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Abstract. New and efficient numerical algorithms were developed for simulating column dynamics of multicom-
ponent liquid phase adsorption. Simple and realistic models are used for the simulation. Langmuir form of isotherm
and linear driving force rate expressions are employed in the model equations. Algorithms were formulated for
three different rate control mechanisms, namely, film diffusion control, particle diffusion control and combined film
and particle diffusion control. The algorithms derived are explicit with the exception of the requirement of solving
a nonlinear equation in one single variable which is the concentration of a reference species. Thus the tedious
iterative calculation procedure for solving simultaneous nonlinear equations in a multicomponent fixed bed system
is avoided. Example calculations indicated very good numerical accuracy as verified from an independent check

by means of an overall mass balance.
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Introduction

Fixed bed liquid phase adsérption is widely used in
industrial separation and environmental purification
applications. The study on the performance of the col-
umn operation of multicomponent adsorption system is
usually carried out with local equilibrium assumption
(Helfferich and Klein, 1970; Moon and Tien, 1988).
The use of equilibrium theory enables relatively simple
analysis of the performance of multicomponent sorp-
tion process and provides extensive physical insight on
limiting system behavior. However, in most operations
it is expected that both the solution and adsorbent phase
are far from equilibrium. Thus, assumptions neglecting
mass transfer effects within the solid and liquid phases
are not realistic for most pracfical operating conditions.

There have been numerous studies on the numeri-
cal solution of fixed bed multicomponent liquid phase
adsorption under nonequilibrium conditions (Hsieh
et al.,, 1977; Liapis and Rippin, 1978; Balzli et al.,
1978; Wang and Tien, 1982). A comprehensive review
in this area of work up to 1980 is covered by Mansour

et al. (1982). In this work we utilize the simple model
equations from which efficient and accurate numerical
algorithms are developed to facilitate the simulation
and computation of column dynamics for multicom-
ponent liquid phase adsorption. In previous studies
(Cooney and Strusi, 1972; Hsieh et al., 1977; Omatete
et al., 1980; Wang and Tien, 1982), plug flow assump-
tion and simple rate expressions were used in the anal-
ysis of multicomponent fixed bed liquid adsorption or
ion exchange. The simplified rate expressions include
the use of linear driving force rate equation as an ap-
proximation for particle diffusion (Glueckauf, 1955).
With the plug flow model and the linear driving force
rate expression, we have developed in this work nu-
merical algorithms which are applicable for three dif-
ferent rate control mechanisms, namely, film diffusion,
particle diffusion and combined film and particle dif-
fusion. These algorithms can be easily extended to the
case of nonuniform presaturation, variable feed condi-
tion, composition dependent mass transfer coefficients
and cyclic operation which includes the regeneration

 step.
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The important features of the algorithms developed
in this work are their simplicity and the derivation of
an explicit relation between the concentration of any
species to that of an arbitrary reference species. This
unique relation is obtained because of the application
of the modified Euler’s method and the use of a linear
driving force rate expression with Langmuir type of
isotherm. The derived algorithms enable the initial de-
termination of the concentration of a reference species
from an implicit polynomial expression. Once the con-
centration of this reference species is known, concen-
trations of all other species are calculated explicitly and
directly. The avoidance of extensive iterative calcula-
tions results in high efficiency in the simulation and
computation of column dynamics for multicomponent
liquid phase adsorption system.

Model Equations

Assuming isothermal condition, constant physical
properties for feed solution and plug flow with no ax-
ial dispersion, the continuity equations for n species of
a multicomponent fixed bed liquid adsorption system
are
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where C; is the concentration of species { in the solu-
tion, Q; is the concentration of species { in the adsor-
bent, V is the superficial linear velocity, 8 is the void
fraction of the bed, p is the bulk density of the adsor-
bent in the column, Z is axial distance of the bed and
t the absolute time.

For liquid phase rate control, the rate equations are
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where C} is the equilibrium liquid phase concentra-
tion of specie i with respect to solid phase concentra-
tion, @;. K); is the overall liquid phase mass transfer
coefficient for species i.

For solid phase rate control, the linear driving force
approximation is employed and he rate equations are
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where Q7 is the equilibrium solid phase concentra-
tion of species i corresponding to liquid phase. Kj;
is the overall solid phase mass transfer coefficient for
species {.

For the case of combined liquid and solid phase rate
controlling, the rate equations are
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where C,.qE and Q?' represent, for { species, the liquid
and solid interphase concentration respectively. kj; is
liquid phase mass transfer coefficient while k;; is the
solid phase mass transfer coefficient.

