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The spin Hall effect on the Josephson tunneling through a two-dimensional normal contact with a spin-orbit
split conduction band has been studied in the diffusive regime and at the zero electric bias. Linearized Usadel
equations for triplet components of the pairing function in the presence of intrinsic spin-orbit interaction have
been derived. These equations have been employed for analysis of the spin Hall effect induced by the super-
current. We predict that a nondissipative out-of-plane spin Hall polarization accumulates at lateral edges and an
in-plane polarization is induced throughout the entire normal region. At the same time, in contrast to the spin
Hall effect in normal systems, the spin current is absent in the considered case of the stationary Josephson
effect.
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I. INTRODUCTION

Various spintronic applications have attracted much recent
interest in the spin-orbit interaction �SOI� effects on electron
transport in normal metals and semiconductors. This interac-
tion gives rise to fundamental transport phenomena, such as
the spin Hall effect �SHE� �for a review, see Ref. 1�, and
electric spin orientation.1,2 The former shows up in a spin-
polarization flux flowing perpendicular to the electric cur-
rent. This flux, in its turn, gives rise to the spin polarization
at the sample boundaries. The spin polarization can also be
directly induced by the electric current in the sample bulk,
that is, the electric spin orientation effect. These effects dem-
onstrate delicate coupling of spin and charge degrees of free-
dom in electron transport. On the other hand, we have the
interplay between SOI and superconductivity. Indeed, vari-
ous systems including superconductor-ferromagnet super-
conductor junctions3 �F stands for ferromagnet�,
superconductor-normal-superconductor �SNS�4,5 and
superconductor-normal �SN� �Refs. 6� contacts, or bulk
superconductors,6,7 have been considered. In Refs. 4 and 5
the effect of the SOI onto the Josephson current has been
studied in the case when the normal �N� part of a SNS junc-
tion is a normal metal with a noticeable SOI. We will, how-
ever, focus on a different problem. Namely, we are going to
consider the spin Hall current and spin accumulation associ-
ated with the supercurrent across the junction. As was
pointed out in Refs. 6 and 7, SOI causes the admixture of
triplet components in the pairing function. This sort of
singlet-triplet coupling finds similarity in the spin-charge
coupling in normal systems. Thus, one might expect that
phenomena closely related to SHE could manifest them-
selves also in superconducting structures, such as SNS junc-
tions. But, after a moments’ thought, it becomes clear that
this analogy cannot go too far. For example, at least in the
case of zero voltage across the junction, the spin Hall current
cannot be a linear response to the supercurrent. It is because,
on the one hand, these two currents are, by nature, of oppo-
site parities in time; but, on the other hand, the parities must
be the same in the case of stationary nondissipative super-

conducting transport. Yet, it is still of great interest to look
for another signature of SHE: the accumulation of magneti-
zation in response to the supercurrent in superconducting
structures. It should be noted that, despite a formal similarity,
such a magnetization is fundamentally distinct from that in-
duced by the normal SHE since it is determined by a coher-
ent many-particle quantum state and, hence, is not subject to
dissipative processes of spin diffusion and relaxation that
take place in normal systems.

We will consider SHE and the electric spin orientation in
the case of the Josephson tunneling through a two-
dimensional �2D� N contact �see Fig. 1�. The SOI in the
normal contact may be caused by impurities or it can be of
an intrinsic origin, due to the crystal field in noncentrosym-
metric lattices. We will consider the intrinsic SOI represented
by the Hamiltonian Hso=� ·hk, where � is the Pauli spin
vector. The spin-orbit field hk, which is an odd function of
the electron wave vector k, can be given, for example, by
Rashba8 or Dresselhaus9 SOI, as well as by their combina-
tion. In this case the vector hk lies in the plane of the 2D
system. The electron transport through the contact will be
treated within the diffusion approximation so that the length
of the junction L, the condensate wave-function penetration
depth into N region Lc, and the spin precession length Lso
=vF /2h with vF as the Fermi velocity and h as the angular-
averaged spin-orbit field are all assumed to be much larger
than the electron mean-free path l. For our Josephson setting,

FIG. 1. Josephson contact with S and N denoting superconduct-
ing and normal regions, respectively.
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the bias voltage across the junction is zero and the supercur-
rent is determined by the phase difference between the two S
electrodes. Our analysis involves a standard semiclassical
treatment of Gor’kov’s equations in the diffusion approxima-
tion �for a review, see Ref. 10�. Our goal is to derive Usadel-
type equations and to calculate the spin density induced by
the SHE.

