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a b s t r a c t

A new pragmatical adaptive control method for different chaotic systems is proposed. Tra-
ditional chaos control is limited to decrease chaos of one chaotic system. This method
enlarges the effective scope of chaos control. We can control a chaotic system, e.g. a new
chaotic double van der Pol system, to a given chaotic or regular system, e.g. a new chaotic
double Duffing system or to a damped simple harmonic system. By a pragmatical theorem
of asymptotical stability based on an assumption of equal probability of initial point, an
adaptive control law is derived such that it can be proved strictly that the common zero
solution of error dynamics and of parameter dynamics is asymptotically stable. Numerical
simulations are given to show the effectiveness of the proposed scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since chaos control was firstly used by Ott et al. [1], it has been studied extensively. Many control methods have
been employed to control chaos [2–6]. Simple linear feedback control was proposed [7–9]. Time delay feedback control
[10–13], sliding mode control [14–17], backstepping method [18] and adaptive control [19–22] were widely used. However,
traditional adaptive chaos control is limited to control the chaotic motion of one chaotic system to regular motion or to fixed
point. Proposed pragmatical adaptive control method enlarges the scope of chaos control. We can control a chaotic system to
a given simple unchaotic system or to a more complex chaotic system. In current scheme of adaptive control of chaotic mo-
tion [23–25], traditional Lyapunov stability theorem and Babalat lemma are used to prove the error vector approaches zero,
as time approaches infinity. But the question, why the estimated or given parameters also approach to the uncertain or goal
parameters, remains no answer. By a pragmatical theorem of asymptotical stability [29–31] based on an assumption of equal
probability of initial points, an adaptive control law is derived such that it can be proved strictly that the common zero solu-
tion of error dynamics and of parameter dynamics is asymptotically stable. Numerical results are given for a chaotic double
van der Pol system to be controlled to a chaotic double Duffing system and to a regular damped simple harmonic system.

This paper is organized as follows: In Section 2, a pragmatical adaptive control scheme is given. In Section 3 numerical
results of chaos control are given. A chaotic double van der Pol system is controlled to a chaotic double Duffing system
and to a regular damped simple harmonic system. Finally, conclusions are given in Section 4.

2. Pragmatical adaptive control scheme

Consider the following chaotic system
_x ¼ f ðx;AÞ þ uðtÞ; ð1Þ
. All rights reserved.
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where x = [x1,x2, . . . ,xn]T 2 Rn denotes a state vector, A = [A1,A2, . . . ,Am] 2 Rm is a original coefficient vector, and f is a vector
function, and u(t) = [u1(t),u2(t), . . . ,un(t)]T 2 Rn is a control input vector.

The goal system which can be either chaotic or nonchaotic, is
_y ¼ gðy; bBÞ; ð2Þ
where y = [y1,y2, . . . ,yn]T 2 Rn denotes a state vector, bB ¼ ½bB1; bB2; . . . ; bBP�T 2 Rp is a goal coefficient vector, and g is a vector
function. Our goal is to design an adaptive control method and a controller u(t) so that the state vector of the chaotic system
(1) asymptotically approaches the state vector of the goal system (2).

The chaos control is accomplished in the sense that the limit of the error vector e(t) = [e1,e2, . . . ,en]T approaches zero
lim
t!1

e ¼ 0; ð3Þ
where
e ¼ y� x: ð4Þ
From Eq. (4) we have
_e ¼ _y� _x; ð5Þ
_e ¼ gðy; bBÞ � f ðx;AÞ � uðtÞ: ð6Þ
A Lyapnuov function Vðe; eA; eBÞ is chosen as a positive definite function
Vðe; eA; eBÞ ¼ 1
2

eTeþ 1
2
eATeA þ 1

2
eBTeB; ð7Þ
where eA ¼ A� bA, eB ¼ B� bB, A and B are two column matrices whose elements are the original coefficients of systems (1) and
(2) respectively, bA, bB are two column matrices whose elements are the goal coefficients of systems (1) and (2), respectively.

