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a b s t r a c t

Wireless ad hoc networks have attracted a lot of attentions recently. Resource allocation in such networks
needs to address both fairness and overall network performance. Pricing is a prospective direction to reg-
ulate behaviors of individual nodes while providing incentives for cooperation. In this work, we develop
some pricing strategies for resource allocation by taking account of factors like multiple transmission
rates and energy consumption of nodes, which have not been well studied in former works. Multi-rate
transmission capability is commonly seen in most wireless products nowadays, while energy is one of
the most important resources in portable devices. We propose a clique-based model which allows us
to achieve optimal resource utilization and fairness among network flows when multi-rate transmission
is considered. We also show how to extend the model to dynamically adjust prices based on energy con-
sumptions of flows. In particular, our model takes into account energy consumptions in the transmitters’
side, the receivers’ side, and those that are non-transmitters and non-receivers but are interfered by these
activities. So our model can more accurately reflect the real energy constraint in a wireless network. Sim-
ulation results are presented to show the convergence and other properties of these strategies.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, we have seen rising demand for mobile comput-
ing and communication services. The tremendous advancement in
wireless network technologies has made the dream of ‘‘communi-
cation anytime and anywhere” realizable. Users can experience full
mobility, while at the same time maintaining the ability to connect
with others as well as the Internet. Wireless networks provide peo-
ple a more durable and flexible way of communications. Successful
wireless communication systems include GSM, PHS, 3G WCDMA,
and WLAN (WiFi) systems.

One wireless network configuration that has become a popular
subject of research is the mobile ad hoc network (MANET) [2,5–
7,17,21–23]. A MANET is comprised of a collection of wireless
nodes without a pre-existing infrastructure. Any device with a
microprocessor and a wireless interface, whether highly mobile
or static, may serve as a potential node in a MANET. Each node
in the network acts as a router to relay data packets for others.
Each flow may travel over multiple hops of wireless links from
its origin to its destination. In a MANET, multi-hop routing can
achieve high degree of network connectivity, but this requires
ll rights reserved.
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the willingness of each node to forward packets for others. How-
ever, constrained by limited power and communication resources,
a selfish node may be reluctant to relay packets of others, but ex-
pect others to relay its packets. Compared to wired networks, mul-
ti-hop MANETs have several special characteristics as opposed to
wireline networks. For example, nodes may suffer from a higher
degree of interference and energy resources are more constrained.
Also, since competition is related to the geographic distribution of
nodes, some flows may unfairly consume more resources (such as
bandwidths and energies) than others. This raises the problem of
designing proper resource allocation mechanisms to encourage
cooperation among nodes in such a way that competing multi-
hop flows can share scarce channel as well as battery resources
in a fair way, while the whole utility of all flows is maximized.

The aim of this paper is to explore the possibility of using price
as incentives in multi-hop MANETs to encourage nodes to acquire
resources in a reasonable way to maximize the aggregated utility
(i.e., social welfare) of flows with fairness in mind. The use of pric-
ing as a tool for allocating resources in communication networks
has drawn a lot of attention recently. Both utility and pricing are
not new concepts and have been studied in economics for a long
time. Utility is to reflect the level of users’ satisfaction from con-
suming a resource and price is the cost per unit of resource charged
to users. The intention is to influence users’ behaviors through
pricing to achieve certain desired results, such as improving the
overall system utilization and maintaining fairness among users.
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In wireline networks, pricing mechanisms have been studied in
[3,8–11,13]. In wireless networks, a number of works [16,19,25]
have introduced pricing mechanisms to improve resource manage-
ment. In the context of wireless LANs, price-based resource alloca-
tion strategies have found application in power control [19] and
call admission control [4]. However, these models only concentrate
on single-hop infrastructure wireless networks. Price-based ap-
proaches to bandwidth allocation in multi-hop MANETs are pro-
posed in [18,24]. In [18], an iterative price and rate adaptation
algorithm is proposed assuming that users set prices for forwarding
packets to maximize their own net benefits. The result shows that
using pricing to stimulate cooperation will generate a socially opti-
mal bandwidth allocation, i.e., maximization of the total utility of
all users. Ref. [24] introduces the concept of clique into the resource
allocation problem to accommodate the unique characteristics of
contention among wireless nodes. Based on this new model, they
present a new pricing policy for end-to-end multi-hop flows. Their
simulation results demonstrate that pricing can indeed lead to the
maximization of aggregated utility of flows as well as fairness among
flows.