The Langmuir type of multicomponent adsorption
isotherm employed in this study is given by

¥
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L+ 377 b;C;
where a and b are the constants of the Langmuir
isotherm.

To facilitate the numerical solution the following di-
mensionless quantities are introduced for the concen-
tration variables (Hsieh et al., 1977)

X = C,/C,O and Y; = QI/Q?’

where C? is the feed concentration of species i and QY
is defined by
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as shqwn by Hsieh et al. Equation (4A) can be solved
for X" in terms of ¥;*
} :
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Introduce the dimensionless length and time vari-
ables, /1 and 6, the normalized continuity equations
become
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The normalized rate equations for either liquid phase
rate controlling or solid phase rate controlling ion
exchange are

&=X,-—Xf, for i=1,2,3,....,n (6)
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The normalized rate equations for combined liquid
phase and solid phase rate controlling are
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ﬁ=y,-i—yi, for i=1,2,3,....n (9)
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The dimensionless length and time variables are de-
fined according to the rate controlling mechanism. For
liquid phase rate controlling

Ki;Z K;G
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where G = 1+ 3] b;CY.
For solid phase rate controlling
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For combined liquid and solid phase rate controlling
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To solve Eqs. (5)—(9), appropriate initial and bound-
ary conditions should also be specified. The most gen-
eral initial and boundary conditions are

Xi(0,6:) = f(6:;) and Yi(hi,0) = g(h)

They correspond to time dependent feed concen-
tration and arbitrary initial bed composition. The
common cases of zero or uniform presaturation and
constant uniform feed composition are special cases of
the above conditions and are defined by Y;(h;,0) =0
or Y;(h;, 0) = Yio and X;(0, 6)=1.
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Development of Numerical Algorithms

Algorithms are developed for the numerical solution
of Egs. (5)~9). Index I and J designate the grid lo-
cation for characteristic coordinates of 4 and 0 respec-
tively. The characteristic coordinates (/, J) refer to the
current points whose X and Y values are to be calcu-
lated. (/1 —1,J)or (/,J — 1) are grid points whose
X and Y values are given or previously calculated. In
particular, values of X and Y at (/, 1) correspond to
the initial values defined or calculated for character-
istics line & = 0. Similarly, values of X and Y at
(1, J) correspond to boundary conditions given or to
be calculated for characteristic line 2 = 0. Modified
Euler’s method is applied for the calculation of X (7, 1),
Y (1, J) and the interior points of X(/, J)and Y ([, J).
Because of the similarity of the methods used in deriv-
ing separate algorithms for liquid phase rate control,
solid phase rate control and combined liquid and solid
phase rate control, only the details of development of
algorithms for the combined liquid and solid phase rate
control are presented here. Algorithms for solid phase
and liquid phase rate control are given in Appendices |
and 2.

The following gives the derivation of algorithms for
combined liquid and solid phase rate controlling.

(a) Calculation of X; for Characteristic Line 8 =0

The values of X;(I,1) for I =2,3,4,..., m, where
m — 1 is the number of length increments, are deter-
mined by applying modified Euler’s method to

2 =xtox,
dhyi g0
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AR 2
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(10)
solving for X;(/, 1)
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for i=1,2,3,....n (11)
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From the interphase relationship of
X1, ) = x¥a, ) = RIVFU, D - YA D1 (12)

where R; is the ratio of solid phase to liquid phase rate
constants for species i in which

L k.\'ipai =h_,"
k(1 + X bCY Ry

Eliminating X;(/, 1) from Egs. (11) and (12) and
after simplifying

2+ Ahy; 2+ Ahy;
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for i=1,2,3,...,n (13)
where
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let k denote a reference species, from Eq. (13)
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Substituting equilibrium values of X,.i(l, 1) and

xF1,1) for Y¥(1. 1) and ¥}(1, 1) and after simpli-
fication

(Fi/ F)(Re/RYXF (1, 1)

¥
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1+ Q+AH,)F { R:(2+Ah;:) - I]Xk (4,1
for i=1,2,3,...,n, i#k (15)

This equation relates the equilibrium value of i
species to that of a reference species k.
From Eq. (13), solving for the reference species k

and substituting X; (1, 1) in terms of Yki(l, 1)

2+ 2Ah§k .

2+ Ak (14 26,00 xF 0,1
+ Ry > : =0
143 b;CIX7(1,1)

xFa, 1 -

(16)

From Eq. (15), the summation terms in Eq. (16)

can be expressed as a function of X, (/,1). Thus
Eq. (16) is a nonlinear equation with a single variable,

namely X (I, 1). Equation (16) can then be solved by
Newton-Raphson iteration method to obtain the value

ofxg(l. 1). After X (1, 1) is determined, other values
of X[ (1, 1) are then calculated from Eq. (15). The val-

ues of Y;7(/, 1) are determined from the equilibrium
isotherm.