Its derivative along any solution of the differential equation system consisting of Eq. (6) and. update parameter differen-
tial equations for eA and eB is
_VðeÞ ¼ eT½gðy; bBÞ � f ðx;AÞ � uðtÞ� þ eA _eA þ eB _eB; ð8Þ
where u(t), _eA, and _eB are chosen so that _V ¼ eTCe, C is a diagonal negative definite matrix, and _V is a negative semi-definite
function of e and parameter differences eA and eB. In current scheme of adaptive control of chaotic motion [26–28], traditional
Lyapunov stability theorem and Babalat lemma are used to prove the error vector approaches zero, as time approaches infin-
ity. But the question, why the estimated or given parameters also approach to the uncertain or goal parameters, remains no
answer. By pragmatical asymptotical stability theorem, the question can be answered strictly.

The stability for many problems in real dynamical systems is actual asymptotical stability, although may not be mathe-
matical asymptotical stability. The mathematical asymptotical stability demands that trajectories from all initial states in the
neighborhood of zero solution must approach the origin as t ?1. If there are only a small part or even a few of the initial
states from which the trajectories do not approach the origin as t ?1, the zero solution is not mathematically asymptot-
ically stable. However, when the probability of occurrence of an event is zero, it means the event does not occur actually. If
the probability of occurrence of the event that the trajectories from the initial states are that they do not approach zero when
t ?1, is zero, the stability of zero solution is actual asymptotical stability though it is not mathematical asymptotical sta-
bility. In order to analyze the asymptotical stability of the equilibrium point of such systems, the pragmatical asymptotical
stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m < n), respectively, and u be a differentiable map from X to Y, then
u(X) is subset of Lebesque measure 0 of Y[20]. For an autonomous system
dx
dt
¼ f ðx1; . . . ; xnÞ; ð9Þ
where x = [x1, . . . ,xn]T is a state vector, the function f = [f1, . . . , fn]T is defined on D � Rn and kxk 6 H > 0. Let x = 0 be an equilib-
rium point for the system (9). Then
f ð0Þ ¼ 0: ð10Þ
Definition. The equilibrium point for the system (9) is pragmatically asymptotically stable provided that with initial points
on C which is a subset of Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be determined,
while with initial points on D–C, the corresponding trajectories behave as that agree with traditional asymptotical stability
[18,19].

Theorem. Let V = [x1, . . . , xn]T: D ? R+ be positive definite and analytic on D, such that the derivative of V through Eq. (9), _V, is
negative semi-definite.



Z.-M. Ge et al. / Applied Mathematics and Computation 203 (2008) 513–522 515
Let X be the m-manifold consisted of point set for which "x 6¼ 0, _VðxÞ ¼ 0 and D is a n-manifold. If m+1 < n, then the equilibrium
point of the system is pragmatically asymptotically stable.

Proof. Since every point of X can be passed by a trajectory of Eq. (9), which is one-dimensional, the collection of these tra-
jectories, C, is a (m + 1)-manifold [22,23].

If m + 1 < n, then the collection C is a subset of Lebesque measure 0 of D. By the above definition, the equilibrium point of
the system is pragmatically asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point falls on the collection C is zero. Here, equal
probability is assumed for every point chosen as an initial point in the neighborhood of the equilibrium point. Hence, the event that
the initial point is chosen from collection C does not occur actually. Therefore, under the equal probability assumption,
pragmatical asymptotical stability becomes actual asymptotical stability. When the initial point falls on D–C, _VðxÞ < 0, the
corresponding trajectories behave as that agree with traditional asymptotical stability because by the existence and
uniqueness of the solution of initial-value problem, these trajectories never meet C.