In this work, we are interested in IEEE 802.11-based MANETs.
IEEE 802.11 [12] is one of the most widely used broadband wire-
less access systems nowadays. In this particular domain, we ob-
serve that there are important characteristics of MANETs that
have not been carefully studied in existing works. First, the trans-
mission rate of a wireless link is in fact environment-sensitive.
Most of today’s wireless interfaces can support multiple modula-
tions and thus can transmit at a wide range of rates. Second, trans-
mitting a packet in IEEE 802.11 incurs energy consumptions not
only at the transmitter and the receiver sides, but also at neighbor-
ing stations of the transmitter and the receiver. We name the latter
the idle-listening energy cost. It follows, interestingly, that the en-
ergy cost incurred by a transmission also depends on the number
of neighboring nodes. Without taking these factors into account,
existing models can not accurately capture prices that should be
charged to traffic flows in a MANET. Based on these observations,
we then propose new pricing strategies for resource allocation in
a MANET. Our contributions are twofold. First, by including the fac-
tors of multiple transmission rates and prices of idle-listening en-
ergy consumptions, our model and thus the derived results are
more realistic. Second, we demonstrate that it is still feasible to
use prices to control behaviors of nodes in a MANET to achieve
maximal system utilization with proper fairness among nodes.

The rest of this paper is organized as follows. Some backgrounds
are given in Section 2. Section 3 presents our clique-based resource
allocation strategy with multi-rate constraint. Section 4 further ex-
tends our resource allocation strategy with both multi-rate and en-
ergy constraints. Section 5 reports our experimental results.
Finally, Section 6 concludes the paper.

2. Backgrounds and related works

We are interested in pricing mechanisms in IEEE 802.11-based
MANETs. In this particular domain, we observe that there are two
important characteristics of MANETs that have been ignored in
existing works. First, the transmission rate of a wireless link is
environment-sensitive. Most of today’s wireless interfaces can sup-
port multiple modulations and thus can transmit at a wide range of
rates. For example, IEEE 802.11b can operate at rates of 1, 2, 5.5,
and 11 Mbps, while with OFDM (orthogonal frequency division
multiplexing), IEEE 802.11a can support a wide range of rates of
6, 9, 12, 18, 24, 36, 48, and 54 Mbps. Second, transmitting a packet
in IEEE 802.11 incurs energy costs not only at the transmitter and
the receiver sides, but also at the neighboring stations of the trans-
mitter and the receiver. For example, an evaluation shows that an
IEEE 802.11b card at transmit, receive, monitor, and sleep modes
would cost around 280, 180, 70, and 10 mW, respectively [20].
When two nodes are communicating, a node that is within the
transmitter’s transmission range will overhear the wireless signal,
decode the packet, and eventually drop it because it is not the in-
tended receiver. These receiving activities do not benefit the over-
hearing node but would still cause significant energy consumption
to the overhearing node. We name this the idle-listening energy
cost. Experiences show that idle-listening energy cost is not much
less than real receiving energy cost. It follows, interestingly, that
the energy cost incurred by a transmission also depends on the
number of neighbors of the transmitter. Further, because the IEEE
802.11 MAC protocol also requires extra control packets being sent
by the receiver, there is also extra energy cost incurred to neigh-
boring nodes of the receiver. This leads to an observation that
the total energy consumption incurred by a multi-hop traffic flow
in a MANET also depends on the number of neighboring nodes of
the routing path. Based on these observations, we will propose
our pricing strategies in a MANET.

Utilizing pricing as a means for fostering cooperation in a MAN-
ET has been studied in [18]. However, it assumes a simplified mod-
el, where each node k has a transmission capacity of Ck, which is
disassociated with other nodes. This model ignores the unique
characteristic of inter-node interference in wireless communica-
tions. In [24], it is shown that cliques (to be defined later) can bet-
ter characterize the interference nature. However, it is assumed
that the channel capacity for each wireless link is equal. Thus,
the multi-rate nature of wireless communications is ignored. Fur-
ther, in both works, the factor of energy consumptions is ignored.
A comparative study of two price-based algorithms is in [15],
where it is shown that the gradient projection method has a better
convergence property, but at the cost of performance.