The values of X;(I,1) for I = 2,3,4,....m
are then calculated from Eq. (11). It should be
noted that in calculating X;(2, 1), we need to know
Xi(1, 1), ¥(1, 1) and X¥(1, 1) in order to obtain the
value for F;. The values of X;(1, 1) and Y;(1, 1) corre-
spond to boundary condition and initial condition re-

spectively and are specified. The values of X ,i (1, 1) are
calculated by using the interphase relationship of

Xi(1,1) = X}JF(L )= R,-[Y,.i(l, -y, D] A7)

Using the equilibrium relationship and substituting
the value of ¥ (1, 1) in terms X (1, 1) in Eq. (17) and
after simplifying

(1+b;c)xFa, 1

1+ b0 a,
fori =1,2,3,....,n (18)

xXra, - pi= -k,

where p; = X;(1, 1)+ R;Y:(1, 1).
For a reference species k, Eq. (18) becomes

(1+2b;¢9)xf, 1

XFA ) - po= Ry . (19)
1+ Y b;C0X¥(1, 1)
Dividing Eq. (18) by Eq. (19) and simplifying:
, Gy
X?:(l, 1) = (pi/pr)(Re/R:)X; (1, 1) (20)

L+ L(Re/R — DXF(L D)

By substituting Eq. (20) to Eq. (19), a nonlinear
equation with a single variable in terms of X (1, 1)
can be solved by Newton-Raphson method. The val-
ues of X;'t(l, 1) other than X,/ (1, 1) are calculated from

Eq. (20) once X (1, 1) is determined.



(b) Calculation of Y; for Characteristics Line h = 0
Applying modified Buler’s method to

dY;

3
P70 RO
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combining with the interphase relationship of

X:(1,0) -—X,-i(l, J) = R;[Y,-'t(ly J) =Y (1, 1))
to eliminate Y;(1, J)
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for i=1,2,3,...,n (22)
where
2— A8,
F = —Y:,J -
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The relationship of Yij"'(l, J) to a reference species k
is given by

AnxFa, 0
1+ Buxta, 0
for i =1,2,3,....n,

xFa, 0=
i £k (23)

where
Fi(2+ A6)R,
F.(2+ AG".k)R-’

@+ AGIR, ]
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Substituting X (1, J) for ¥¥(1, J) from the equilib-
rium relationship and solving for the reference species
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k, Eq. (22) becomes

y (1+X b C°)X,‘ an _

2+9'k 1+ Y he0xta, 0
(24)
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After substituting the value X ,i (1, J) as defined by
Eq. (23) to Eq, (24), a nonlinear equation with a single
variable of X, (1, J) can again be solved by Newton-
Raphson method. Once the value of X (L J) s
obtained, other values of X" (1, J) are calculated from
Eq. (23) directly. With the values of Y (1, J) deter-
mined from equilibrium relationship, the values of
Yi(1, J) are then calculated from Eq. (21).

(c) Calculation of Values of X; and Y;
at Interior Points
Applying modified Euler’s method to

X T
— = 1,J)—
ohy; =Xr )

2 — AW
X1, J) = <2+—Ah+{>x,-<l ~1,J)

Ahy; t to,
+<m)[x )+ X ~1,0)]
for i =1,2,3,....n (25)

and applying modified Euler’s method to

aY;
_._”=yii._y‘
ae.\'i
AG);
Yi,y=({—21\y,d,J -
i(1,7) (2+A9’) {, 1)

+<L)[Yi(1 J—n+rFa
2+ A0
for i=1,2,3,....n. (26)

Substituting the values of X; (I, J) of Eg. (25) and
Yi(1, J) of Eq. (26) to the solid-liquid interface relation
of

X, ) = X, 1) = RvEa, 1y — v, )
After simplification
Y0y = £ p| BHARD T Lt
X*, ) F,+R,[(2 Ae,)]y (1, J) =
@7
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where
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From Eq. (27), the relationship between X,.i(l. J) and
xFa, 1yis

¥
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Solving for i = k in Eq. (27) and substituting
vF1, 7y interms of XF(1, 7y

xka, n-F
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Again by combining Eqgs. (28) and (29), a nonlinear
equation with a variable in terms of X; (I, J) can be
solved by Newton-Raphson method. After X f(l . J)
is obtained, values of X,Tl:(l, J) are calculated from
Eq. (28), all the Y,.i(l , J) values are determined from
equilibrium relationship. With the known values of
X,.‘t(l, J) and Y,.i(l, Y, X;(I, J)and Y;(I, J) are then
calculated from Eqgs. (25) and (26).

