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Abstract

Let I" denote a distance-regular graph with classical parameters (D, b, «, ) and D > 3. Assume the
intersection numbers a; = 0 and a, # 0. We show that I" is 3-bounded in the sense of the article [C. Weng,
D-bounded distance-regular graphs, European Journal of Combinatorics 18 (1997) 211-229].
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let I' = (X, R) be a distance-regular graph with diameter D > 3 and distance function 9.
Recall that a sequence x, y, z of vertices of I is geodetic whenever

a(x, y) +9(y, 2) = 9(x, 2).
A sequence x, y, z of vertices of I is weak-geodetic whenever

a(x,y)+0(y,2) <0(x,z2) + 1.

Definition 1.1. A subset {2 C X is weak-geodetically closed if for any weak-geodetic sequence
x,y,zof I',

X,z €= yef
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Weak-geodetically closed subgraphs are called strongly closed subgraphs in [8]. We refer the
reader to [7,3,5,9,12,4] for information on weak-geodetically closed subgraphs.

Definition 1.2. [ is said to be i-bounded whenever for all x, y € X with d(x, y) < i, there is a
regular weak-geodetically closed subgraph of diameter d(x, y) which contains x, y.

The properties of D-bounded distance-regular graphs were studied in [13], and these
properties were used in the classification of classical distance-regular graphs of negative
type [14]. Before stating our main result we give one more definition.

By a parallelogram of length i, we mean a 4-tuple xyzw consisting of vertices of I" such that
o(x,y)=0(z,w)=1,0(x,z) =i,and d(x, w) = d(y,w) = d(y,2) =i — 1.

It was proved that if a; = 0, @y # 0 and I" contains no parallelograms of length 3, then I" is
2-bounded [12, Proposition 6.7], [9, Theorem 1.1]. The following theorem is our main result.

Theorem 1.3. Let I denote a distance-regular graph with classical parameters (D, b, o, B) and
D > 3. Assume the intersection numbers a; = 0 and ap # 0. Then I is 3-bounded.

Note that if I" has classical parameters (D, b, o, ) with D > 3, a; = 0 and ap # 0, then I
contains no parallelograms of any length. See [6, Theorem 1.1] or Theorem 3.3 in this article.

2. Preliminaries

In this section we review some definitions, basic concepts and some previous results
concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more
background information.

Let I' = (X, R) denote a finite undirected, connected graph without loops or multiple edges
with vertex set X, edge set R, distance function 9, and diameter D := max{d(x, y) | x,y € X}.
By a pentagon, we mean a 5-tuple x1x2x3x4x5 consisting of vertices in I" such that 9 (x;, xj+1) =
lforl <i <4andad(xs,x1) =1.

For a vertex x € X and an integer 0 < i < D, set [;(x) = {z € X | d9(x,z) = i}. The
valency k(x) of a vertex x € X is the cardinality of I';(x). The graph I" is called regular (with
valency k) if each vertex in X has valency k.

A graph I' is said to be distance-regular whenever for all integers 0 < h,i, j < D, and all
vertices x, y € X with d(x, y) = h, the number

pli=HzeX|zeli(x) NIy

is independent of x, y. The constants pf’j are known as the intersection numbers of I'.
Let I' = (X, R) be a distance-regular graph. For two vertices x, y € X, with d(x, y) =i, set

B(x,y) = I1(x) N Lip1(y),
Clx,y) =Tn(x)NILi1(y),
A(x,y) = I'(x) NI (y).

Note that
|B(x, )| = P} 1415
[C(x, y)| = I’ll i—1°
[A(x, )| = pi;
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are independent of x, y.

For convenience, set ¢; := p’i i1 forl <i < D,a; = p’i ; forO0 <i <D, b = p’i il for
0<i<D-1andputbp :=0,co:= 0, k := by. Note that & is the valency of I'". It is immediate
from the definition of plhj that b; Z0for0 <i < D —1andc¢; # 0for1 <i < D.Moreover

k=a;+b;+c¢ for0O<i<D. 2.1

From now on we assume that I" = (X, R) is distance-regular with diameter D > 3. Recall
that a sequence x, y, z of vertices of I" is weak-geodetic whenever

Ax, V) +09(y,2) <0(x,z)+ 1.