Our work will model the prices by nonlinear programming
techniques [1]. We will adopt the Lagrangian Primal–Dual solution,
which is summarized as follows. Consider the following nonlinear
problem P, which is called the primal problem.

maximize f ðxÞ
subject to giðxÞ 6 0 for i ¼ 1; . . . ;m ð1Þ

Several problems, closely associated with the above primal prob-
lem, have been proposed and are called dual problems. Among the
various dual functions, the Lagrangian dual function has perhaps
drawn the most attention. The Lagrangian form of the optimization
problem P is defined as follows:

Lðx; kÞ ¼ f ðxÞ �
Xm

i¼1

kigiðxÞ: ð2Þ

where ki P 0 is the Lagrange multiplier associated with the inequal-
ity constraint giðxÞ 6 0. The Lagrange dual function hðkÞ is defined as
the maximized Lðx; kÞ over x, i.e.,

hðkÞ ¼ supx2XLðx; kÞ; ð3Þ

where sup stands for the least upper bound, or the supremum. The La-
grange dual problem D is presented below.

minimize hðkÞ
subject to k P 0: ð4Þ

The optimal primal and dual objectives are equal. Any algorithms
that find a pair of primal–dual variables ðx; kÞ that satisfy the KKT
optimality condition would solve the primal and its dual problem.
One possible approach is to use the gradient projection method
[1], which updates the dual variables k to solve the dual problem D:

kðt þ 1Þ ¼ kðtÞ � a
ohðkðtÞÞ

ok

� �þ
; ð5Þ
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where t is the iteration number and a > 0 is the step size. Certain
choice of step sizes guarantee that the sequence of dual variables
kðtÞ will converge to the dual optimal k� as t !1. The primal var-
iable xðkðtÞÞ will also converge to the primal optimal variable x�.

3. Resource allocation with transmission rate constraint

3.1. Network and contention models

We are given a multi-hop MANET. Each node has a maximum
transmission distance of dtx. Two nodes are able to communicate
with each other if their distance is no larger than dtx. Wireless
channels are considered as resources. When a node is transmitting
a packet, any node that is within the interference distance of dint

can detect the carrier from its radio interface, where dint P dtx,
and thus is prohibited from transmitting and receiving. We assume
that each radio interface can support multiple modulations, and
thus can transmit at multiple rates of r1; r2; . . . ; rm. Without loss
of generality, let r1 > r2 > . . . > rm. The rate that a node can trans-
mit depends on its distance to the receiver. Let d1; d2; . . . ; dm be m
distances such that d1 < d2 < . . . < dm ¼ dtx. We assume that a
transmitter can successfully transmit to a receiver at the rate of
ri if the distance between them is no larger than di. The concept
is illustrated in Fig. 1. We assume that a node can determine, from
past experience, the transmission rates that it can use with each
neighboring node and will always choose the best (highest) rate
for use.

We are interested in solving the resource allocation problem in
a MANET by modeling the power consumption incurred by a rout-
ing path by taking into account the energy cost for transmission,
reception, and inter-node interference along the path. The network
is modeled by a graph G ¼ ðV ; EÞ, where VðGÞ is the set of mobile
nodes and EðGÞ is the set of wireless links. For any two nodes
u; v 2 VðGÞ, a link ðu; vÞ is included in EðGÞ iff their distance
dðu; vÞ 6 dtx. For each link e ¼ ðu; vÞ 2 EðGÞ, depending on the dis-
tance dðu; vÞ, we denote by rðeÞ the best transmission rate for e.
We are also given a set of n traffic flows F in G. Each flow
fi 2 F; i ¼ 1 . . . n, goes from one source node to a destination node
via a predefined routing path (typically a shortest path). The set of
wireless links that are traversed by fi is denoted by EðfiÞ � EðGÞ. The
goal is to calculate a rate allocation vector A ¼ ðrðf1Þ; rðf2Þ; . . . ; rðfnÞÞ
Fig. 1. Relationship of transmission distances and rates.
such that each flow fi can transmit at the rate of rðfiÞ; i ¼ 1 . . . n. We
will formulate the objectives and constraints later on.

3.2. Clique-based rate allocation strategy

Below, we will derive our node interference model. Then we
will present our rate allocation problem, followed by an iterative
scheme to solve this problem. Our results are based on [14,24] with
some extensions.