In Eq. (7) V is a positive definite function of n variables, i.e. p error state variables and n � p = m differences between
unknown and estimated parameters, while _V ¼ eTCe is a negative semi-definite function of n variables. Since the number of
error state variables is always more than one, p > 1, m + 1 < n is always satisfied, by pragmatical asymptotical stability
theorem we have
lim
t!1

e ¼ 0 ð11Þ
and the estimated parameters approach the uncertain parameters. The pragmatical adaptive control theorem is obtained.
Therefore, the equilibrium point of the system is pragmatically asymptotically stable. Under the equal probability assumption,
it is actually asymptotically stable for both error state variables and parameter variables. h
3. Numerical results of the chaos control

A van der Pol [32-34] oscillator driven by a periodic excitation is considered. The equation of motion can be written as
€xþuxþ a _xðx2 � 1Þ � b sinxt ¼ 0; ð12Þ
where u, a, b are constant parameters and bsinxt is an external excitation. In Eq. (12), the linear term stands for a conser-
vative harmonic force which determines the intrinsic oscillation frequency. The self-sustaining mechanism which is respon-
sible for the perpetual oscillation rests on the nonlinear term. Energy exchange with the external agent depends on the
magnitude of displacement jxj and on the sign of velocity _x. During a complete cycle of oscillation, the energy is dissipated
if displacement x(t) is large than one, and that energy is fed-in if jxj < 1. The time-dependent term stands for the external
driving force with amplitude b and frequency x. Eq. (12) can be rewritten as two first order equations
_x ¼ y;

_y ¼ �uxþ að1� x2Þyþ b sin xt:

(
ð13Þ
A new system, the double van der Pol system, studied in this paper consists of two van der Pol systems with mutual cou-
pling terms instead of two external excitations
dx1
dt ¼ y1;

dy1
dt ¼ a1x1 þ b1y1 þ c1x2

1y1 þ d1u1;

du1
dt ¼ v1;

dv1
dt ¼ f1u1 þ g1v1 þ h1u2

1v1 þ j1x1;

8>>>>><>>>>>:
ð14Þ
where d1u1, j1x1 are mutual coupling terms. When a1 = �1, b1 = 0.2, c1 = �2.4, d1 = 0.04, j1 = �0.3, f1 = �1, g1 = 2, h1 = �2 are
original coefficients and initial conditions are x1(0) = 3, y1(0) = 4, u1(0) = 3, and v1(0) = 4, chaos of the system are illustrated
by phase portraits (Fig. 1).

Case (a) Control a chaotic new double van der Pol system to a new double Duffing system
The goal system is a double Duffing system. The Duffing system is
€xþ a _xþ bxþ cx3 ¼ d cos xt; ð15Þ
where a, b, c, d, x are constant parameters, dcosxt is an external excitation. It can be written as two first order differential
equations
dx
dt ¼ y;
dy
dt ¼ �ay� bx� cx3 þ d cos xt:

(
ð16Þ



Fig. 1. Phase portraits of the double van der Pol system.
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Consider the following double new Duffing system as goal system
dx2
dt ¼ y2;

dy2
dt ¼ a1x2 þ b̂1y2 þ ĉ2x3

2 þ d̂1u2;

du2
dt ¼ v2;

dv2
dt ¼ f1u2 þ ĝ1v2 þ ĥ2u3 þ ĵ1x2:

8>>>>><>>>>>:
ð17Þ
It consists of two Duffing systems in which two external excitations are replaced by two coupling terms. It is an auton-
omous system with four states where b̂1, ĉ2, d̂1, ĵ1, ĝ1, and ĥ2 are constant goal coefficients of the system. When
b̂1 ¼ �0:05; ĉ2 ¼ �3; d̂1 ¼ 7; ĵ1 ¼ �7; ĝ1 ¼ 0:05; ĥ2 ¼ �3, the chaotic behavior is presented in Fig. 2.

In order to lead (x1,y1,u1,v1) to (x2,y2,u2,v2), we add controllers U1, U2, U3, and U4 to each equation of Eq. (14), respectively
dx1
dt ¼ y1 þ U1;

dy1
dt ¼ a1x1 þ b1y1 þ c1x2

1y1 þ d1u1 þ U2;

du1
dt ¼ v1 þ U3;

dv1
dt ¼ j1x1 þ f1u1 þ g1v1 þ h1u2

1v1 þ U4:

8>>>>><>>>>>:
ð18Þ
We define error vector E = [E1,E2,E3,E4]T = [x2,y2,u2,v2]T � [x1,y1,u1,v1]T. Subtracting Eq. (18) from Eq. (17), we obtain the
error dynamics
_E1 ¼ y2 � y1 � U1;

