } 0 \leq i, j \leq D
\end{aligned}
$$

Let M denote the subspace of $\operatorname{Mat}_{X}(\mathbb{R})$ spanned by $A_{0}, A_{1}, \ldots, A_{D}$. Then M is a commutative subalgebra of $\operatorname{Mat}_{X}(\mathbb{R})$, and is known as the Bose-Mesner algebra of Γ. By [2, p. 59,64$], M$ has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that

$$
\begin{align*}
& E_{0}=|X|^{-1} J \quad \text { where } J=\text { all 1's matrix, } \\
& E_{i} E_{j}=\delta_{i j} E_{i} \quad \text { for } 0 \leq i, j \leq D \\
& E_{0}+E_{1}+\cdots+E_{D}=I \\
& E_{i}^{t}=E_{i} \quad \text { for } 0 \leq i \leq D \tag{3.1}
\end{align*}
$$

The $E_{0}, E_{1}, \ldots, E_{D}$ are known as the primitive idempotents of Γ, and E_{0} is known as the trivial idempotent. Let E denote any primitive idempotent of Γ. Then we have

$$
\begin{equation*}
E=|X|^{-1} \sum_{i=0}^{D} \theta_{i}^{*} A_{i} \tag{3.2}
\end{equation*}
$$

for some $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*} \in \mathbb{R}$, called the dual eigenvalues associated with E.
Set $V=\mathbb{R}^{|X|}$ (column vectors), and view the coordinates of V as being indexed by X. Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the standard module of Γ. For each vertex $x \in X$, set

$$
\begin{equation*}
\hat{x}=(0,0, \ldots, 0,1,0, \ldots, 0)^{t} \tag{3.3}
\end{equation*}
$$

where the 1 is in coordinate x. Also, let \langle,$\rangle denote the dot product$

$$
\begin{equation*}
\langle u, v\rangle=u^{t} v \quad \text { for } u, v \in V . \tag{3.4}
\end{equation*}
$$

Then referring to the primitive idempotent E in (3.2), we compute from (3.1)-(3.4) that for x, $y \in X$,

$$
\begin{equation*}
\langle E \hat{x}, E \hat{y}\rangle=|X|^{-1} \theta_{i}^{*}, \tag{3.5}
\end{equation*}
$$

where $i=\partial(x, y)$.

Let o denote the entrywise multiplication in $\operatorname{Mat}_{X}(\mathbb{R})$. Then

$$
A_{i} \circ A_{j}=\delta_{i j} A_{i} \quad \text { for } 0 \leq i, j \leq D,
$$

so M is closed under \circ. Thus there exists $q_{i j}^{k} \in \mathbb{R}$ for $0 \leq i, j, k \leq D$ such that

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{k=0}^{D} q_{i j}^{k} E_{k} \quad \text { for } 0 \leq i, j \leq D
$$

Γ is said to be Q-polynomial with respect to the given ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents if for all integers $0 \leq h, i, j \leq D, q_{i j}^{h}=0$ (resp. $q_{i j}^{h} \neq 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ. Then Γ is said to be Q-polynomial with respect to E whenever there exists an ordering $E_{0}, E_{1}=E, \ldots, E_{D}$ of the primitive idempotents of Γ, with respect to which Γ is Q-polynomial. If Γ is Q-polynomial with respect to E, then the associated dual eigenvalues are distinct [10, p. 384].

The following theorem about the Q-polynomial property will be used in this paper.
Theorem 3.1 ([11, Theorem 3.3]). Assume Γ is Q-polynomial with respect to a primitive idempotent E, and let $\theta_{0}^{*}, \ldots, \theta_{D}^{*}$ denote the corresponding dual eigenvalues. Then for all integers $1 \leq h \leq D, 0 \leq i, j \leq D$ and for all $x, y \in X$ such that $\partial(x, y)=h$,

$$
\begin{equation*}
\sum_{\substack{z \in X \\ \partial(x, z)=i \\ \partial(y, z)=j}} E \hat{z}-\sum_{\substack{z^{\prime} \in X \\ \partial\left(x, z^{\prime}\right)=j \\ \partial\left(y, z^{\prime}\right)=i}} E \hat{z}^{\prime}=p_{i j}^{h} \frac{\theta_{i}^{*}-\theta_{j}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}}(E \hat{x}-E \hat{y}) \tag{3.6}
\end{equation*}
$$

Γ is said to have classical parameters (D, b, α, β) whenever the intersection numbers of Γ satisfy

$$
\begin{align*}
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \quad \text { for } 0 \leq i \leq D, \tag{3.7}\\
& b_{i}=\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \quad \text { for } 0 \leq i \leq D, \tag{3.8}
\end{align*}
$$

where

$$
\left[\begin{array}{l}
i \tag{3.9}\\
1
\end{array}\right]:=1+b+b^{2}+\cdots+b^{i-1}
$$

The following theorem characterizes the distance-regular graphs with classical parameters in an algebraic way.