First, we will formulate the constraints of inter-node interfer-
ence by modifying the model in [24]. Since flows in G will contend
with each other for transmission, we first convert G into a link con-
tention graph Gc ¼ ðVc; EcÞ [14]. Each link in EðGÞ of the original
graph G is converted into a vertex in Vc . Each pair of links e1 and
e2 in EðGÞ with a contention relation is converted to a link ðe1; e2Þ
in Ec , where a contention relation is established if the distance be-
tween any endpoint of e1 and any endpoint of e2 is 6 dint . The rea-
son for such a definition is to model the behavior of the IEEE 802.11
MAC protocol, as shown in Fig. 2. For each data packet being trans-
mitted on a wireless link, RTS/CTS/ACK control packets need to be
sent. This calls for two-way communications, so we can model the
contention relation without regarding the directions of flows.

With graph Gc , we define our clique-based rate allocation prob-
lem as follows. In a graph, a complete subgraph is called a clique. A
maximal clique is a clique such that no other clique is its superset.
The set of all maximal cliques, or simply cliques, in Gc is denoted by
Q. Fig. 3 shows a network G and its corresponding Gc. Two example
maximal cliques (marked by dotted circles) are identified in Fig. 3.
For each q 2 Q , the set of vertices of q (i.e., the set of wireless links
in EðGÞ which forms clique q) is denoted by VðqÞ. Maximal cliques
(or simply called cliques below) in Q will be the units of resource
allocation in our scheme. For any feasible rate allocation vector A
and for each link e that is traversed by fi, the air time ratio
rðfiÞ=rðeÞ is the amount of air time occupied by fi per time unit. Be-
cause no two members in a maximal clique are allowed to transmit
at the same time (otherwise, collision will happen), this enforces
that the sum of air time ratios seen by all links belonging to the
same clique be no more than 100%. More specifically, for each cli-
que q 2 Q , the total of air time ratios occupied by all links of all
flows that go through q at any time unit must be no more than
100%, i.e.,
Fig. 2. IEEE 802.11 MAC protocol.

7

8

6

5

43

2

1

10

9
(8,3)

(9,10)(7,8)

(5,6)(1,2)

(3,4)

(4,5)(2,3)

(4,9)

(a) (b)

Fig. 3. (a) network G and (b) link contention graph Gc and two example maximal
cliques.



3616 Y.-F. Kao, J.-H. Huang / Computer Communications 31 (2008) 3613–3624
8q 2 Q :
X
8e2VðqÞ

X
8fi2F:e2EðfiÞ

rðfiÞ
rðeÞ

0
@

1
A 6 1: ð6Þ

For example, the total of air time ratios of members in each of the
dotted circles in Fig. 3 should be bounded by 100%. We say that a
Fig. 4. Power consumption model. For each node, the corresponding Px=Py means
the energy consumption incurred by transmissions of u=v, respectively.

Fig. 5. Test of convergence w
rate allocation vector A is feasible if all inequalities in Eq. (6) are
satisfied.

We now present our price-based resource allocation scheme
with the above air time constraints. Our derivation will be based
on a social welfare model to calculate a rate allocation vector A such
that the total utility of all flows is maximized and fairness among
flows is maintained. We will associate with the rate rðfiÞ of each fi a
utility function UðrðfiÞÞ, which represents the degree of satisfaction
of fi given rate rðfiÞ. Following typical definitions of utility, we as-
sume that the function Uð�Þ is strictly increasing, concave, and
twice continuously differentiable. The primal problem P can be for-
mulated by a nonlinear optimization problem as follows:

maximize
X
8fi2F

UðrðfiÞÞ

subject to 8q 2 Q :
X
8e2VðqÞ

X
8fi2F:e2EðfiÞ

rðfiÞ
rðeÞ

0
@

1
A 6 1: ð7Þ

The goal is to maximize the total of all flows’ utilities. However, be-
cause of the way that utility functions are defined, it also has a
sense of fairness behind. Since traffic flows have to compete with
each other, they have to share the resources provided by cliques.
ith different step sizes.
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The way utility functions are defined will enforce a flow’s utility to
gradually saturate as more and more resources are taken by it. Intu-
itively, when approaching the saturation point, it would be better to
reduce its traffic rate and give the saved resource to other traffic
flows, which may generate higher utility margins. This is what we
mean by social welfare. Also, utility functions are based on users’
psychological feelings to prices and can be defined differently. Sev-
eral examples of utility functions can be found in our simulations.