_E2 ¼ a1x2 þ b̂1y2 þ ĉ2x3
2 þ d̂1u2 � a1x1 � b1y1 � c1x2

1y1 � d1u1 � U2;
Fig. 2. Phase portraits of the double Duffing system.
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_E3 ¼ v2 � v1 � U3;

_E4 ¼ ĵ1x2 þ f1u2 þ ĝ1v2 þ ĥ2u3
2 � j1x1 � f1u1 � g1v1 � h1u2

1v1 � U4; ð19Þ
where E1 = x2 � x1, E2 = y2 � y1, E3 = u2 � u1, E4 = v2 � v1.
Choose a Lyapunov function in the form of the positive definite function:
VðE1; E2; E3; E4;
~b1; ~c1; ~c2;

~d1;~j1; ~g1;
~h1;

~h2Þ ¼
1
2
ðE2

1 þ E2
2 þ E2

3 þ E2
4 þ ~b2

1 þ ~c2
1 þ ~c2

2 þ ~d2
1 þ~j2

1 þ ~g2
1 þ ~h2

1 þ ~h2
1Þ; ð20Þ
where ~b1 ¼ b̂1 � b1, ~c1 ¼ ĉ1 � c1, ~c2 ¼ ĉ2 � c2, ~d1 ¼ d̂1 � d1, ~j1 ¼ ĵ1 � j1, ~g1 ¼ ĝ1 � g1, ~h1 ¼ ĥ1 � h1, ~h2 ¼ ĥ2 � h2 and
b̂1; ĉ1; ĉ2; d̂1; ĵ1; ĝ1; ĥ1; ĥ2 are given parameters, b̂1 ¼ �0:05; ĉ1 ¼ 0; ĉ2 ¼ �3; d̂1 ¼ 7; ĵ1 ¼ �7; ĝ1 ¼ 0:05; ĥ1 ¼ 0; ĥ2 ¼ �3 are goal
parameters.

Its time derivative along any solution of Eq. (19) and parameter dynamics is
_V ¼ E1½y2 � y1 � U1� þ E2½a1x2 þ b̂1y2 þ ĉ2x3
2 þ d̂1u2 � a1x1 � b1y1 � c1x2

1y1 � d1u1 � U2� þ E3½v2 � v1 � U3�

þ E4 ½̂j1x2 þ f1u2 þ ĝ1v2 þ ĥ2u3
2 � j1x1 � f1u1 � g1v1 � h1u2

1v1 � U4� þ ~b1ð� _b1Þ þ ~c1ð� _c1Þ þ ~c2ð� _c2Þ þ ~d1ð� _d1Þ

þ~j1ð�_jÞ þ ~g1ð� _g1Þ þ ~h1ð� _h1Þ þ ~h2ð� _h2Þ: ð21Þ
Choose
U1 ¼ y2 � y1 þ E1;

U2 ¼ a1x2 þ b̂1y2 þ ĉ2x3
2 þ d̂1u2 � a1x1 � b1y1 � c1x2

1y1 � d1u1 þ E2 þ ~a2
1 þ ~b2

1 þ ~c2
1 þ ~c2

2 þ ~d2
1;

U3 ¼ v2 � v1 þ E3;

U4 ¼ ĵ1x2 þ f1u2 þ ĝ1v2 þ ĥ2u3
2 � j1x1 � f1u1 � g1v1 � h1u2

1v1 þ E4 þ ~e2
1 þ ~f 2

1 þ ~g2
1 þ ~h2

1 þ ~h2
2;

ð22Þ

� _b1 ¼ ~b1E2;

� _c1 ¼ ~c1E2;

� _c2 ¼ ~c2E2;

� _d1 ¼ ~d1E2;

� _j1 ¼ ~j1E4;

� _g1 ¼ ~g1E4;

� _h1 ¼ ~h1E4;

� _h2 ¼ ~h2E4:

ð23Þ
Eq. (23) is the parameter dynamics. Substituting Eqs. (22) and (23) into Eq. (18), we obtain
_V ¼ E2
1 � E2