Theorem 3.2 ([11, Theorem 4.2]). Let Γ denote a distance-regular graph with diameter $D \geq 3$. Choose $b \in \mathbb{R} \backslash\{0,-1\}$, and let [] be as in (3.9). Then the following (i)-(ii) are equivalent.
(i) Γ is Q-polynomial with associated dual eigenvalues $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$ satisfying

$$
\theta_{i}^{*}-\theta_{0}^{*}=\left(\theta_{1}^{*}-\theta_{0}^{*}\right)\left[\begin{array}{l}
i \tag{3.10}\\
1
\end{array}\right] b^{1-i} \quad \text { for } 1 \leq i \leq D
$$

(ii) Γ has classical parameters (D, b, α, β) for some real constants α, β.

The following theorem characterizes the distance-regular graphs with classical parameters and $a_{1}=0, a_{2} \neq 0$ in a combinatorial way.

Theorem 3.3 ([6, Theorem 1.1]). Let Γ denote a distance-regular graph with diameter $D \geq 3$ and intersection numbers $a_{1}=0, a_{2} \neq 0$. Then the following (i)-(iii) are equivalent.
(i) Γ is Q-polynomial and contains no parallelograms of length 3.
(ii) Γ is Q-polynomial and contains no parallelograms of any length i for $3 \leq i \leq D$.
(iii) Γ has classical parameters (D, b, α, β) for some real constants b, α, β with $b<-1$.

4. Proof of main theorem

Assume $\Gamma=(X, R)$ is a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Suppose the intersection numbers $a_{1}=0$ and $a_{2} \neq 0$. Then Γ contains no parallelograms of any length by Theorem 3.3. We first give a definition.

Definition 4.1. For any vertex $x \in X$ and any subset $C \subseteq X$, define

$$
[x, C]:=\{v \in X \mid \text { there exists } z \in C, \text { such that } \partial(x, v)+\partial(v, z)=\partial(x, z)\}
$$

Throughout this section, fix two vertices $x, y \in X$ with $\partial(x, y)=3$. Set

$$
C:=\left\{z \in \Gamma_{3}(x) \mid B(x, y)=B(x, z)\right\}
$$

and

$$
\begin{equation*}
\Delta=[x, C] . \tag{4.1}
\end{equation*}
$$

We shall prove that Δ is a regular weak-geodetically closed subgraph of diameter 3 . Note that the diameter of Δ is at least 3 . If $D=3$ then $C=\Gamma_{3}(x)$ and $\Delta=\Gamma$ is clearly a regular weakgeodetically closed graph. Thereafter we assume $D \geq 4$. By referring to Theorem 2.2, we shall prove that Δ is weak-geodetically closed with respect to x, and the subgraph induced on Δ is regular with valency $a_{3}+c_{3}$.

Lemma 4.2. For all adjacent vertices $z, z^{\prime} \in \Gamma_{i}(x)$, where $i \leq D$, we have $B(x, z)=B\left(x, z^{\prime}\right)$.
Proof. By symmetry, it suffices to show that $B(x, z) \subseteq B\left(x, z^{\prime}\right)$. Suppose there exists $w \in$ $B(x, z) \backslash B\left(x, z^{\prime}\right)$. Then $\partial\left(w, z^{\prime}\right) \neq i+1$. Note that $\partial\left(w, z^{\prime}\right) \leq \partial(w, x)+\partial\left(x, z^{\prime}\right)=1+i$ and $\partial\left(w, z^{\prime}\right) \geq \partial(w, z)-\partial\left(z, z^{\prime}\right)=i$. This implies $\partial\left(w, z^{\prime}\right)=i$ and $w x z^{\prime} z$ forms a parallelogram of length $i+1$, a contradiction.

We know that Γ is 2 -bounded by Theorem 2.4. For two vertices z, s in Γ with $\partial(z, s)=2$, let $\Omega(z, s)$ denote the regular weak-geodetically closed subgraph containing z, s of diameter 2 .