In order to solve problem P, we turn our attention to the dual
problem D of P defined as follows. For each q 2 Q , let lq be the cost
of the usage of one air time unit charged by clique q. Problem D is
defined as the following min–max problem:

min
8l1 ;l2 ;...;ljQ j

max
8rðf1Þ;rðf2Þ;...;rðfnÞ

fDðrðf1Þ; rðf2Þ; . . . ; rðfnÞ;l1;l2; . . . ;ljQ jÞg
� �

;

where

Dðrðf1Þ; rðf2Þ; . . . ; rðfnÞ;l1;l2; . . . ;ljQ jÞ

¼
X
8fi2F

UðrðfiÞÞ �
X
8e2EðfiÞ

X
8q2Q :e2VðqÞ

rðfiÞ
rðeÞ � lq

 !0
@

1
AþX

8q2Q

lq; ð8Þ

under the same constraints as in P, where the expression inside the
first summation can be considered as the net benefit of flow fi and
the second term can be considered as the total value of the potential
capacities of all cliques that can be offered to flows. Eq. (8) can be
rewritten as
Dðrðf1Þ; rðf2Þ; . . . ; rðfnÞ;l1;l2; . . . ;ljQ jÞ

¼
X
8fi2F

UðrðfiÞÞ � rðfiÞ
X
8q2Q

lq

X
8e2EðfiÞ:e2VðqÞ

1
rðeÞ

0
@

1
A

0
@

1
AþX

8q2Q

lq; ð9Þ

which satisfies the Lagrangian form of the optimization problem P,
where ðl1;l2; . . . ;ljQ jÞ is a vector of Lagrange multipliers. In Eq. (9),
the term
Fig. 6. Test of convergence with dif
X
8q2Q

lq

X
8e2EðfiÞ:e2VðqÞ

1
rðeÞ

0
@

1
A ð10Þ

can be regarded as the unit path cost charged to flow fi. From Eq. (10),
we see that the difference between our formulation and that of [24] is
that we take into account the actual air time occupied for a flow in
each clique, while [24] only counts the number of links appearing
in each clique. This does matter when two links belong to the same
clique, one transmitting at a higher speed and the other transmitting
at a lower speed; although they may transmit the same amount of
information, the occupied air time ratios should be differentiated.
Thus, our formulation can more accurately model the cost charged
to each flow.

Next, we develop an iterative algorithm to determine the rate
allocation vector A. Intuitively, each clique can be regarded as a pro-
vider and each flow can be regarded as a buyer. Clique q may gradu-
ally adjust its unit price lq depending on the demands of buyers. On
the other hand, each buyer fi may gradually adjust its flow rate rðfiÞ
depending on its current utility value and the accumulated price
charged by all cliques that it will go through. More specifically, the
algorithm goes in a sequence of steps. At step t, the unit cost of each
clique q is denoted by lqðtÞ, and the rate of each flow fi is denoted by
rðfi; tÞ. In each iteration, the clique costs will be updated first, fol-
lowed by updates of flow rates. The algorithm is a distributed one
executed by individual cliques and sources of flows.

A1. For each clique q, one node Lq is pre-elected as the leader of
that clique. Lq then collects the rate rðfi; tÞ of each fi such that
EðfiÞ \ VðqÞ 6¼ ;. (How to elect a leader is trivial, so we omit
the details.)

A2. Lq will determine the price of q in the next step t þ 1 based
on its current price at step t using the gradient projection
method [1] as follows:" #
ferent in
lqðt þ 1Þ ¼ lqðtÞ � c
oDð�Þ
olq

þ

; ð11Þ
itial clique unit prices.
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where c is a small step size and ½��þ will return 0 when the va-
lue inside the brackets is negative. Since the utility function is
strictly concave, Dð�Þ is continuously differentiable. From Eq.
(8), Lq can derive that
0 1

oDð�Þ
olq

¼ 1�
X
8fi2F

X
8e2EðfiÞ:e2VðqÞ

rðfiÞ
rðeÞ

@ A: ð12Þ

Plugging Eq. (12) into Eq. (11), Lq determines its unit price in
step t þ 1 as
 0 10 12 3

lqðt þ 1Þ ¼ lqðtÞ � c 1�

X
8fi2F

X
8e2EðfiÞ:e2VðqÞ

rðfiÞ
rðeÞ

@ A@ A4 5
þ

:

ð13Þ

Then Lq sends the updated price lqðt þ 1Þ to all members in
VðqÞ.
A3. On receiving lqðt þ 1Þ, each e 2 VðqÞ notifies the updated
price to each flow that goes through it. Each flow should for-
ward the new price to its source node.
Fig. 7. Test of convergence with
A4. When the source of fi collects all updated prices at step t þ 1,
it derives its updated net benefit function as
differen
BðrðfiÞÞ ¼ UðrðfiÞÞ �
X
8e2EðfiÞ

X
8q2Q :e2VðqÞ

rðfiÞ
rðeÞ � lqðt þ 1Þ

 !
ð14Þ

and takes the first derivative of BðrðfiÞÞ by setting it to 0

oBðrðfiÞÞ
orðfiÞ

¼ U0ðrðfiÞÞ �
X
8e2EðfiÞ

X
8q2Q :e2VðqÞ

1
rðeÞ � lqðt þ 1Þ

 !
¼ 0:

ð15Þ

The next injection rate that would maximize its net benefit is

rðfi; t þ 1Þ ¼ argrðfiÞ
oBðrðfiÞÞ

orðfiÞ
¼ 0

� �
: ð16Þ
A5. The source of fi then communicates its updated rate
rðfi; t þ 1Þ to all cliques flowed by it by piggybacking the
value with its data packets. The above procedure then loops
back to step A2 and repeats in each time step.
t initial flow rates.
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4. Resource allocation with both transmission rate and energy
constraints

A radio channel is a kind of replenishable resource in the sense
that in every time unit, the same amount of resource can be pro-
vided again. On the contrary, it is not so for battery energy in a mo-
bile node because after each usage, the remaining energy decreases
until the battery is exhausted. Below, we will develop an extension
to our model to include energy price.

We first develop the energy consumption model in IEEE 802.11
MAC, where each transmission of a data packet is accompanied by
RTS/CTS/ACK control packets, as illustrated in Fig. 2. Let the
amounts of energy consumption per time unit for transmission,
reception, and idle-listening be Ptx; Prx, and Pidle, respectively. For
each directional wireless link ~e ¼ ðu; vÞ 2 EðGÞ, the amount of en-
ergy required to transmit one data bit from u to v can be written as

Pð~eÞ ¼ ð1þ dtxÞ �
1

rðeÞ � ðPtx þ Prx þ ðjNðuÞj � 1ÞPidleÞ þ drx

� 1
rðeÞ � ðPtx þ Prx þ ðjNðvÞj � 1ÞPidleÞ; ð17Þ
Fig. 8. Changes of clique unit prices and flow
where the first term is the cost incurred by the transmission activ-
ities at u and the second term is the cost incurred by the transmis-
sion activities at v. NðuÞ and NðvÞ are the sets of neighbors of u and v
in G, respectively. The terms dtx and drx are to account for the ratios
of extra control overheads per data bit incurred for u and v, respec-
tively. Note that since~e is directional, Pððu; vÞÞ may not be equal to
Pððv;uÞÞ. Fig. 4 shows an example.

We utilize energy price Pð~eÞ in two ways. First, Pð~eÞ will be sent
to each clique leader Lq to differentiate the unit price of q charged
to each flow. More specifically, the unit cost lq will be extended to
lq;~e to account for the energy cost of link ~e. Second, the energy
price will also be sent to each source node to be included in its
net benefit function. The detail procedure is shown below.

B1. Each directional link ~e will calculate its energy cost Pð~eÞ. At
step t, the leader Lq of each clique q will collect the rate
rðfi; tÞ of each fi such that EðfiÞ \ VðqÞ 6¼ ; and the energy cost
Pð~eÞ of each link~e 2 VðqÞ.

B2. To reflect the difference in energy cost of each link, we mod-
ify Eq. (13) such that Lq assigns a different step size c~e to
each link ~e 2 VðqÞ. We intentionally let links with higher
rates by varying the utility functions.
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energy costs get larger step sizes, and vice versa. The intui-
tion is to let links with higher energy costs adjust prices
more quickly. So flows passing high energy consumption
areas will be more sensitive to price changes. Specifically,
Lq sets the unit price of link~e in step t þ 1 as
lq;~eðt þ 1Þ ¼ lq;~eðtÞ � c~e 1�
X
8fi2F

X
8e2EðfiÞ:e2VðqÞ

rðfiÞ
rðeÞ

0
@

1
A

0
@

1
A

2
4

3
5
þ

;