2 � E2
3 � E2

4 < 0
Fig. 3. Time histories of state errors for E1, E2, E3, E4 for Case (a).
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which is negative semi-definite function of E1, E2, E3, E4. The Lyapunov asymptotical stability theorem is not satisfied. We
cannot obtain that the common origin of error dynamics (19) and parameter dynamics (20) is asymptotically stable. Now,
D is an 8-manifold, n = 12 and the number of error state variables p = 4. When E1 = E2 = E3 = E4 = 0 and ~b1; ~c1; ~c2;

~d1;
~e1; ~g1;

~h1;
~h2, take arbitrary values, _V ¼ 0, so X is 4-manifold, m = n � p = 12 � 4 = 8. m + 1 < n is satisfied. By pragmatical

asymptotical stability theorem, error vector e approaches zero and the estimated parameters also approach the uncertain
parameters. The pragmatical generalized synchronization is obtained. Under the assumption of equal probability, it is actu-
ally asymptotically stable. This means that the chaos control for different systems, from a double van der Pol system to a
double Duffing system, can be achieved. The simulation results are shown in Figs. 3 and 4.

Case (b) Control a chaotic double van der Pol system to a exponentially damped simple harmonic system
Consider the following exponentially damped simple harmonic system
dx3
dt ¼ �k̂1x3;

dy3
dt ¼ �b̂1y3;

du3
dt ¼ v3;

dv3
dt ¼ �f̂ 1u3:

8>>>>><>>>>>:
ð24Þ
In the first equation of Eq. (18), k1 = 1.
dx1
dt ¼ k1y1 þ U1;

dy1
dt ¼ a1x1 þ b1y1 þ c1x2

1y1 þ d1u1 þ U2;

du1
dt ¼ v1 þ U3;

dv1
dt ¼ j1x1 þ f1u1 þ g1v1 þ h1u2

1v1 þ U4;

8>>>>><>>>>>:
ð25Þ
where k1 = 1, a1 = �1, b1 = 0.2, c1 = �2.4, d1 = 0.04, j1 = �0.3, f1 = �1, g1 = 2, h1 = �2, k1 = 0.
Fig. 4. Time histories of coefficients a1, b1, c1, c2, d1, j1, f1, g1, h1, h2 for Case (a).
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We define error vector E = [E1,E2,E3,E4]T = [x3,y3,u3,v3]T � [x1,y1,u1,v1]T. Subtracting Eq. (25) from Eq. (24), we obtain the
error dynamics
_E1 ¼ �k1x3 � k1y1 � U1;

_E2 ¼ �b̂1y3 � a1x1 � b1y1 � c1x2
1y1 � d1u1 � U2;
Fig. 5. Time histories of state errors for E1, E2, E3, E4 for Case (b).
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_E3 ¼ v3 � v1 � U3;

_E4 ¼ �f̂ 1u3 � j1x1 � f1u1 � g1v1 � h1u2
1v1 � U4; ð26Þ
where E1 = x2 � x1, E2 = y2 � y1, E3 = u2 � u1, E4 = v2 � v1.
Choose a Lyapunov function in the form of the positive definite function
VðE1; E2; E3; E4;
~k1; ~a1;

~b1; ~c1;
~d1;~j1;

~f 1; ~g1; ~k1Þ ¼
1
2

E2
1 þ E2

2 þ E2
3 þ E2

4 þ ~k2
1 þ ~a2

1 þ ~b2
1 þ ~c2

1 þ ~d2
1 þ~j2

1 þ ~f 2
1 þ ~g2

1 þ ~h2
1 þ ~k2

1

� �
;

ð27Þ
where ~k1 ¼ k̂1 � k1, ~a1 ¼ â1 � a1, ~b1 ¼ b̂1 � b1, ~c1 ¼ ĉ1 � c1, ~d1 ¼ d̂1 � d1, ~j1 ¼ ĵ1 � j1, ~f 1 ¼ f̂ 1 � f1, ~g1 ¼ ĝ1 � g1, ~h1 ¼ ĥ1 � h1,
~k1 ¼ k̂1 � k1, and k̂1, â1, b̂1, ĉ1, d̂1, ĵ1, f̂ 1, ĝ1, ĥ1, k̂1, are goal parameters, k̂1 ¼ 0, â1 ¼ 0, b̂1 ¼ 2, ĉ1 ¼ 0, d̂1 ¼ 0, ĵ1 ¼ 0, f̂ 1 ¼ 2:3,
ĝ1 ¼ 0, ĥ1 ¼ 0, k̂1 ¼ 3.