II. USADEL EQUATIONS

In the considered case of the thermal equilibrium, all ob-
servables of interest can be expressed via retarded and ad-
vanced Green’s functions. The corresponding Gor’kov’s
equations in the Nambu representation have the form

�i
�

�t
− Ȟ − �̌r/a�Ǧr/a�X,X�� = ��X − X�� , �1�

where r and a denote retarded and advanced functions, re-
spectively, X= �t ,r� and

Ȟ =
�3

2m�
k̂2 − �3� + � · hk̂, �2�

with the momentum operator k̂=−i� /�r, and the chemical
potential �. After averaging the initial Green’s functions over
random positions of short-range impurities, the self-energy in
Eq. �1� takes the form11

�̌r/a�X,X�� =
�3

2��NF
Ǧr/a�t,t�,r,r��3��r − r�� , �3�

where � is the elastic-scattering time. Unperturbed Green’s
functions are easily obtained from Eq. �1�. In the momentum
representation and after the time Fourier transform, they can
be written as

Ǧ0r/a��,k� = �� − �3Ek − � · hk � i	�−1, �4�

where Ek= �k2 /2m��−�. Below we will perform calculations
for retarded functions and drop the labels r and a.

Proximity to superconducting contacts results in appear-
ance of anomalous �proportional to �1 and �2� Green’s func-
tions. These functions are inhomogeneous in space. In order
to calculate them, we will follow a well-known procedure in
the framework of the semiclassical approximation.12 First,
we perform the Fourier transform with respect to X−X� in-
troducing, accordingly, the frequency and wave-vector vari-
ables � and k. The center-of-mass variables will remain in-
tact and will be denoted as r. Since the problem is stationary,
the corresponding center-of-time variable is absent. Taking
into account that variations of G on the scale of the Fermi
wavelength are small, Eq. �1� should be expanded in terms of
gradients � /�r. The next step is to simplify the self-energy
part of Eq. �1�, keeping only the terms linear in the anoma-
lous part. Such a linearization can be done if the transpar-
ency of the SN contact is small or the leads are close to the
superconducting critical temperature. By combining Eq. �1�
and its conjugate one and by making use of the fact that hk is
an odd function of k for the anomalous part G12, we obtain
the equation

�2� − v · q̂ +
i

�
�G12 − �hk · �,G12� −

1

2
��hk,q̂ · �,G12� = Isc,

�5�

where �hk,q̂= �q̂ ·�k�hk with q̂=−i� /�r and

Isc = −
1

2��NF
�G11

0 g12 + g12G22
0 � . �6�

The subscripts of G0 denote the matrix elements in the
Nambu space and g12=	kG12. The 2
2 matrix G12,�� can
be transformed to the conventional pairing function F��̄


G12,��, where �̄ denotes the spin projection opposite to �.
Further, it is convenient to decompose F into triplet F1,F−1 ,
and F0 and singlet Fs components as

F0 =
F12 + F21

�2
, Fs =

F12 − F21

�2

F1 = F11, F−1 = F22. �7�

After this transformation, it is easy to see that the last term in
the left-hand side of Eq. �5� is responsible for a coupling
between the singlet and triplet components of the pairing
function. Besides, the singlet-triplet coupling also originates
from the spin-dependent parts of G11

0 and G22
0 in Eq. �6�. Due

to such coupling, the triplet component of F is generated
within the junction between two singlet S electrodes.

The Usadel diffusion equation can be obtained from Eq.
�5� by iterating it with respect to small ��, �v · q̂��, and hk�
up to the second order in the last two parameters. By this
way, components of Fm are expressed in terms of Isc and the
last term in the left-hand side of Eq. �5�. Further summation
over k leads to the closed diffusion equation for fm=	kFm.