ð18Þ

where lq;~eðtÞ is the unit price charged by each link~e in step t.
Then Lq sends the updated price to all members in VðqÞ. The
value of c~e is defined as follows. Let step size variance b be a
positive constant such that b < c (for example, if c ¼ 0:01,
then b can be 0.005). Let Pavg ¼ 1

2jVðqÞj
P
8~e2VðqÞPð~eÞ. For link ~e,

we let

c~e ¼ cþ b � h Pð~eÞ � Pavg

Pavg

� �
; ð19Þ
Fig. 9. Varying the network density by changi
where

hðyÞ ¼
y if � 1 6 y 6 1
�1 if y < �1
1 if y > 1

8><
>: : ð20Þ

Function hðyÞ is to constrain the returned value within ½�1;1�
when y is outside that range.
B3. On receiving lq;~eðt þ 1Þ, each ~e 2 VðqÞ notifies the updated
price to each flow that goes through it. Each flow should
carry the new price to its source node.

B4. When the source of fi collects all updated prices at step t þ 1,
it derives its updated net benefit function as
BðrðfiÞÞ ¼ UðrðfiÞÞ

�
X
8e2EðfiÞ

X
8q2Q :e2VðqÞ

rðfiÞ
rðeÞ � lq;~eðt þ 1Þ þweng � rðfiÞ � Pð~eÞ
� � !

;

ð21Þ

where weng is a constant representing the weight of the price
of energy, considering that one may give more or less empha-
ng the interference range.
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sis on the cost of energy consumption. Taking the first deriv-
ative of BðrðfiÞÞ by setting it to 0, we have

oBðrðfiÞÞ
orðfiÞ

¼ U0ðrðfiÞÞ

�
X
8e2EðfiÞ

X
8q2Q :e2VðqÞ

lq;~eðt þ 1Þ
rðeÞ þweng � Pð~eÞ

� � !
¼ 0:

ð22Þ

The next injection rate that would maximize its net benefit is

rðfi; t þ 1Þ ¼ argrðfiÞ
oBðrðfiÞÞ

orðfiÞ
¼ 0

� �
: ð23Þ
B5. The source of fi then communicates its updated rate to all cli-
ques flowed by it by piggybacking the value of rðfi; t þ 1Þ
with its data packets. The above procedure then loops back
to step B2 and repeats in each time step.

5. Experimental results

To understand the convergence property and performance of
the proposed protocols, we have developed a simulator. We con-
sider the effect of multi-rate transmission, without the effect of en-
ergy price. A network area of size 1500 m� 1500 m is simulated,
on which 50 nodes are randomly generated. We assume that the
IEEE 802.11b wireless interface cards are used, which support four
transmission rates of r1 ¼ 11 Mbps, r2 ¼ 5:5 Mbps; r3 ¼ 2 Mbps,
and r4 ¼ 1 Mbps, with transmission distances of
d1 ¼ 30 m; d2 ¼ 50 m; d3 ¼ 80 m, and d4 ¼ 145 m, respectively.
Therefore, dtx ¼ 145 m. Unless stated otherwise, we set
dint ¼ 2� dtx and initial price lqð0Þ ¼ 1:00 for each q. For each flow,
the initial rate is set to 0. The step size c is set to 0.05. In the fol-
lowing simulations, we first assume weng ¼ 0 (i.e., no energy price).
At the end, we will evaluate the impact of weng .
Fig. 10. Varying the network density b
(A) Convergence test: First, we inject different initial values to
verify the convergence property of our scheme. We adopt the util-
ity function UðxÞ ¼ x1=2. There are n ¼ 5 flows each with an initial
flow rate of 0 Mbps. The initial unit price for each clique is 1.0.
We test different step sizes c ¼ 0:08, 0.18, and 0.28. The results
are in Fig. 5, which shows that in all step sizes, the clique unit
prices and flow rates will converge to the same values. A smaller
step size will lead to slower convergence, which is reasonable.
We also conduct simulations with different initial clique unit
prices, under a fixed c ¼ 0:08. As Fig. 6 shows, initial unit prices
do affect the speed of convergence. However, all cases converge
to the same flow rates. A similar test of convergence using different
initial flow rates are shown in Fig. 7.