Numerical Examples

The model equations and the algorithms developed
were applied to three numerical examples studied by
Hsieh et al. (1977). These examples covered liquid
phase, solid phase and combined solid and liquid phase
rate control. Table 1 summarizes the data used for the
calculation. Since no analytic solutions are available,

Table 1. Data used for the numerical calculations of multicomponent liquid phase adsorption in

fixed bed.

Example for liquid phase rate controlling, 3 component system

V = 0.00227164 m/s. L =03429m,
Kn = 140/hr, Kp = 120/hr,
a =401/g, ar =301/g,

by = 0.05 Vumole,
CY =20 pmolell,

b> = 0.03 /umole,
Y = 15 pmole/l,

p =039 gl
K13 = 100/hr
a3 =201/g

b3 = 0.01 I/umole
Cg’ = 10 pmole/

Example for combined solid and liquid phase rate controlling, 2 component system

V =000227164 m/s, L =0.0509 m,
kpy = 2671/hr, ki2 = 1869/hr
kg = 0.246/h k2 = 0.405/hr

by = 0.14 /umole,
C!' = 110 umole/l,

by = 0.06 Vumole
CY = 300 wmole/l

p=039gl

ay = 198.8 /g a; =5431/g

Example for solid phase rate controlling, 4 component system

vV = 0.00227164 m/s, L =0763m, p=039g/l
Ky = 0.1103/hr Ky2 = 0.1050/hr K3 =0.1016/hr K4 = 0.0563/hr
a) =45.11/g, a; =3.41/g, a3 =321g ag =2.1lg

by = 0.28 l/umole,
CY = 4.6 pmole/l,

by = 0.007 V/umole,
CY = 41.6 umole/l,

b3 = 0.003 V/pumole
€Y =33.3 umole/l

by = 0.002 l/pmole
CY = 166.5 umole/l




the numerical results obtained are assumed to be cor-
rect when further increased in number of increments
has negligible effects on the outcome of computa-
tion. An integral mass balance for various sorption
species was also incorporated into the numerical pro-
grams as an independent check on the accuracy of the
numerical algorithms. The effluent i species concen-
tration was integrated numerically by Simpson’s rule
and checked against the average bed composition for
the given species at a given time, ¢. An overall mass
balance for the entire column at time ¢ gives

. L
V[C?t—/ C;(L,r)dt=pf Qi(zvt)dz]
0 0

To check the accuracy of this overall mass balance we
define

V[COt — [, Ci(L, 1) dt]
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The calculated results for the breakthroughs of a
three component liquid phase rate controlling system
are tabulated in Table 2. A typical solid phase compo-
sition profile is depicted in Fig. 1. In this example the
values of the rate parameters for the three individual
components are very close to each other. The same is
true for the values of the equilibrium parameters. The
calculated total dimensionless length parameters are
4.91,4.21 and 3.51 for components 1, 2 and 3 respec-
tively. As can be seen from the tabulation in Table 2,
with only fifty length increments, up to three significant
figure of accuracy is obtained. The absolute values of
€(t) determined from performing an overall mass bal-
ance are found to be less than 0.005 at various values
of ¢. In Table 3, the results of breakthroughs for a two
component combined film and solid phase rate con-
trolling system are tabulated. Figure 2 shows the bed
composition and the solid particle surface composition