Lemma 4.3. Suppose stuzw is a pentagon in Γ, where $s, u \in \Gamma_{3}(x)$ and $z \in \Gamma_{2}(x)$. Pick $v \in B(x, u)$. Then $\partial(v, s) \neq 2$.

Proof. Suppose $\partial(v, s)=2$. Note $\partial(z, s) \neq 1$, since $a_{1}=0$. Note that $z, w, s, t, u \in \Omega(z, s)$. Then $s \in \Omega(z, s) \cap \Gamma_{2}(v)$ and $u \in \Omega(z, s) \cap \Gamma_{4}(v) \neq \emptyset$. Hence $\partial(v, z)=\partial(v, s)+\partial(s, z)=$ $2+2=4$ by Theorem 2.5. A contradiction occurs since $\partial(v, x)=1$ and $\partial(x, z)=2$.

Lemma 4.4. Suppose stuzw is a pentagon in Γ, where $s, u \in \Gamma_{3}(x)$ and $z \in \Gamma_{2}(x)$. Then $B(x, s)=B(x, u)$.

Proof. Since $|B(x, s)|=|B(x, u)|=b_{3}$, it suffices to show $B(x, u) \subseteq B(x, s)$. By Lemma 4.3,

$$
B(x, u) \subseteq \Gamma_{3}(s) \cup \Gamma_{4}(s) .
$$

Suppose

$$
\begin{aligned}
\left|B(x, u) \cap \Gamma_{3}(s)\right| & =m, \\
\left|B(x, u) \cap \Gamma_{4}(s)\right| & =n .
\end{aligned}
$$

Then

$$
\begin{equation*}
m+n=b_{3} . \tag{4.2}
\end{equation*}
$$

By Theorem 3.1,

$$
\begin{equation*}
\sum_{r \in B(x, u)} E \hat{r}-\sum_{r^{\prime} \in B(u, x)} E \hat{r^{\prime}}=b_{3} \frac{\theta_{1}^{*}-\theta_{4}^{*}}{\theta_{0}^{*}-\theta_{3}^{*}}(E \hat{x}-E \hat{u}) . \tag{4.3}
\end{equation*}
$$

Observe $B(u, x) \subseteq \Gamma_{3}(s)$; otherwise $\Omega(u, s) \cap B(u, x) \neq \emptyset$ and this leads $\partial(x, s)=4$ by Theorem 2.5, a contradiction. Taking the inner product of s with both sides of (4.3) and evaluating the result using (3.5), we have

$$
\begin{equation*}
m \theta_{3}^{*}+n \theta_{4}^{*}-b_{3} \theta_{3}^{*}=b_{3} \frac{\theta_{1}^{*}-\theta_{4}^{*}}{\theta_{0}^{*}-\theta_{3}^{*}}\left(\theta_{3}^{*}-\theta_{2}^{*}\right) . \tag{4.4}
\end{equation*}
$$

Solve (4.2) and (4.4) to obtain

$$
\begin{equation*}
n=b_{3} \frac{\left(\theta_{2}^{*}-\theta_{3}^{*}\right)}{\left(\theta_{3}^{*}-\theta_{4}^{*}\right)} \frac{\left(\theta_{1}^{*}-\theta_{4}^{*}\right)}{\left(\theta_{0}^{*}-\theta_{3}^{*}\right)} \tag{4.5}
\end{equation*}
$$

Simplifying (4.5) using (3.10), we have $n=b_{3}$ and then $m=0$ by (4.2). This implies $B(x, u) \subseteq B(x, s)$ and ends the proof.

Lemma 4.5. Let $z, u \in \Delta$. Suppose stuzw is a pentagon in Γ, where $z, w \in \Gamma_{2}(x)$ and $u \in \Gamma_{3}(x)$. Then $w \in \Delta$.

Proof. Observe $\Omega(z, s) \cap \Gamma_{1}(x)=\emptyset$ and $\Omega(z, s) \cap \Gamma_{4}(x)=\emptyset$ by Theorem 2.5. Hence $s, t \in \Gamma_{2}(x) \cup \Gamma_{3}(x)$. Observe $s \in \Gamma_{3}(x)$; otherwise $w, s \in \Omega(x, z)$, and this implies $u \in \Omega(x, z)$, a contradiction to the diameter of $\Omega(x, z)$ being 2 . Hence $B(x, s)=B(x, u)$ by Lemma 4.4. Then $s \in C$ and $w \in \Delta$ by construction.

