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In this process, amorphous silicon was first transformed to polycrystal-
line silicon (poly-Si) using a metal-induced lateral crystallisation
(MILC) process, followed by annealing with a continuous-wave laser
lateral (l � 532 nm) crystallisation (CLC) with an output power of
3.8 W. MILC-CLC-TFT performed far superior to MILC-TFT. The
mobility of the MILC-CLC-TFT was 293 cm2/Vs, which was much
higher than that of MILC TFTs (54.8 cm2/Vs). In addition, MILC-
CLC TFTs showed better device uniformity and reliability.

Introduction: Low-temperature polycrystalline silicon (LTPS) is very
important for device applications such as solar cells and thin-film tran-
sistors (TFTs) [1]. Therefore, intensive studies have been carried out to
reduce the crystallisation temperature of amorphous silicon (a-Si).

Among many methods, metal-induced lateral crystallisation (MILC)
and excimer laser crystallisation (ELC) appear to be very promising
methods [2–4]. MILC has the merits of low cost and uniform crystalli-
sation over a large area. However, not all a-Si film was transformed to
crystal Si [2, 3]. The ELC technique appears to be highly promising
unfortunately their uniformity is inadequate and the surfaces of their
poly-Si films are rough [4]. To improve the uniformity and performance
of ELC-TFTs, many methods have been proposed [5–7]. The cost of the
ELC system, however, is still high.

Recently, continuous-wave (CW) laser lateral crystallisation (CLC) of
amorphous Si has been developed for LTPS TFT [8, 9]. Not only are the
performances of CLC TFT better, but the manufacturing cost is lower
than ELC TFTs. In this Letter, a new manufacturing method using
post-annealing of MILC poly-Si TFTs with a CW laser (MILC-CLC)
is proposed.

Experiment: The MILC process began with 4-inch quartz wafer sub-
strates where wet oxide films of 500 nm were grown. A silane-based
undoped amorphous silicon (a-Si) layer with a thickness of 100 nm
was deposited using low-pressure chemical vapour deposition
(LPCVD). The photoresist was patterned to form the desired Ni lines,
and a 20 Å-thick Ni film was deposited on the a-Si. The samples
were then dipped into acetone for 5 min to remove the photoresist.
Samples were subsequently annealed at 5408C for 18 h to form the
MILC poly-Si film. The unreacted Ni metal was removed by chemical
etching. The MILC poly-Si films were then irradiated by a CW laser
(l � 532 nm) with various output powers (2.5, 3.8, 5 W) in an air
atmosphere to fabricate the MILC-CLC poly-Si. Reactive ion etching
(RIE) was employed to form islands of poly-Si regions. Next, a
100 nm-thick oxide layer was deposited as the gate insulator by
plasma-enhanced chemical vapour deposition (PECVD). A 200 nm-
thick poly-Si film was then deposited for gate electrodes by LPCVD.
After defining the gate, self-aligned phosphorous ions were implanted
to form the source/drain and gate. The dopant activation was performed
at 6008C in N2 ambient for 24 h.

Results and discussions: Fig. 1a shows an SEM image of the Secco-
etched MILC needle grains. Most of the grains were parallel to each
other in the ,111. direction [10]. The width of the needlelike grains
was around 50 nm. Among these grains remained some uncrystallised
a-Si regions, which had been etched away. To fabricate MILC-CLC
poly-Si films, MILC films were irradiated using a CW laser with the
scan direction parallel to the needlelike poly-Si grains. When the laser
output power was 2.5 W, the sizes and shapes of the needle Si grains
were similar to those of MILC poly-Si (Fig. 1a). This is because
MILC-CLC films were in the amorphous-melting regime. Only the
a-Si regions among Si grains were melted. When the output power
reached 3.8 W, the width of the grains increased markedly from
50 nm to �3 mm, as shown in Fig. 1b. The large grains were only
molten partially and served as the nuclei for growth. The width of
these grains markedly increased to �3 mm owing to the geometrical
coalescence of Si needle grains [11]. The grain boundary between
grains disappears, resulting in the sudden development of a much
larger grain. This coalescence is an important phenomenon for grains
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having a strong preferred orientation (MILC needle grains had a strong
preferred orientation ,111.). In this study, the effect of the CW (l ¼
532 nm) laser post-annealing was much better than that of the excimer
laser. The width of the Si grains dramatically increased to �3 mm (the
grains ranged from 2.5 to 4 mm), while that of excimer laser post-annealing
was only 600 nm [10]. When the laser power was 5 W, the width of the
grains ranged from 3 to 12 mm. The uniformity of the grain size was
poor. As a result, device performances were not uniform. To achieve
high performance with good uniformity, the CW laser with an output
power of 3.8 W was chosen to fabricate MILC-CLC TFTs.
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Fig. 1 SEM images of MILC and MILC-CLC poly-Si grains