Definition 2.1. Let {2 be a subset of X, and pick any vertex x € (2. {2 is said to be weak-
geodetically closed with respect to x whenever, for all z € {2 and forall y € X,

X, y, z are weak-geodetic = y € 2. 2.2)

Note that (2 is weak-geodetically closed with respect to a vertex x € {2 if and only if
C(z,x) € and A(z,x)C{? forall z € 2

[12, Lemma 2.3]. Also {2 is weak-geodetically closed if and only if for any vertex x € 2, {2 is
weak-geodetically closed with respect to x. We list a few results which will be used later in this

paper.

Theorem 2.2 ([12, Theorem 4.6]). Let I' be a distance-regular graph with diameter D > 3. Let
2 be a regular subgraph of I' with valency y and set d := min{i | y < c¢; + a;}. Then the
following (i), (ii) are equivalent.

(i) 2 is weak-geodetically closed with respect to at least one vertex x € {2.

(ii) {2 is weak-geodetically closed with diameter d.

In this case y = cq + aq.

Lemma 2.3 (/9, Lemma 2.6]). Let I' be a distance-regular graph with diameter 2, and let x be
a vertex of I'. Suppose ay # 0. Then the subgraph induced on I’»(x) is connected of diameter at
most 3.

Theorem 2.4 ([12, Proposition 6.7], [9, Theorem 1.1]). Let I' be a distance-regular graph with
diameter D > 3. Suppose a1 = 0, ap # 0 and I' contains no parallelograms of length 3. Then
I' is 2-bounded.

Theorem 2.5 ([12, Lemma 6.9], [9, Lemma 4.1]). Let I' be a distance-regular graph with
diameter D > 3. Suppose a;j = 0, a; # 0 and I' contains no parallelograms of any
length. Let x be a vertex of I', and let {2 be a weak-geodetically closed subgraph of I" with
diameter 2. Suppose that there exists an integer i and a vertex u € 2 N I;_1(x), and suppose
2N Tiy1(x) #D. Then forallt € §2, we have 9(x,t) =i — 1+ 9(u, t).
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3. Q-polynomial properties

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. Let R denote the
real number field. Let Maty (R) denote the algebra of all the matrices over R with the rows and
columns indexed by the elements of X. For 0 < i < D let A; denote the matrix in Maty (R)
defined by the rule

. 1, ifolx, y) =1
(Ai)xy = {O, if d(x,y) #i

forx,y € X.
We call A; the distance matrices of I'. We have
Ag=1,
Aﬁ = A; for0 <i < D where Aif means the transpose of A;,

D
AiA; =Zplthh for0 <i, j < D.
h=0

Let M denote the subspace of Maty(R) spanned by Ag, Ai,...,Ap. Then M is a
commutative subalgebra of Maty (R), and is known as the Bose—Mesner algebra of I'. By [2,
p.- 59, 64], M has a second basis Ey, E1, ..., Ep such that

Eyg = |X|_IJ where J = all 1’s matrix,

EiE; =§;;E; for0<i,j<D,

Eo+Ei+---+Ep=1,

E,’ =FE; forO0<i<D. 3.D

The Eo, E1, ..., Ep are known as the primitive idempotents of I', and E( is known as the trivial
idempotent. Let E denote any primitive idempotent of I". Then we have

D
E=|XI""> 67 A (3.2)
i=0

for some 65, 07, ..., 0}, € R, called the dual eigenvalues associated with E.

