IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

2907

Adaptive Subcarrier Assignment and Bit Allocation
for Multiuser OFDM System Using Ordinal
Optimization Approach

Shin-Yeu Lin and Jung-Shou Huang

Abstract—In this paper, we propose an ordinal optimization
(0O0) theory-based four-stage approach to deal with the sub-
carrier assignment and bit allocation problem of a multiuser
orthogonal frequency-division multiplexing (OFDM) system. The
four-stage OO approach ensures the quality of the obtained so-
lution, however, at the cost of solving a continuous version of the
considered problem in the first stage. To resolve this computational
complexity problem, we propose a hardware-implementable dual
projected gradient (DPG) method to exploit deep-submicrometer
technology. Compared to some existing methods using numerous
simulation cases with randomly generated parameters, our ap-
proach is excellent in the aspect of power consumption. In the
meantime, the estimated computation time of our approach can
meet the real-time application requirement. Furthermore, we use
extensive simulations to compare our good-enough solutions with
the true optimal solutions, and the results show that the objective
value obtained by our approach deviates from the optimal objec-
tive value around 1% on average.

Index Terms—Multiuser orthogonal frequency-division multi-
plexing (OFDM) system, ordinal optimization (OO), power
control, resource allocation, wireless data transmission.

I. INTRODUCTION

UE TO THE increase of mobile users and devices, var-

ious resource management techniques, such as dynamic
channel allocation [1] and dynamic fair resource allocation
schemes [2], have been studied. One of the difficulties for such
techniques is to keep track of the most updated state of the
mobile users or devices caused by their mobility and portability
and provide them with the appropriate resources. Therefore, the
real-time requirement is the premise of the wireless network
resource management solution methods to deal with the high
mobility of the dynamic behaviors of mobile users and devices.
Among the existing dynamic resource management problems
in wireless networks, adaptive subcarrier assignment and bit
allocation of an orthogonal frequency-division multiplexing
(OFDM) system is a very fundamental issue in mobile commu-

Manuscript received October 16, 2006; revised May 27, 2007, September 3,
2007, and November 14, 2007. This work was supported in part by the National
Science Council of Taiwan, R.O.C., under Grant NSC95-2221-E-009-099-
MY?2. The review of this paper was coordinated by Dr. S. Vishwanath.

S.-Y. Lin is with the Department of Electrical and Control Engineer-
ing, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
sylin@cc.nctu.edu.tw).

J.-S. Huang is with the Department of Electrical and Control Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C., and also with
Elan Microelectronics Corporation, Hsinchu 300, Taiwan, R.O.C. (e-mail:
rong @emc.com.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2007.914053

nication. There are two types of formulations on this issue. One
is the margin adaptive (MA) optimization, which minimizes the
total consumed power under a data rate constraint [3], and the
other is the rate adaptive (RA) optimization, which maximizes
the data rate under a power constraint [4]. Kim et al. had shown
in [5] that the RA optimization problem can be solved via
recursive MA optimization. Therefore, in this paper, we will
focus on the adaptive subcarrier assignment and bit allocation
problem of MA optimization, with emphasis on the solution
quality and the computational efficiency to meet the real-time
application requirement.

The considered problem formulated by Wong et al. in their
pioneer work [3] is a very hard nonlinear integer programming
problem; thus, various heuristic solution methods are proposed
in [3]-[9]. Wong et al. employed a Lagrangian relaxation
method in [3] to solve the continuous version of the adaptive
subcarrier assignment and bit allocation problem. They then
rounded the optimal continuous subcarrier assignment solution
off to the closest integer solution. Kim ez al. [5] converted
the adaptive subcarrier assignment and bit allocation problem
formulated in [3] into a linear integer programming problem
and employed a suboptimal approach to separately perform
the subcarrier assignment and bit allocation. To claim for real-
time application by not using a mathematical programming
approach, Ergen er al. [6] proposed a heuristic two-module
scheme, Kivanc et al. [7] and Zhang [8] proposed two-step
subcarrier assignment approaches, and Han et al. [9] proposed
an iterative grouping scheme to improve the performance by
exchanging subcarrier assignment sets.