The derivation of the diffusion equation and the following
analysis will be restricted to a limiting case of the strong SOI
so that LsoLc. From the theory of SNS contacts,10 it fol-
lows that Lc=min�L ,LT� where LT=�D /kBT is the thermal
diffusion length. It is assumed that the energy gap in super-
conducting contacts ����kBT and D /L2. If the N region is
represented by a narrow gap semiconductor quantum well,
Lso may vary from less than a micron to several microns. For
example, the Dresselhaus interaction in a GaAs/AlGaAs
quantum well provides the spin splitting 2h=0.1 meV at n
=5
1011 cm−2 �Ref. 13� that gives Lso2 �m. This length
strongly decreases, if a strong Rashba SOI takes place in
addition to the Dresselhaus interaction. Hence, at low
enough temperatures and the junction lengths of several �m,
the requirement LsoLc can be realized in practice. Taking
the leading terms we arrive at the following diffusion equa-
tion for the triplet pairing function fm=	kFm where �m
=0,1 ,−1�:

2i�f = ���− iv ·
�

�r
+ 2J · hk�2� f + Mfs, �8�

where J is the vector of 3
3 angular moment operators and
�. . .� denotes the angular averaging over the Fermi surface.
The triplet-singlet coupling is given by
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M0 = 0, M�1 =
4�2

�2
�hk

��hk 
 �hk,q̂�� , �9�

with hk
�=hk

x � ihk
y. The singlet fs satisfies the similar equa-

tion, where the second term in angular brackets is absent and
the mixing with triplets is represented by the Hermitian con-
jugate to M. Since triplets, in their turn, are expressed
through fs, such a mixing gives rise to a correction term in
the closed equation for fs. From Eqs. �8� and �9� it is easy to
evaluate this correction as ��h2�2 / �kF

2Lso
2 �fs2�fs. There-

fore, the effect of SOI on fs and, hence, on the Josephson
current is weak in the semiclassical case, which is in agree-
ment with Ref. 5. We also neglect a depairing effect on fs
due to exchange Zeeman field associated with the finite spin
Hall polarization. This effect is weak as evaluated in the
discussion in Sec. IV. Hence, the singlet function fs is given
by the well-known unperturbed solution in the SNS contact.

Without the last term in the right-hand side in Eq. �8�, it
�Eq. �8�� formally coincides with the spin-diffusion equation
for two-dimensional electron gas �2DEG� in a zero electric
field.14 The spin-diffusion equation in the presence of the
electric field has been derived in Ref. 15 for the case of the
Rashba SOI and for a general SOI in Ref. 16. After a linear
transformation to spin-density variables,14 Equation �8� will
coincide with these more general equations, if, apart from a
constant factor, fs is formally identified with the electric-field
potential. Hence, a coupling of the spin to the electric field in
normal spin transport appears to be very similar to the
singlet-triplet coupling in Eq. �8�. We note, however, a prin-
cipal distinction from the normal transport. Equation �8� is
written not for an observable spin density but for the anoma-
lous Green’s function, which plays the role of the Cooper
pair wave function. Hence, the observables, such as spin den-
sities, cannot be directly represented by a solution of the
diffusion equation but must be calculated from bilinear com-
binations of fm as will be done below.

III. SPIN DENSITY

Let us consider an example of the Rashba SOI. In this
case hk

x =�ky and hk
y =−�kx. For a homogeneous in y direc-

tion case, all functions depend only on x and we get f0=0
and f1= f−1 with f1 satisfying the equation

D
�2

�x2 f1 − 	sof1 = i
��	so

�2

�

�x
fs, �10�

where 	so=2��2kF
2 is the D’yakonov-Perel’ spin-relaxation

time.17 The small left hand side of Eq. �8� has been neglected
in Eq. �10�. Neglecting the third and higher derivatives of fs,
the solution of Eq. �10� can be written as

f1 = − i
��

�2

�

�x
fs + ��x� , �11�

where, in order to satisfy appropriate boundary conditions18

at x= �L /2, ��x� is taken as a linear combination of
exp��kx� with k=�D /	so=1 /Lso. Since L�Lso, this func-
tion is important only close to the boundaries. We, however,
are interested in the bulk solution given by the first term in
Eq. �11�.