Set V = RIX! (column vectors), and view the coordinates of V as being indexed by X. Then
the Bose—Mesner algebra M acts on V by left multiplication. We call V' the standard module of
I'. For each vertex x € X, set

£=(0,0,...,0,1,0,...,0), (3.3)
where the 1 is in coordinate x. Also, let (, ) denote the dot product
(u,v) =u'v foru,veV. (3.4)

Then referring to the primitive idempotent E in (3.2), we compute from (3.1)—(3.4) that for x,
yeX,

(Ex, E) = |X|"'oF, (3.5)

where i = d(x, y).
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Let o denote the entrywise multiplication in Maty (R). Then
A; OA.,' = (SijA,' forO0<i,j<D,

so M is closed under o. Thus there exists qlg‘j € Rfor0 <1, j, kK < D such that

D
EioEj =|X|™! ngjEk for0 <i, j < D.
k=0

I' is said to be Q-polynomial with respect to the given ordering Ey, E1, ..., Ep of the
primitive idempotents if for all integers 0 < h,i, j < D, ql.hj = 0 (resp. ql.hj # 0) whenever
one of &, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive
idempotent of I'. Then [I" is said to be Q-polynomial with respect to E whenever there exists
an ordering Eo, E1 = E, ..., Ep of the primitive idempotents of ', with respect to which I" is
Q-polynomial. If I" is Q-polynomial with respect to E, then the associated dual eigenvalues are
distinct [10, p. 384].

The following theorem about the Q-polynomial property will be used in this paper.

Theorem 3.1 ([11, Theorem 3.3]). Assume I' is Q-polynomial with respect to a primitive
idempotent E, and let 0f, ..., 0}, denote the corresponding dual eigenvalues. Then for all
integers 1 <h < D,0<1i,j<Dandforall x,y € X such that d(x,y) = h,

Y Ei— Y Ed=p 91* o] (Ex — E$). (3.6)
(&E))( eX
3 (x,z)=i x,7)= i

6(}.4):/ A(y,2)=i

I' is said to have classical parameters (D, b, a, B) whenever the intersection numbers of I’
satisfy

c,-:[i](l—i-(x[i;l]) for0<i <D, 3.7
o~ (LD L]) wosro

where
i 2 i—1
|:1j|:=1+b+b + .-+ b 3.9)

The following theorem characterizes the distance-regular graphs with classical parameters in
an algebraic way.

Theorem 3.2 ([11, Theorem 4.2]). Let I" denote a distance-regular graph with diameter D > 3.
Choose b € R\ {0, —1}, and let [ ] be as in (3.9). Then the following (1)—(ii) are equivalent.

(i) I' is Q-polynomial with associated dual eigenvalues 05, 0, . .., 0}, satisfying

6 —6F = (6 — 90)[ }bl’ for1<i<D. (3.10)

(i) I has classical parameters (D, b, a, B) for some real constants o, f.
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The following theorem characterizes the distance-regular graphs with classical parameters
and a; = 0, az # 0 in a combinatorial way.

Theorem 3.3 ([6, Theorem 1.1]). Let I' denote a distance-regular graph with diameter D > 3
and intersection numbers a; = 0, ay # 0. Then the following (1)—(iii) are equivalent.

(1) I' is Q-polynomial and contains no parallelograms of length 3.
(i) I' is Q-polynomial and contains no parallelograms of any length i for 3 <i < D.
@iii) I has classical parameters (D, b, a, B) for some real constants b, a, B with b < —1.

4. Proof of main theorem

Assume I' = (X, R) is a distance-regular graph with classical parameters (D, b, «, ) and
D > 3. Suppose the intersection numbers a; = 0 and ap # 0. Then I contains no parallelograms
of any length by Theorem 3.3. We first give a definition.

Definition 4.1. For any vertex x € X and any subset C € X, define

[x, C] .= {v € X | there exists z € C, such that a(x, v) + d(v, z) = d(x, 2)}.

Throughout this section, fix two vertices x, y € X with 9(x, y) = 3. Set
C:={zel3(x)]| B(x,y) = B(x, 2)}
and
A=[x,C]. 4.1

We shall prove that A is a regular weak-geodetically closed subgraph of diameter 3. Note that
the diameter of A is at least 3. If D = 3 then C = I'3(x) and A = I is clearly a regular weak-
geodetically closed graph. Thereafter we assume D > 4. By referring to Theorem 2.2, we shall
prove that A is weak-geodetically closed with respect to x, and the subgraph induced on A is
regular with valency a3 + c3.