In general, to obtain a better solution of a hard optimiza-
tion problem, such as the considered problem, usually re-
quires a sophisticated but computationally intensive algorithm.
This point had been commented on the method proposed
by Wong et al. [3] in [5]-[9]. The purpose of this paper
is to counter this seemingly correct argument by proposing
a method that will not only obtain a good-enough feasible
solution (better than the solution, if feasible, obtained by
Wong et al.), but also meet the requirement of real-time ap-
plication. Our approach consists of four ordinal optimization
(OO) theory-based stages, and the most computationally in-
tensive stage among the four lies in the first stage, where we
need to solve a continuous version of the considered problem.
To cope with the computational complexity caused by the
nonlinear programming algorithm, we propose a hardware-
implementable dual projected gradient (DPG) method to exploit
the advantage of deep-submicrometer technology to obtain the
optimal continuous solution extremely quickly.

0018-9545/$25.00 © 2008 IEEE

2908

Base station transmitter

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

Data of user 1

\

—»lAdaptive modulator 1 |—>

i Add
Data of user 2 £ Su‘pcarrlcr —>|Adaptive modulator 2 I—->
assignment ; IEFT
: and bit Interval

—»lAdaptive modulator V| I—->

e m e —————

The proposed adaptive
subcarrier assignment and

Channel information

from K users bit allocation algorithm

User k receiver Y

1
1
1
i
1
Guard !
1
1
1
1
1
1

Frequency Selective
Fading Channel for
the kth user

A
<—|Adaptive demodulator 1|<—

Extract bits ; Remove
_ for the <—|Adapt1ve demodulator 2 Iq— FFT
kth user : Interval

4——|Adaptive demodulator N| |<—

Fig. 1.

To demonstrate that the DPG method is really hardware
implementable, we will present the corresponding hardware
computing architecture, which will serve as the basis to es-
timate the computation time of the DPG method. However,
to maintain the fluency of presentation, we put the hardware
computing architecture in Appendix B, and readers who are
not interested in the details may neglect this part. In addition
to the Appendices, we organize our paper in the following
manner. In Section II, we will state the considered problem.
In Section III, we will present the DPG method to solve the
continuous version of the considered problem. In Section IV,
we will present the OO-theory-based four-stage approach for
finding a good-enough feasible solution. In Section V, we will
present some test results and compare our approach with some
existing methods in the aspects of power consumption and
computation time. In Section VI, we conclude the paper.

II. PROBLEM STATEMENT

As shown in Fig. 1, the OFDM system model employed
here is derived from [3]. We assume that the system has
K users to share IV subcarriers. Each user’s data rate request
will be allocated to a nonoverlapping set of subcarriers and
distributed among them. The allocating period in this model
is a time interval that consists of several OFDM symbols and
is assumed to be short enough so that users’ channel gains will
stay approximately constant. It is also assumed that a subcarrier
cannot be shared by more than one user.

In the transmitter part of Fig. 1, the serial data from
K users are fed into the block represented by the proposed
adaptive subcarrier assignment and bit allocation algorithm.
The algorithm will be executed in every allocation period to
assign the set of subcarriers to each user and the number of
bits to be transmitted on each assigned subcarrier based on the
updated channel information of all users. For each subcarrier,
the adaptive modulator will apply a proper modulation scheme
to each symbol, depending on the number of bits assigned to
the subcarrier, and the modulated symbols are transformed
into time-domain samples by an inverse fast Fourier transform

1
1
|
1
Guard '
1
1
1
1
1

Block diagram of a multiuser OFDM system with subcarrier assignment and bit location.

(IFFT), as indicated in Fig. 1. The guard interval is then added
to ensure orthogonality between the subcarriers, provided that
the maximum time dispersion is less than the guard interval.
Finally, the transmitted signals pass through different
frequency-selective fading channels to different users.

We assume that the subcarrier assignment and bit allocation
information is sent to the receivers via a separate control
channel. For the sake of simplicity, we only show the receiver
part of one user in Fig. 1. At the kth user’s receiver part,
the guard interval is removed to eliminate the intersymbol
interference, and the time sample of the kth user is transformed
into modulated symbols using the fast Fourier transform (FFT).
The modulation information is then used to configure the de-
modulators while the subcarrier assignment information is used
to extract the demodulated bits from the subcarriers assigned to
the kth user.

In this paper, we focus on proposing an efficient and effective
algorithm to solve the following adaptive subcarrier assignment
and bit allocation problem of the OFDM system for a good-
enough feasible solution.! That is

(Ck.n
Ck,nsPk,n 1 kb1 aivnfk(k,)
subject to
N
Ry = cim, k=1,...,K
n=1
K
Z Pk,n 1, n=1, N
k=1
ckn €D, for all k,n
_J0, ifcgn=0
Ph.n = { 1, otherwise, forall &, n M

!'Notation employed here is derived from [3].