Lemma 4.6. The subgraph Δ is weak-geodetically closed with respect to x.
Proof. Clearly $C(z, x) \subseteq \Delta$ for any $z \in \Delta$. It suffices to show $A(z, x) \subseteq \Delta$ for any $z \in \Delta$. Suppose $z \in \Delta$. We discuss this case by case in the following. The case $\partial(x, z)=1$ is trivial since $a_{1}=0$. For the case $\partial(x, z)=3$, we have $B(x, y)=B(x, z)=B(x, w)$ for any $w \in A(z, x)$ by definition of Δ and Lemma 4.2. This implies $A(z, x) \subseteq \Delta$ by the construction of Δ. For the remaining case $\partial(x, z)=2$, fix $w \in A(z, x)$ and we shall prove $w \in \Delta$. There exists $u \in C$ such that $z \in C(u, x)$. Observe that $\partial(w, u)=2$ since $a_{1}=0$. Choose $s \in A(w, u)$ and $t \in C(u, s)$. Then stuzw is a pentagon in Γ. The result comes immediately by Lemma 4.5.

Proof of Theorem 1.3. By Theorem 2.2 and Lemma 4.6, it suffices to show that Δ defined in (4.1) is regular with valency $a_{3}+c_{3}$. Clearly from the construction and Lemma 4.6, $\left|\Gamma_{1}(z) \cap \Delta\right|=$
$a_{3}+c_{3}$ for any $z \in C$. First we show that $\left|\Gamma_{1}(x) \cap \Delta\right|=a_{3}+c_{3}$. Note that $y \in \Delta \cap \Gamma_{3}(x)$ by construction of Δ. For any $z \in C(x, y) \cup A(x, y)$,

$$
\partial(x, z)+\partial(z, y) \leq \partial(x, y)+1
$$

This implies $z \in \Delta$ by Definition 2.1 and Lemma 4.6. Hence $C(x, y) \cup A(x, y) \subseteq \Delta$. Suppose $B(x, y) \cap \Delta \neq \emptyset$. Choose $t \in B(x, y) \cap \Delta$. Then there exists $y^{\prime} \in \Gamma_{3}(x) \cap \Delta$ such that $t \in C\left(x, y^{\prime}\right)$. Note that $B(x, y)=B\left(x, y^{\prime}\right)$. This leads to a contradiction to $t \in C\left(x, y^{\prime}\right)$. Hence $B(x, y) \cap \Delta=\emptyset$ and $\Gamma_{1}(x) \cap \Delta=C(x, y) \cup A(x, y)$. Then we have $\left|\Gamma_{1}(x) \cap \Delta\right|=a_{3}+c_{3}$.

Since each vertex in Δ appears in a sequence of vertices $x=x_{0}, x_{1}, x_{2}, x_{3}$ in Δ, where $\partial\left(x, x_{j}\right)=j$ and $\partial\left(x_{j-1}, x_{j}\right)=1$ for $1 \leq j \leq 3$, it suffices to show

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \cap \Delta\right|=a_{3}+c_{3} \tag{4.6}
\end{equation*}
$$

for $1 \leq i \leq 2$. For each integer $0 \leq i \leq 2$, we show

$$
\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| \leq\left|\Gamma_{1}\left(x_{i+1}\right) \backslash \Delta\right|
$$

by the 2-way counting of the number of the pairs (s, z) for $s \in \Gamma_{1}\left(x_{i}\right) \backslash \Delta, z \in \Gamma_{1}\left(x_{i+1}\right) \backslash \Delta$ and $\partial(s, z)=2$. For a fixed $z \in \Gamma_{1}\left(x_{i+1}\right) \backslash \Delta$, we have $\partial(x, z)=i+2$ by Lemma 4.6, so $\partial\left(x_{i}, z\right)=2$ and $s \in A\left(x_{i}, z\right)$. Hence the number of such pairs (s, z) is at most $\left|\Gamma_{1}\left(x_{i+1}\right) \backslash \Delta\right| a_{2}$.