() =1-— - profiles at ¢ = 3 hours. As can be seen from the tabu-
oy Qi(Z,1)dz lation in Table 3, with 200 length increments and with
Table 2. Calculated results of breakthroughs for a three component liquid phase rate controlling system.
L/AL =50,A1t=4hr L/AL =100, Ar=2hr L/AL =200,1=1hr
hr X\ X, X3 X) X2 X3 X\ X3 X3
20 0.01527 0.03021 0.06164 0.01530  0.03024 0.06167 0.01530 0.03025 0.06168
40  0.02675 0.05171  0.10415 0.02678 0.05173  0.10417 0.02678 0.05174 0.10418
60  0.04302 0.08105 0.15939 0.04304  0.08107 0.15940 0.04305 0.08107 0.15940
80  0.06550 0.11996 0.22863 0.06552  0.11997  0.22863 0.06552  0.11997  0.22862
100 0.09586 0.17027 0.31272 0.09588 0.17026  0.31270 0.09588 0.17026  0.31270
120 0.13611 023385 0.41196 0.13612 023384 0.41193 0.13612  0.23384 0.41193
140 0.18837 031233  0.52548 0.18836 0.31230 0.52546 0.18836  0.31229  0.52545
160 025453  0.40636 0.65049 0.25451  0.40632  0.65047 0.25450  0.40632  0.65046
180  0.33556 0.51473  0.78129 0.33552 051469 0.78128 0.33551 0.51468 0.78128
200 043029 0.63302 0.90854 0.43025 0.63299  0.90857 0.43024 0.63299  0.90857
220 0.53413  0.75261  1.01955 0.53410 0.75262  1.01961 053409 0.75262 1.01962
240  0.63847 0.86120  1.10098 0.63846  0.86123  1.10105 0.63845 0.86124 1.10106
260 0.73253 094653  1.14461 0.73253  0.94657  1.14465 0.73253  0.94658  1.14465
280  0.80807 1.00246  1.15283 0.80807  1.00248  1.15282 0.80807 1.00248  1.15282
300 0.86319 1.03183 1.13748 0.86319 103184 1.13743 0.86319 1.03184 1.13742
320 090133 1.04289 1.11215 090132  1.04288 1.11210 090132 1.04287 1.11209
340 092751 1.04373  1.08618 0.92751  1.04372 1.08614 092751  1.04372  1.08613
360 094585 1.03987  1.06385 0.94585 1.03986  1.06382 094585 1.03986 1.06381
380 095907 1.03435 1.04626 095907 1.03434  1.04624 0.95907 1.03433  1.04624
400 0.96884  1.02864  1.03306 0.96884  1.02863  1.03305 0.96884  1.02863  1.03305
420 097619 1.02339  1.02342 097619  1.02339  1.02341 097619  1.02339  1.02341
440 098179 1.01884 1.01650 0.98179 101884 1.01650 098179 1.01883 1.01650
460  0.98607 1.01502 1.01159 0.98607 1.0150t 1.01159 0.98607 1.01501 1.01159
480 0.98935 1.01187 1.00813 0.98935 1.01187 1.00812 098935 1.01187 1.00812
500 0.99187 1.00932 1.00569 099187 1.00932  1.00569 099188  1.00932  1.00569
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Tuble 3. Calculated results of breakthroughs for a two component combined
liquid phase rate controlling system.

L/AL =100 L/AL =201 L/AL =400
At =05hr At =0.20 hr At =0.1hr

hr X X3 X X2 X\ X2

| 0.00165 0.03149 0.00165 0.03152 0.00165 0.03152
2 0.01213  0.14365 0.01216  0.14424 0.01216  0.14432
3 0.05327 0.38929 0.05337 0.39042 0.05339  0.39058
4 0.11970 0.61445 0.11976  0.61496 0.11977  0.61503
5 0.19399  0.77258 0.19400 0.77261 0.19400  0.77261
6 0.26812  0.87781 0.26810 0.87758 026810 0.87754
7 0.33879  0.94598 0.33876  0.94565 0.33876  0.94560
8 0.40471  0.98902 0.40469  0.98867 0.40469  0.98862
9 046552  1.01523 0.46552  1.01490 0.46552 1.01486
10 052126 1.03032 052126  1.03003 0.52127  1.02999
11 057212  1.03813 0.57214  1.03790 0.57214  1.03787
12 061839 1.04128 061842  1.04109 0.61842  1.04106
13 0.66037 1.04149 0.66040  1.04134 0.66041  1.04132
14  0.69835 1.03993 0.69838  1.03981 0.69838  1.03979
15 0.73262 1.03736 0.73265  1.03727 0.73265  1.03726
16 0.76345  1.03429 0.76348  1.03422 0.76348  1.03421
17 079113 1.03104 0.79115  1.03099 0.79115  1.03098

18 0.81590 1.02780 0.81592  1.02777 0.81592  1.02776
19 0.83802 1.02471I 0.83803  1.02469 0.83803  1.02468
20 085771  1.02184 0.85772 1.02182 0.85772  1.02181
21 0.87521  1.01920 0.87521  1.01919 0.87521  1.01919
22 0.89072 1.01682 0.89071  1.01681 0.89071  1.01681
23 090443 1.01468 0.90442 1.01468 0.90442  1.01468
24 091654 1.01279 091652  1.01279 091652  1.01279
25 092720 1.01111 092718 101111 0.92718  1.01111
26 093657 1.00964 0.93656  1.00964 0.93659  1.00964
27  0.94480  1.00835 0.94479  1.00835 0.94478  1.00835
28 095202 1.00722 0.95200  1.00723 0.95200 1.00723
29 095833  1.00624 0.95831  1.00624 0.95831  1.00625
30 096384  1.00539 0.96382  1.00539 0.96382  1.00539

At set equal to 0.2 hour, convergence to within four
significant figure is approached. The values of ¢; ()
calculated for this example are less than 0.01 for most
values of ¢ and for any species .