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH

where fi,(c) denotes the required transmission power for c bits
of user k when the channel gain is equal to unity, oy, y is
the channel gain for user k using subcarrier n, fi(ckn)/ ai’n
denotes the transmission power for user k using subcarrier n,
Pr denotes the total transmission power to be minimized, pi
is an indicator variable (a subcarrier can be occupied by at most
one user as described by the equality constraint on py, ,,), Ry
(bits per OFDM symbol) denotes the requested data rate of
the kth user, ¢y , denotes the number of bits of the kth user
assigned to the nth subcarrier, and D = {0,1,2,..., M} de-
notes the set of all possible values for ¢y, ,,, and thus, the first
equality constraint in the problem formulated in (1) implies
that the subcarrier assignment and bit allocation should meet
the user’s data rate request.

Since problem (1) is a computationally intractable combi-
natorial problem, Wong et al. introduced the variable ry, , =
Ck,nPk,n to transform (1) into the following continuous-variable
convex optimization problem over a convex set

(5e2)
Pk,n

N K
k,n
D> ot
ak,n

Tk, ne[o A[pk n pk ne O 1

n:l k=1
subject to
N
Rk:Zrk,n, k=1,....K
n=1
K
1= pems n=1,...,N @)
k=1

where both py ,, and 7y, are continuous variables, satisfy-
ing 0 < ppn <1and 0<ry, < Mpy,, respectively. Note
that when py , =0, 7, =0, and 0/0 becomes undefined;
therefore, we define f(0/0) in (2) as f(0). The solution of
(1) obtained by Wong et al. is to round the optimal so-
lution of (2) off to the nearest discrete solution. Despite
the fact that the consumed power could be significantly re-
duced while maintaining QoS, their approach faces the fol-
lowing two challenges: 1) the computational complexity of
the Lagrangian relaxation method and 2) the possible infea-
sibility and no guarantee to be a good-enough solution by
arbitrarily rounding off [7], [8]. To cope with these two chal-
lenges, we propose an OO-theory-based four-stage approach
to solve (1) for a good-enough feasible solution. Stage 1,
among the four, is the most computationally intensive stage,
because we need to solve (2). Thus, for the sake of fluency
in presentation, we will present our hardware-implementable
numerical method for solving (2) in the following sec-
tion first, then followed by the OO-theory-based four-stage
approach.

2909

III. HARDWARE IMPLEMENTABLE DPG METHOD

If we apply a typical Lagrangian relaxation method to solve
(2), there will be a singularity problem in the variable py, ,,, just
like that shown in [3]. To develop a hardware-implementable
dual-type method, we need to eliminate this singularity problem
by adding extra terms in the objective function of (2) to strictly
convexify py , for every k, n, as follows:

S ()

a?
=1k=1 Fkmn

min
Tk,n€[0,Mpi n]pr,n€[0,1]

n=1k=1
subject to
N
Rk:Zrkm, k,‘:l,.. ,K
n=1
K
1= prn, n=1,...,N. (3)
k=1

If o > 0, (3) is a convex programming problem with a strictly
convex objective function.

Remark 1: 1) Adding the extra terms Y.~ S°%
(0/2),0%7” will help us build the surrogate model in stage 1
of our OO-theory-based four-stage approach, as will be shown
later. 2) The optimal solution of (3) is a good approximate
solution of (2), provided that ¢ is small enough.

The DPG method will solve the dual problem of (3), as
shown in (4), instead of solving (3) directly. We have

max ¢(A) “4)

where A = (A7,..., A%, AL, ..., A%)7 is the Lagrange multi-
plier vector such that A} corresponds to the kth user’s data rate
request constraint, and A\? corresponds to the nth subcarrier
assignment constraint, and the dual function ¢()) is defined by

()
— Pk,n

¢() Tk nE[O Mpy, n]/)k ne 0 1]

N K
+ A (Z Prm — 1) . 5)

By suitably rearranging the terms, (5) can be rewritten in
a more compact form as (6), shown at the bottom of the

Pk,n

N K
. Pk.n Tk
A) = min E E en e
N = oD o { 2 f"()

+ ,Ok n +)\TRk

- 1
3 ATk + A5 prn — K)\Z} (6)

2910

page. The DPG method employs the following iterations to
solve (4):