a MILC
b MILC-CLC

10–12

–15 –10 –5 0 5 10 15

10–11

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3
dr

ai
n 

cu
rr

en
t I

D
S

, A

gate voltage VGS,V

 MILC-CLC
 MILC

W/L = 20 mm/20 mm

0

100

200

300

400

500

600

700

800

VDS  = 5 V

VDS  = 0.1 V

fie
ld

-e
ffe

ct
 m

ob
ili

ty
 m

F
E
, c

m
2 /

V
s 

Fig. 2 Typical IDS -VGS transfer characteristics and field-effect motilities of
MILC and MILC-CLC TFTs

Fig. 2 shows the transfer characteristics and field-effect mobility
against the gate voltage of MILC-CLC and MILC TFTs. The measured
and extracted key device parameters are summarised in Table 1. MILC-
CLC TFTs exhibited field-effect mobility reaching 293 cm2/Vs, which
was much higher than that of MILC TFTs. The subthreshold slope (SS)
and VTH of the MILC-CLC TFTs were 0.39 V/dec. and 24.54 V, which
were superior to 1.42 V/dec. and 2.24 V of the MILC TFTs. The ON/
OFF current ratios of the MILC-CLC and MILC poly-Si TFTs were
6.69 � 107 and 0.18 � 106 at VDS ¼ 5 V, respectively.

Table 1: Device characteristics of MILC and MILC-CLC TFTs

Device parameters MILC-CLC MILC

Field-effect mobility (cm2/Vs) 293 54.8

Subthreshold slope (V/dec.) 0.39 1.42

Threshold voltage VTH (V) 24.54 2.24

ON/OFF current ratio 6.69 � 107 0.18 � 106

As mentioned earlier, many intragrain defects and a-Si regions
remained among MILC poly-Si grains. These defects trap charge car-
riers and degrade electric performance. MILC-CLC TFTs do not have
these problems because, as presented in Fig. 1b, the width Si of
MILC-CLC grains dramatically increased to 3 mm. Most of these geo-
metrical coalescence grains and their boundaries are parallel to the
drain current (Ids), reducing the impedance to carrier flow and thereby
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reducing the threshold voltage and greatly increasing the mobility and
Ion/Ioff current ratio.

Twenty MILC-CLC TFTs were measured in mFE and VTH to investi-
gate device uniformity. The standard deviations of the mFE and VTH are
7.46 and 0.165, respectively. As a result, small standard deviations of
MILC-CLC TFTs indicate a fine uniformity owing to the CW laser
annealing. The other important issue of MILC-CLC poly-Si TFTs is
their reliability, which was examined under hot-carrier stress (HCS).
Fig. 3 shows the field-effect mobility and threshold voltage variation
against stress time, and the stress condition is VD,stress ¼ 15 V,
VG,stress ¼ VGS - VTH ¼ 15 V for varied time duration. It is found that
MILC-CLC TFTs also had a good reliability.
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Fig. 3 Field-effect mobility and threshold voltage variation examined under
hot-carrier stress

Conclusions: A high-performance LTPS TFT fabricated by MILC-CLC
was investigated. In this process, amorphous silicon was first trans-
formed to poly-Si using an MILC method, and then annealed using a
continuous-wave laser. Laser-annealing with an output power of
3.8 W greatly increased the width of the needle grains from 50 nm to
3 mm by geometrical coalescence. MILC-CLC-TFT markedly outper-
formed that of the MILC-TFT because the MILC-CLC poly-Si film
had much larger grains and fewer intragrain defects than the MILC
poly-Si film. The MILC-CLC-TFT has a lower threshold voltage,
smaller subthreshold slope and a higher on/off current ratio than the
MILC-TFT. The mobility of the MILC-CLC-TFT was 293 cm2/Vs,
which was much higher than that of MILC TFTs (54.8 cm2/Vs).
Besides, MILC-CLC TFTs showed better device uniformity and
reliability.
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