The last example illustrates a four component solid
phase rate control system. The data listed in Table 1
indicate that species 1 is a much preferred species than
the other three components. The calculated values
for the separation factors are &) = 13.3,af = 14.1
and &} = 21.5. Thus it is expected that the break-
throughs for species 1 is to come much later than the
breakthroughs for species 2, 3 and 4. Table 4 gives

breakthrough data for components 1 to 4. It is seen
that with 50 and 100 increments almost the same ef-
fluent concentration histories are obtained for compo-
nents 2, 3 and 4. However for component 1, at least 100
or more length increments are needed for obtaining
correct concentration history especially for the early
breakthroughs. The overall mass balance calculation
for this example gives €; (t) values less than 0.005 when
200 length increments are used. Figure 3 is a typical
bed composition profileatr = 20 hours. The proximity
of the bed composition profiles between components
2 and 3 is due to fact that the equilibrium and kinetic
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Table 4. Calculated results of breakthroughs for a four component solid phase rate controlling system.
L/AL =100 L/AL =200
L/AL =50, At=1hr L/AL =100, Ar = 1hr Nt =1hr At =1hr
hr X2 X3 X4 X3 X3 X4 hour X X\
5 000133 000243 0.09713 0.00134 0.00244 0.09714 300 0.00001 0.00001
10 0.00561 0.00921 0.16169 0.00564 0.00924 0.16169 320 0.00003 0.00004
15 0.01585 0.02399 0.23604 0.01588 0.02402 0.23602 340 0.00018 0.00021
20 0.03562 0.05050 0.31727 0.03566 0.05053 031725 360 0.00097 0.00106
25 0.06841 0.09181 0.40197 0.06845 0.09182 040195 380 0.00503 0.00523
30 0.11652  0.14923  0.48657 0.11652 0.14922 0.48654 400 0.02480 0.02530
35 0.18012 0.22170 0.56775 0.18010 0.22166 056773 420 0.10682 0.10671
40 0.25705 0.30582  0.64287 0.25700 0.30576 0.64286 440 0.32378 0.32242
45 0.34319 0.39668 0.71018 034312 0.39660 0.71018 460 0.60884 0.60822
50 0.43352 0.48896  0-76885 043344 0.48889 0.76885 480 0.81408 0.81431
55 052317 057796 0.81880 0.52309 0.57790 0.81881 500 0.91988 0.92025
60 0.60816 0.66019  0.86055 0.60810 0.66014 0.86056 520 0.96691 0.96718
65 0.68575 073350  0.89492 0.68571 0.73347 0.89493 540 0.98659 0.98674
70 0.75442 0.79698  0.92289 0.75439  0.79697 092291 560 0.99461 0.99469
75 0.81366 0.85063 0.94546 0.81365 0.85063 0.94548 580 0.99785 0.99788
80 0.86369 0.89508  0.96355 0.86369 0.89509 096357 600 0.99914 0.99916
100 098838 1.00144  1.00587 0.98841 1.00147 1.00588 620 0.99966 0.99966
200 1.06169 1.05763  1.03534 1.06169 1.05763  1.03534 640 0.99986 0.99986
300 1.06160 1.05748  1.03599 1.06160  1.05748  1.03599 660 0.99994 0.99994
400 1.0602 1.05622  1.03544 1.06010  1.05610  1.03537 680 0.99997 0.99996
500 1.00514 1.00491 1.00516 1.00505 1.00482 1.00513 700 0.99998 0.99997
600 1.00006 1.00006  1.00009 1.00005 1.00005 1.00009 800 0.99999 0.99998
1 15
Time = 50 hours Time = 3 hours YS2
08
> > 1F v2
g 0.6 _E
: é
S 04 8
i %os .
0.2 vs1
0 ° .
0 02 04 06 0.8 1 0 0.2 0.4 06 08 1
Fraction Of The Bed Fraction Of The Bed
Figure 1. Bed composition profile for a three component liquid Figure2. Bed composition and particle surface composition profile

phase rate controlling system.

parameters of these two species are very close to each
other. For engineering and other practical application,
usually only three of four significant figures in the cal-
culated results are required. In all these three examples

for a two component combined liquid and solid phase rate controlling
system.

of calculation, about 50 to 200 increments are sufficient
to obtain this kind of accuracy. The numerical algo-
rithms developed in this work are easy to implement
using a386 or486 PC. All these sample calculations are
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Figure 3. Bed composition profile for a four component solid phase
rate controlling system.

carried out with a 486 DX2-66 PC and with programs
written in Fortran. The computation time for each run
is about a few seconds to less than half a minute.