Lemma 4.2. For all adjacent vertices z, 7' € I;(x), where i < D, we have B(x, z) = B(x, 7).

Proof. By symmetry, it suffices to show that B(x,z) € B(x,z’). Suppose there exists w €
B(x,z)\ B(x,Z'). Then d(w, z’) # i + 1. Note that d(w, z’) < d(w, x) + d(x,z’) =1+ i and
d(w, z') > d(w, z) — 3(z,7) = i. This implies d(w, z') = i and wxz'z forms a parallelogram
of length i + 1, a contradiction. [

We know that I" is 2-bounded by Theorem 2.4. For two vertices z, s in I" with d(z, s) = 2, let
£2(z, s) denote the regular weak-geodetically closed subgraph containing z, s of diameter 2.

Lemma 4.3. Suppose stuzw is a pentagon in I', where s,u € I3(x) and z € I>(x). Pick
v € B(x,u). Then d(v, s) # 2.

Proof. Suppose d(v,s) = 2. Note d(z, s) # 1, since a; = 0. Note that z, w, s, t,u € £2(z, s).
Thens € 2(z,s) N I2(v) and u € §2(z,s5) N I'4(v) # @. Hence d(v, z) = d(v,s) + d(s,z) =
2 4+ 2 = 4 by Theorem 2.5. A contradiction occurs since (v, x) = l and d(x,z) =2. O

Lemma 4.4. Suppose stuzw is a pentagon in I', where s,u € I3(x) and z € I3(x). Then
B(x,s) = B(x, u).
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Proof. Since |B(x, s)| = |B(x, u)| = b3, it suffices to show B(x, u) € B(x, s). By Lemma 4.3,
B(x,u) C I3(s) U I'4(s).
Suppose
|B(x,u) N I3(s)| =m,
|B(x,u) N I'4(s)| = n.
Then
m+n = bs. 4.2)
By Theorem 3.1,
N of — 65
Y Ef—- )Y Erff=bh 956 — 9‘; (EX — Ei). (4.3)
reB(x,u) r'eB(u,x) 0 3

Observe B(u, x) < I3(s); otherwise {2(u,s) N B(u,x) # @ and this leads d(x,s) = 4 by
Theorem 2.5, a contradiction. Taking the inner product of s with both sides of (4.3) and evaluating
the result using (3.5), we have

gF — g*
moF + nb} — b3 = bs 91 0‘; 5 —63). (4.4)
0 Y3

Solve (4.2) and (4.4) to obtain
G0 O 0
G RICE)

4.5)

Simplifying (4.5) using (3.10), we have n = b3 and then m = 0 by (4.2). This implies
B(x,u) € B(x,s) and ends the proof. [

Lemma 4.5. Let z,u € A. Suppose stuzw is a pentagon in I', where z,w € I3(x) and
u € I3(x). Thenw € A.

Proof. Observe (2(z,s) N I''(x) = @ and (2(z,s) N I'4(x) = @ by Theorem 2.5. Hence
s,t € Ih(x)UI3(x). Observe s € I3(x); otherwise w, s € §2(x, z), and this implies u € 2(x, z),
a contradiction to the diameter of {2(x, z) being 2. Hence B(x, s) = B(x, u) by Lemma4.4. Then
s € C and w € A by construction. [

Lemma 4.6. The subgraph A is weak-geodetically closed with respect to x.