Its time derivative along any solution of Eq. (19) and parameter dynamics is
_V ¼ E1 �k̂1x2 � k1y1 � U1

h i
þ E2 �b̂1y3 � a1x1 � b1y1 � c1x2

1y1 � d1u1 � U2

h i
þ E3 v2 � v1 � U3½ �

þ E4 �f̂ 1u3 � j1x1 � f1u1 � g1v1 � h1u2
1v1 � U4

h i
þ ~k1ð� _k1Þ þ ~a1ð� _a1Þ þ ~b1ð� _b1Þ þ ~c1ð� _c1Þ þ ~d1ð� _d1Þ

þ~j1ð�_jÞ þ ~f 1ð� _f 1Þ þ ~g1ð� _g1Þ þ ~h1ð� _h1Þ þ k1ð� _k1Þ: ð28Þ
Choose
U1 ¼ �k̂1x2 � k1y1 þ E1;

U2 ¼ �b̂1y3 � a1x1 � b1y1 � c1x2
1y1 � d1u1 þ ~a2

1 þ ~b2
1 þ ~c2

1 þ ~d2
1 þ E2;

U3 ¼ E3;

U4 ¼ �f̂ 1u3 � j1x1 � f1u1 � g1v1 � h1u2
1v1 þ~j2

1 þ ~f 2
1 þ ~g2

1 þ ~h2
1 þ E4;

ð29Þ
Fig. 6. Time histories of coefficients k1, a1, b1, c1, d1, j1, f1, g1, h1, k1 for Case (b).
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� _k1 ¼ ~k1E1;

� _a1 ¼ ~a1E2;

� _b1 ¼ ~b1E2;

� _c1 ¼ ~c1E2;

� _d1 ¼ ~d1E2;

� _j1 ¼ ~j1E4;

� _g1 ¼ ~g1E4;

� _h1 ¼ ~h1E4;

� _k1 ¼ ~k1E1:

ð30Þ
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Eq. (30) is the parameter dynamics. Substituting Eqs. (29) and (30) into Eq. (28), we obtain
_V ¼ E2
1 � E2

2 � E2
3 � E2

4 < 0
which is negative semi-definite function of E1, E2, E3, E4. The Lyapunov asymptotical stability theorem is not satisfied. We
cannot obtain that the common origin of error dynamics (26) and parameter dynamics (27) is asymptotically stable.
Now, D is an 8-manifold, n = 12 and the number of error state variables p = 4. When E1 = E2 = E3 = E4 = 0 and
~k1; ~a1;

~b1; ~c1;
~d1;~j1;

~f 1; ~g1;
~h1; ~k1; take arbitrary values, _V ¼ 0, so X is 4-manifold, m = n � p = 12 � 4 = 8. m + 1 < n is satisfied.

By pragmatical asymptotical stability theorem, error vector e approaches zero and the estimated parameters also approach
the uncertain parameters. The pragmatical generalized synchronization is obtained. Under the assumption of equal
probability, it is actually asymptotically stable. This means that the chaos control for different systems, from a double
van der Pol system to a exponentially damped-simple harmonic system, can be achieved. The simulation results are shown
in Figs. 5 and 6.

4. Conclusions

To control chaotic systems to different systems is study by new pragmatical adaptive control method. The pragmatical
asymptotical stability theorem fills the vacancy between the actual asymptotical stability and mathematical asymptotical
stability. The conditions of the Lyapunov function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability. By using this theorem, with the same conditions for Lyapunov function, V > 0, _V 6 0, as that in current
scheme of adaptive chaos control, we not only obtain the adaptive control of chaotic systems but also prove that the esti-
mated parameters approach the uncertain values. Traditional chaos control is limited to decrease chaos of one chaotic sys-
tem. This method enlarges the effective scope of chaos control. We can control a chaotic system to a given chaotic system or
to a given regular system.
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