Our next step is to calculate the spin-polarization density
associated with triplet components of the pairing function.
This polarization is given by

Si�r� =
i

2	
k
� d�

2�
nF��� 
 Tr��i�Gk11

r ��,r� − Gk11
a ��,r��� ,

�12�

where nF is the equilibrium Fermi distribution function. It is
easy to see that the nonzero value of Eq. �12� is provided by
triplet components of anomalous Green’s functions, which
contribute to G11 with a correction term �f2. Up to the lead-
ing second order with respect to fs and keeping only the
linear terms of the triplet fm �m=1,−1,0�, for the retarded
function we obtain from Eqs. �1�–�4�,

	
k

Tr��iGk11
r/a � =

�1

�NF
� i�iz

2
�f0

r/afs
+r/a − fs

r/af0
+r/a�

+
1
�2

�f i
r/afs

+r/a + fs
r/af i

+r/a�� , �13�

where fy = �f1+ f−1� /2 and fx=−i�f1− f−1� /2. The conjugate
functions f+���=−f��−��.

In the case of Rashba SOI fx= f0=0 and fy = f1. The latter
is given by Eq. �11�. Then, from Eq. �13� it immediately
follows that only the y projection of the spin density is finite.
Using the relations fs

a���= fs
r�−�� and fm

a ���=−fm
r �−�� �m

=1,−1,0�, we arrive to the spin polarization,

Sy�x� = eNF��
J

�dc
, �14�

where �dc is the dc conductivity of the normal metal and J is
the Josephson current density,

J =
eD

4�2NF
� d�nF����� fs

r� fs
+r

�x
−

� fs
r

�x
fs

+r� − �r � a�� .

�15�

The spin polarization in Eq. �14� coincides with polarization
induced in normal metals by the electric field E,2 if the Jo-
sephson current is substituted for the normal dissipative dc
current Jdc=�dcE. Similar effect has been predicted by
Edelstein6 for bulk superconductors and at NS boundary,
providing the supercurrent flows along the SN interface.

Let us now check, if the analogy with the electric spin
orientation extends to the spin Hall effect. Hence, our goal is
to calculate Jy

z, which is the y projection of a spin flux po-
larized in the z direction. The corresponding spin current
operator can be written as Jy

z = ��z ,vy� /2 where the velocity
vy =ky /m�+��� ·hk� /�ky. Since it has been assumed that hz
=0, one gets Jy

z =�zky /m�. The spin Hall current JsH, in its
turn, can be derived from Eq. �12� with �i substituted for Jy

z.
Keeping the same leading terms as in calculation of the spin
density, we arrive at JsH=0. This result does not depend on
whether hk is given by the Rashba or Dresselhaus interac-
tions. That is very distinct from the normal spin Hall effect,
where in the diffusive regime the spin Hall conductance is
zero for the Rashba SOI, but finite for the cubic Dresselhaus
interaction.19 In general, as it was discussed above, the zero
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value of JsH in superconducting transport follows from the
time inversion symmetry.

Besides JsH, in normal systems the dc current together
with SOI gives rise to the accumulation of the z component
of spin at the lateral edges of the sample.16,20–22 In the case of
the Josephson junction, the z projection of the spin density is
given by Eq. �12� and the first term in Eq. �13�. Hence, it is
proportional to the f0 component of the pairing function
which, in its turn, can be found from Eq. �8�, which near
lateral edges of the sample, takes the form

0 = D
�2f0

�y2 + 4i�vyhk��J01
� f1

�y
+ J0,−1

� f−1

�y
� − 2	sof0,

0 = D
�2f i

�y2 + 4i�vyhk�Ji0
� f0

�y
− 	so�f i − f i

b� . �16�

where the subscript i= �1 and f i
b=−Mi f s /	so. For simplicity

we assumed that �hk
xhk

y�=0, which does not take place if SOI
is, for example, the sum of Rashba and Dresselhaus interac-
tions. The boundary conditions to this equation depend on
the type of the boundary as discussed in Refs. 16, 21, and 22.
Let us consider hard wall boundaries of 2DEG at y
= �Ly /2. In this case one can borrow the boundary condi-
tions for Eq. �8� from Refs. 16 and 21. In normal systems
these conditions correspond to the vanishing spin current at
y= �Ly /2. In our case similar equations can be written for
triplet “currents” j=	kvF. We thus have jy �y=�Ly/2=0 where
the zero triplet component is given by

j0
y = − D

� f0

�y
− 2i���vy�hk 
 ��2f + ��hk,q̂fs���� , �17�

where f= �fx , fy�. The first term in this equation is the diffu-
sive current, the first term in the brackets is determined by
the spin precession in the effective spin-orbit field, and the
last term is associated with the singlet-triplet coupling. The
following analysis of Eq. �16� with the above boundary con-
ditions is the same as for SHE in normal systems. Indeed, in
the case of Rashba SOI, taking fx=0 and fy = f1= f−1
 f�1