Conclusions

In this paper, new and efficient algorithms are de-
veloped for the calculation of fixed bed multicom-
ponent liquid phase adsorption. Langmuir form of
isotherm is assumed for the multicomponent system.
Linear driving force rate equations are employed in the
model equations and algorithms are developed for the
three rate controlling mechanisms. The numerical al-
gorithms developed in this work are explicit with the
exception of the requirement for solving an implicit
polynomial equation for one of the species in the mul-
ticomponent system. This polynomial equation arises
because of the interaction of multicomponent equilib-
rium relationship. Once the concentration of this arbi-
trarily chosen species is determined, concentrations of
other species are obtained explicitly and directly. In
this way the algorithms are more efficient than solv-
ing simultaneous multiple nonlinear equations by it-
erative procedure or by the use of predictor-corrector
methods. The usefulness of equilibrium theory for an-
alyzing multicomponent liquid adsorption processes is
well recognized. However, since most fixed bed sorp-
tion processes are conducted with finite mass transfer
resistance, the rate effect should always be included
for practical applications. We have shown by means
of numerical examples how the developed algorithms
can be utilized for such studies. We have demonstrated
the accuracy and efficiency of the proposed algorithms

with the calculated results check by an independent
mass balance and with all the calculations carried out
with a personal computer.

Nomenclature

C Concentration of species i in the solution, mol/l
h; Dimensionless length variable for species /.
H; Dimensionless total length parameter for
species i.
k) Liquid phase mass transfer coefficient for
species i, 1/sec
Ki;i Overall liquid phase mass transfer coefficient
for species i, 1/sec
ky; Solid phase mass transfer coefficient for species
i, l/sec
Ky Overall solid phase mass transfer coefficient for
species £, 1/sec
L Total bed height, m
Q; Concentration of species i in the adsorbent,
mol/g solid
t Absolute time, second
V Linear superficial flow rate, m/sec
X; Normalized liquid phase i species concentration
Y; Normalized liquid phase i species concentration
Z Axial distance of the bed, m

Greek Letters

B Void fraction of the bed, dimensionless
@ Normalized time variable, dimensionless
pp» Bulk density of adsorbent in the column, g solid/l

Superscripts

0 Feed or initial

% Interface equilibrium composition

* Equilibrium with respect to bulk solution or
average solid composition

Appendices

Appendix 1: Algorithms for Film Diffusion
Rate Controlling

1. Calculation of X; for Characteristic Line § =0

dX;
kel =X —X;
dhitgo

Since the initial conditions of Y;(h;, 0) are known,
the values of X} can be determined readily from the



equilibrium relation. Thus by the modified Euler’s
method, values of X; are calculated explicitly by

2— Akl
Xi(l, 1) = S Xl = 1. 1)
Ahy;
—I[X7U, D+ X[ - 1,1
v CHUDERHEIN

(A1)

2. Calculation of Y; for Characteristic Line h =0

Applying modified Euler’s method to
dY;
dgl’ /1,,':0
Yi(1,J) = Fi — (A0, /2) X[ (1, J),
for i =1,2,3,...,n (A2)

=X, - X}

where

Fi=YQ,J-D)+[X1, )+ X:(1,J-1)
- X7(1,J = DI(A8:/2)

From Eq. (A2), it can be shown that
AuYe(1,J)
1+ BiYe(1, 1)’
for i =1,2,3,...,n, i#k (A3)
_ FiAb,

ABy, 1 )
= , Bp=|——-1|| =
Fi.AG); Aby; F

Substituting the equilibrium relation of Eq. (A2) and
solving fori =k

Yi(l,J) =

where

Aix

Y, (1, J) - F
Ye(1,J)

+(80/D 1 b COlL— Yi(L, )]

0 (A4)

Substituting ¥; in terms of Y, as given by Eq. (A3)
Y (1, ) = F

Y.(1,J
+ (B /2) e, J)

nyp ~0f1 _ _Aul(lJ)
L+ X1 6iC1 - 1565

=0 (AS)