On the other hand, we show that this number is exactly $\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| a_{2}$. Fix an $s \in \Gamma_{1}\left(x_{i}\right) \backslash \Delta$. Observe $\partial(x, s)=i+1$ by Lemma 4.6. Observe $\partial\left(x_{i+1}, s\right)=2$ since $a_{1}=0$. Pick any $z \in A\left(x_{i+1}, s\right)$. We shall prove $z \notin \Delta$. Suppose $z \in \Delta$ in the arguments below and choose any $w \in C(s, z)$.
Case 1: $i=0$.
Observe $\partial(x, z)=2, \partial(x, s)=1$ and $\partial(x, w)=2$. This will force $s \in \Delta$ by Lemma 4.6, a contradiction.
Case 2: $i=1$.
Observe $\partial(x, z)=3$; otherwise $z \in \Omega\left(x, x_{2}\right)$ and this implies $s \in \Omega\left(x, x_{2}\right) \subseteq \Delta$ by Lemmas 2.3 and 4.6, a contradiction. This also implies $s \in \Delta$ by Definition 2.1 and Lemma 4.6, a contradiction.
Case 3: $i=2$.
Observe $\partial(x, z)=2$ or 3 . Suppose $\partial(x, z)=2$. Then $B\left(x, x_{3}\right)=B(x, s)$ by Lemma 4.4 (with $x_{3}=u, x_{2}=t$). Hence $s \in \Delta$, a contradiction. So $z \in \Gamma_{3}(x)$. Note that $\partial(x, w) \neq 2,3$; otherwise $s \in \Delta$ by Lemmas 4.4 and 4.6 respectively. Hence $\partial(x, w)=4$. Then by applying $\Omega=\Omega\left(x_{2}, w\right)$ in Theorem 2.5 we have $\partial\left(x_{2}, z\right)=1$, a contradiction to $a_{1}=0$.

From the above counting, we have

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| a_{2} \leq\left|\Gamma_{1}\left(x_{i+1}\right) \backslash \Delta\right| a_{2} \tag{4.7}
\end{equation*}
$$

for $0 \leq i \leq 2$. Eliminating a_{2} from (4.7), we find

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| \leq\left|\Gamma_{1}\left(x_{i+1}\right) \backslash \Delta\right| \tag{4.8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \cap \Delta\right| \geq\left|\Gamma_{1}\left(x_{i+1}\right) \cap \Delta\right| \tag{4.9}
\end{equation*}
$$

for $0 \leq i \leq 2$. We already know that $\left|\Gamma_{1}\left(x_{0}\right) \cap \Delta\right|=\left|\Gamma_{1}\left(x_{3}\right) \cap \Delta\right|=a_{3}+c_{3}$. Hence (4.6) follows from (4.9).

Remark 4.7. The 4-bounded property seems to be much harder to prove. We expect the 3bounded property to be enough for classifying all the distance-regular graphs with classical parameters, $a_{1}=0$ and $a_{2} \neq 0$.

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, 1984.
[2] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[3] A.E. Brouwer, H.A. Wilbrink, The structure of near polygons with quads, Geometriae Dedicata 14 (1883) 145-176.
[4] A. Hiraki, Strongly closed subgraphs in a regular thick near polygon, European Journal of Combinatorics 20 (8) (1999) 789-796.
[5] A.A. Ivanov, S.V. Shpectorov, Characterization of the association schemes of Hermitian forms over $G F\left(2^{2}\right)$, Geometriae Dedicata 30 (1989) 23-33.
[6] Y. Pan, M. Lu, C. Weng, Triangle-free distance-regular graphs, Journal of Algebraic Combinatorics (in press). http://www.springerlink.com/content/11180j3068130238/.
[7] E.E. Shult, A. Yanushka, Near n-gons and line systems, Geometriae Dedicata 9 (1980) 1-72.
[8] H. Suzuki, On strongly closed subgraphs of highly regular graphs, European Journal of Combinatorics 16 (1995) 197-220.
[9] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics 50 (2) (1996) 371-384.
[10] P. Terwilliger, The subconstituent algebra of an association scheme (part I), Journal of Algebraic Combinatorics 1 (1992) 363-388.
[11] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Mathematics 137 (1995) 319-332.
[12] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics 14 (1998) 275-304.
[13] C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics 18 (1997) 211-229.
[14] C. Weng, Classical distance-regular graphs of negative type, Journal of Combinatorial Theory, Series B 76 (1999) 93-116.

[^0]: * Research partially supported by the NSC grant 95-2115-M-009-002 of Taiwan ROC.

 E-mail addresses: yjp.9222803@nctu.edu.tw (Y.-j. Pan), weng@ math.nctu.edu.tw (C.-w. Weng).
 ${ }^{1}$ Fax: +886 35724679.