(B) Impact of utility functions: Next, we test on different utility
functions: UðxÞ ¼ x1=2; x1=4, and ln x. Five traffic flows are injected.
Then we observe the changes of unit prices of some cliques
(Fig. 8(a), (c), (e)) and changes of rates of some flows (Fig. 8(b),
(d), (f)). It can be seen that in all cases, flow rates will converge
within short times. The convergence speed of UðxÞ ¼ ln x is rela-
tively slower. Overall, we see that when UðxÞ ¼ x1=2 or x1=4, the flow
rates converge at faster speeds than the case UðxÞ ¼ ln x. This is be-
cause the degree of satisfaction is less sensitive to rate change in
the latter case. Interestingly, we also see that even after all flow
rates have converged, some cliques’ unit prices will converge
quickly, but some may keep on increasing or decreasing. Decreas-
ing ones are due to the corresponding cliques are not 100% satu-
rated yet. So their prices will keep on decreasing. However, flow
rates may not be increased any more (observe that some cliques
may be saturated already and become the bottlenecks of these
flows). This causes such cliques drop their unit prices gradually
to 0. This can also explain why some flows will keep on increasing
their prices. As a flow sees a dropping path price, it will try to in-
crease its rate. However, since no more increase is possible, this
only causes those already saturated cliques to become over-satu-
rated and thus increase their unit prices.
y changing the number of nodes.
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(C) Varying the network density: In the next set of simulations,
we fix the utility function at UðxÞ ¼ x1=2 and vary the network den-
sity. The network density can be changed by varying the interfer-
ence range or the number of nodes. The results in Fig. 9 are
obtained by setting dint ¼ 2� dtx;3� dtx and 4� dtx. The conver-
gence property remains true. However, since the definitions of cli-
ques will change as the interference ranges change, the
convergence speeds and the final flow rates are not necessarily
the same. The results in Fig. 10 are obtained by setting the num-
bers of nodes to 50 and 100. While the convergence is guaranteed,
the speed of convergence is slower as there are more nodes, which
is reasonable.

(D) Impact of number of flows: Finally, we fix the utility function
at UðxÞ ¼ x1=2 and the interference range at dint ¼ 2:0� dtx and vary
the number of flows among 5, 10, and 25. The results are in Fig. 11.
The convergence speeds are not sensitive to the number of flows,
so the proposed protocol should be quite scalable to the number
of flows.

(E) Impact of energy price: The above results assume no energy
price (i.e., steps A1-A5 are adopted). In this simulation, we set
Fig. 11. Changes of clique unit prices and flo
UðxÞ ¼ x1=2; dint ¼ 2:0� dtx, and vary the weight weng (i.e., steps
B1-B5 are adopted). The results are in Fig. 12. We see both the con-
vergence property and the impact of energy cost. Flows 1 and 3
consume the most energy, so their stable rates decrease as weng in-
creases. On the contrary, flows 2 and 4 consume relatively less en-
ergy, so their stable rates, benefiting from the channel resources
released by flows 1 and 3, increase as weng increases. Fig. 13 shows
the impact of weng by varying it between 0.1 and 2.0. As can be
seen, the cost of energy can suppress the rates of flows 1 and 3
effectively. As some channel resources are released by flows 1
and 3, flows 2 and 4 will first benefit from these new resources.
However, as weng keeps on increasing, flows 2 and 4 will eventually
see higher overall prices, enforcing them to reduce their rates. This
explains why we see increment followed by decrement in stable
rates for them as weng keeps on increasing.

6. Conclusions

We have addressed the resource allocation problem in MANETs
by using pricing to regulate individual flows’ behaviors. Two pric-
w rates by varying the number of flows.



Fig. 12. Impact of energy price. (Set A considers only channel cost, while set B considers both channel and energy costs.)

Fig. 13. Impact of weight weng when energy price is considered. (Set A considers
only channel cost, while set B considers both channel and energy costs.)
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ing strategies have been proposed, which take the factors of multi-
ple transmission rates and energy consumptions into account.
These two factors are critical ones for MANETs, but have not been
well studied in former works. Therefore, our results can more clo-
sely reflect realistic wireless network environments under current
technologies. Our schemes do not rely on global network informa-
tion. Each clique will run as an individual to adjust its unit price.
Similarly, each flow will run as an individual to adjust its flow rate
depending on its current utility value and the external charges. As
shown by our simulations, the system will gradually reach a bal-
ance point. Our simulation results have verified the convergence
properties of the proposed clique-based and clique-plus-energy-
based models. Various factors have been studied in our simulation
experiments.
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