This is a polynomial equation with a single vari-
able Y; (1, J). An iteration procedure by Newton Raph-
son method is applied for its solution. Once the value
of Y, is obtained, the values of Y for species i =
1,2,3,...,n, i # k, can be readily calculated from
Eq. (A3).
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3. Calculation of X; and Y; at Interior Points

Applying modified Euler’s method to

X =X —-X—i
dhy; g, !
and after simplifying
X (1, J)
= %IZ;”[X}‘(I, J)+ il*ihilj::x"(l —-1,J)
+ %X}*(l -1.J)

for i =1,2,3,....n (A6)
Applying modified Euler’s method to

dY;

| =x-Xxr
d@[,’ hy

and after simplifying

A X*(,J)y=0
2+ Ahy; i -

for i =1,2,3,...,n, (A7)

Yill,J) - Fi +

where

AGy;
F=YUJ-1)+ T

x I:ﬂlﬁxiu_ 1,J)
2+Ah[,'
+ ﬂx?‘(l—l J)
2+ Ahy ! '

+ X, J-1)—-X]U,J - 1)]

From Eq. (A7), it can be shown that

Au Y, J)
14 By Ye(1, 1)’
for i =1,2,3,...,n,

Yi(l,J) =
i#£k (A8)

where

Fi(2 4+ Ahy)Aby
T F2+ AR AG

B — |:(2+ Ahi)ABy I ( 1 )
T2+ Al Ab; F.
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Substituting the equilibrium relation as well as
Eq. (A8) to Eq. (7) and solving for species &

Al
—F 4+ | —
Y. J) = Fie (2+ Ah,k)

Y1, J)

X
0 FAN))
1+ 15, CP[1 — 1 s ]

=0 (A9)

This nonlinear equation with a single variable of
Y (I, J) can again be solved by Newton-Raphson
method. After the value of Y, (/, J) is obtained, values
of Y;(I,J) fori = 1,2,3,...,n, i # k, are calcu-
lated from Eq. (A8). The values of X} (/, J) are ob-
tained from equilibrium relationship. Finally the values
of X;(I, J) are calculated from Eq. (A6).

Appendix 2: Algorithms for Solid Phase
Rate Controlling

1. Calculation of X; for Characteristic Line 6 =0
Applying modified Euler’s method to

ax
dhyi lg=o

=Y, -V

Using the same procedure for deriving the com-
bined liquid and solid phase rate control algorithm, the
following equation is obtained

Xe(1,1) = Fy
( +Z'; b-CO)Xk(I 1)
+(Ah.wk/2) axan =0 (B
ZI b CO[|+'§,t;L(I l)]
X (1,1
X, 1) = ApXe(1, 1) ,
1+ By Xi(1,1)
for i=1,2,3,....,n, i#k (B2)
where
A = I:‘.Ah"‘k,
F.Ahyg;

Ahy
By = ( hor _ 1)(i
Ahxi Fk

Fi=X(—-11+ (A;"‘)[Y.-(l, 1)

+YU - 1,1)] - (%)yu 1L

2. Calculation of Y; for Characteristics Line h = 0

Applying modified Euler’s method to

dy;
il =Y*_Y;
de\'i = ! v
to obtain
Y,(1,J) = 2— A0 Yi(1,J = 1)
ST T2+ 40,
+ (2% (Y1, J = 1)+ Y1, J)]
24 A6, ) y+ ¥,

for i =1,2,3,....n (B3)

3. Calculation of X; and Y; at Interior Points

Following the procedure for deriving the liquid phase
rate controlling algorithm we obtain

Xe(1,J) - F
Ahygy 1+ Y1 biCOYX (1, J
(2+A;)f Zbco)uf(((u))_o (B4)
s/ 1+ 301 biC T+ B X (1.1)
l"x 11
Xi(l, gy = 2D
L+ By X (1, )
for i=1,2,3,...,n, i#k (B5)
where
Fi(2+ A8,)Dhy
A =

Foe(24+ A8y )Ahy; ’
(2 + Aexi)Ah.\'k 1
By=|———7—"7—7—-1|| =
(2 + Abu) Ahy; Fy
F=X,(I-1,7)

+ (AZ”>[Y(1 LJ)=Y*1—1,J)]

N Ahy; 2 — Ab,; Y. J
2 24 A6, )

+ (2% Y*(I,J —1)
24+ A6;) "

With the values of X;(/, J) known, Y*(/, J) are
determined from the equilibrium relation. Finally the




values of Y;(/, J) are calculated by

2 — Ab,
Yi(l,J) = [<m>yi(1, J—1

Ae.\'i * _ *
+ (m)[n (1,7 =1+ 770, J)]

for i=1,2,3,....n (B6)
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