b in
the form of the first term of Eq. �11�, one can easily see that
the second term in Eq. �17� vanishes. Hence, the solution of
Eq. �16� is simply f0=0 and f i= f i

b. This, according to Eqs.
�12� and �13�, leads to Sz=0. For other type of boundaries the
resulting z polarization may be finite.22 It is also finite in the
case of the hard wall boundary and cubic Dresselhaus SOI
hk

x =�kx�ky
2−�2� and hk

y =−�ky�kx
2−�2�. It is easy to see that

for this interaction the second term in Eq. �17� does not turn
to zero. Calculating the spin-charge coupling in Eq. �9� and
f�1

b , the solution of Eq. �8� can be expressed in the form f0
=��y���fs /�x� where � is a real function of y. Then, Eqs.
�12�, �13�, and �15� give

Sz = − eNF��y��J/�dc� . �18�

The numerical plots for the function �, in their turn, can be
taken from Fig. 1 of Ref. 16.

IV. DISCUSSION

For a numerical evaluation of the spin polarization, we
write an expression for the critical Josephson current through
a long SNS junction in the form23 Jc=a�dc�T /eL where �T
=D /L2 is the Thouless energy and a is a dimensionless pa-
rameter. The latter increases up to �10 at kBT��T and de-
creases at higher temperatures. In its turn, the spin polariza-
tion in Eq. �14� can be written in the form Sy =NF�0 /2,
where �0 is an effective spin splitting, which has been mea-
sured in Ref. 24 by the Faraday rotation method. The z com-
ponent of the spin polarization is of the same order of mag-
nitude as Sy because Eqs. �16� and �17� acquire a
dimensionless form when y is measured in units of Lso and
f0 , f�1 are rescaled as f0 / f1

b , f�1 / f1
b. Substituting the above

expression for the Josephson current into Eq. �14� and taking
into account that D�= l2 /2, we get

�0 = �a
l2

L3 . �19�

Taking the Rashba parameter of an asymmetric InAs-based
quantum well25 �=5
10−12 eV m, for L=1 �m, l
=0.1 �m, and a�5 at � /�T=100, kBT /�T=5 �see Ref. 23�,
we arrive at �0=0.25 �eV. For comparison, we note that the
Faraday rotation method24 allows to measure even smaller
values of �0. It should be noted that the above number is
evaluated on the verge of the diffusion approximation appli-
cability since Lso is only three times larger than l. Also Lso is
not sufficiently small compared to L and LT so that the ap-
proximation of the strong SOI is not very accurate. An obvi-
ous trend, however, is that the spin density increases with
higher l, stronger SOI, and larger a. Therefore, a theory valid
in the case of short ballistic junctions carrying high Joseph-
son currents is necessary to study the regime where SHE is
able to induce high spin densities. It should be taken into
account that at the higher magnetization, the depairing effect
due to an exchange interaction ignored in Eqs. �5� and �8�
might become important. The exchange Zeeman energy pro-
duced by polarized electrons can be evaluated as Eex
�e2S / �kF�0�. Taking �0=0.25 �eV and kFaB

� �1, where
the effective Bohr radius is aB

� =�2�0 /m�e2, with �0
�10, m� /m=0.23 we obtain Eex�4·10−2 �eV. This en-
ergy is much less than �T and, hence, the Cooper pair energy
2� in the Usadel Eq. �8�. Therefore, for the chosen param-
eters this depairing effect can be ignored.

In conclusion, the stationary spin Hall effect induced by a
supercurrent across an SNS junction has been studied in the
diffusive regime for a relatively strong SOI in the 2D junc-
tion. We found out that the spin Hall current is forbidden by
the time inversion symmetry. On the other hand, the out-of-
plane magnetization accumulates at lateral edges in a very
close analogy to SHE in normal systems. Also, similar to the
electric spin orientation, the spin polarization parallel to
2DEG is finite throughout the entire N region. On the other
hand, such a close analogy takes place only in the considered
above limiting case of a long junction. We also expect a
behavior quite distinct from SHE in normal systems in the
case of the Josephson effect driven by a dc electric bias.
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