Proof. Clearly C(z,x) € A for any z € A. It suffices to show A(z,x) € A for any z € A.
Suppose z € A. We discuss this case by case in the following. The case d(x, z) = 1 is trivial since
ay; = 0. For the case d(x, z) = 3, we have B(x,y) = B(x,z) = B(x, w) for any w € A(z, x)
by definition of A and Lemma 4.2. This implies A(z, x) € A by the construction of A. For the
remaining case 9(x, z) = 2, fix w € A(z, x) and we shall prove w € A. There exists u € C such
that z € C(u, x). Observe that d(w, u) = 2 since a; = 0. Choose s € A(w, u) andt € C(u, s).
Then stuzw is a pentagon in I'. The result comes immediately by Lemma 4.5. [

Proof of Theorem 1.3. By Theorem 2.2 and Lemma 4.6, it suffices to show that A defined in
(4.1) is regular with valency a3 +c3. Clearly from the construction and Lemma 4.6, | I'1 (z) NA| =
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a3 + c¢3 for any z € C. First we show that |I'j (x) N A| = a3 + ¢3. Note that y € A N I'3(x) by
construction of A. For any z € C(x, y) U A(x, y),

0(x,2) +9(z,y) <0(x,y) + 1.

This implies z € A by Definition 2.1 and Lemma 4.6. Hence C(x, y) U A(x, y) € A. Suppose
B(x,y) N A # (. Choose t € B(x,y) N A. Then there exists y € I3(x) N A such that
t € C(x,y’). Note that B(x, y) = B(x, y’). This leads to a contradiction to ¢ € C(x, y’). Hence
Bx,yyNA=0and I''(x) N A = C(x, y) UA(x, y). Then we have |I'|(x) N A| = a3z + c3.

Since each vertex in A appears in a sequence of vertices x = xg, X1, X2, x3 in A, where
0(x,x;) =jand d(xj_1,x;) = 1 for 1 < j < 3, it suffices to show

[T (x)) N Al = a3 +c3 (4.6)
for 1 <i <2.Foreachinteger 0 <i <2, we show
[T (xi) \ Al < [T (xi41) \ 4]

by the 2-way counting of the number of the pairs (s, z) fors € I'1(x;j) \ 4, z € I'1(xj+1) \ A and
d(s,z) = 2.Forafixed z € I'1 (x;+1)\ 4, we have d(x, z) = i +2 by Lemma 4.6, so 9(x;, z) = 2
and s € A(x;, 7). Hence the number of such pairs (s, z) is at most |11 (x;+1) \ Alaz.

On the other hand, we show that this number is exactly |11 (x;) \ A|ay. Fixans € I'1 (x;) \ A.
Observe d(x,s) = i + 1 by Lemma 4.6. Observe d(x;11,s) = 2 since a; = 0. Pick any
7z € A(xi+1,s). We shall prove z ¢ A. Suppose z € A in the arguments below and choose any
w e C(s, 7).

Case 1:i = 0.

Observe d(x, z) = 2, d(x,s) = 1 and d(x, w) = 2. This will force s € A by Lemma 4.6, a
contradiction.
Case2:i = 1.

Observe d(x,z) = 3; otherwise z € f2(x, xp) and this implies s € 2(x,x;) € A by
Lemmas 2.3 and 4.6, a contradiction. This also implies s € A by Definition 2.1 and Lemma 4.6,
a contradiction.

Case 3:i = 2.

Observe d(x, z) = 2 or 3. Suppose d(x,z) = 2. Then B(x, x3) = B(x,s) by Lemma 4.4
(with x3 = u, x, = t). Hence s € A, a contradiction. So z € I'3(x). Note that 3(x, w) # 2, 3;
otherwise s € A by Lemmas 4.4 and 4.6 respectively. Hence d(x, w) = 4. Then by applying
2 = 2(x7, w) in Theorem 2.5 we have d(x3, z) = 1, a contradiction to a; = 0.

From the above counting, we have

[T (xi) \ Alaz < [T'1(xi41) \ Alaz (4.7)
for 0 < i < 2. Eliminating a, from (4.7), we find

[ (xi) \ Al < [T (i) \ AL (4.8)
or equivalently

[ (xi) VAL = [T (xig) DA 4.9)

for 0 < i < 2. We already know that |I';(xg) N A| = |I'1(x3) N A| = a3 + ¢3. Hence (4.6)
follows from (4.9). O
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Remark 4.7. The 4-bounded property seems to be much harder to prove. We expect the 3-
bounded property to be enough for classifying all the distance-regular graphs with classical
parameters, a; = 0 and ap # 0.
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