A(E+1) = A(E) + BV (A(®))
where t denotes the iteration index, 3(t) is a positive step
size, and VO(A(1)) = (99(A(1)/ONT, ..., DG(A(1)) /O,
OPA())JON], ..., 00(A(t))/ON)T is the gradient of
¢(A(t)) evaluated at A = A(t), which can be calculated by the
following formula [10]:

(7

96 (A1) - _
o = ggrhm k=1...,K ®

96 (A®) _ <~ _
a)\”pl _kz:lpk,n_la n_17 '7N (9)
The (T T) (721’1,...,’f‘K’N,pAl,l,...,pAK,N) in (8) and

(9) is the solutlon of the minimization problem on the right-
hand side (RHS) of (6) for a given A(¢). Therefore, to obtain
Vo(A(t)), we need to solve for # and p first, and the key to
making the DPG method hardware-implementable is that we
use a two-phase strategy to fulfill this task.

The first phase is to solve the minimization problem on the
RHS of (6) without the inequality constraints on 7y, ,, and py, p,
which is shown in (10) and will be called the unconstrained
minimization problem. Thus, we have

pkn Tkn g o 1 r
— — AR
mmZZ{ <pk,n>+2pk,n+N kB

n=1k=1
N 4 M o 1wl o
k' k. nFk,n K

We denote the optimal solution of the unconstrained
minimization problem (10) by (7¥7,p") = (f1.1,...,Tk.N,
P11y, pr.N)- (TT, pT) can be obtained by solving the first-
order necessary conditions, which can be fully decomposed into

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

N - K independent 2 x 2 equations, as shown in the following
equation, forn=1,..., Nandk=1,... K:

' n r
m(k) Xi(t) =0 (11
k’,n pk"
1 Thn s Ten \ Thn
ak,n Pk,n Pkmn /) Pkmn
+ 0Pk + M (t) =0. (12)

For each n and k, the simple 2 x 2 equations shown in (11) and
(12) can be solved analytically in (13) and (14), shown at the
bottom of the page, where f'~! can be derived once f is given,
e.g., the f given in (16) in Section V.

The second phase is to handle the inequality constraints
disappearing in (10) by projecting (7., pk,n) onto the range
[0, Mpg] % [0,1] for each k and n. The projection can be
calculated based on simple geometry in (15), shown at the
bottom of the page. The resulting projection will be the op-
timal solution (*7,pT) = (f1.1,..., Pk N, P11, -, PE.N) OF
the minimization problem on the RHS of (6), as had been
proven in [11] and [12].

Convergence of the DPG method using a positive constant
step size /6’ (i.e., setting 3(t) = 3 for every t) can be proved
like that of the dual projected pseudo-quasi-Newton method in
[11] and [12]. A typical value of /3 is 0.5.

As previously indicated, the optimal solution of (3) will be an
approximate solution of (2) if ¢ is sufficiently small. However,
a larger o will speed up the convergence of the DPG method.
Thus, we let oy (= 1),01,...,0;,.. be a decreasing sequence
of o such that 041 = no;, where n(< 1) is a reducing factor,
and jmax i a positive integer that makes oj, . (= nimex)
small enough. Then, we can initially set 0 = gg in (3) and
use the obtained optimal solution as the initial guess to solve
(3) again, with o = 1. Repeating this process until 0 = o;___,
the corresponding optimal solution of (3) will be a very good
approximate solution of (2).

Remark 2: Indeed, the DPG method is not a ground-
breaking technique from the viewpoint of mathematical

Thn =Pk S - (Ae(t)oi) (13)
xR (med.)) - ek (et
Pl = : (14)
g
(Tk ,Pk n) lfO S ﬁk,n S]-a 0 S Fk,n S Mﬁk,n
(M, 1), ifppon>1, Tom>M
. . (rk:,n; 1)7 if ﬁk,n > 17 Fk,n <M
(Pkns Pin) = q (M, 1), i£0<ppn <1, Ton>M+L L5, U5
MJ;4+1 (MFk,n + ﬁk,n)a MQLH (Fk,n + ﬁﬁk,n)) 5 if 0 < ﬁk,n < 17 ,Fk,n <M+ ﬁ - ﬁﬁk,n

—~
j==)

70)7

if ﬁk,n <0

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH

programming. Its value is its simplicity and complete de-
composition property that enables the method to be hardware
implementable.

The description of the hardware architecture for the DPG
method is very detailed but indispensable, as indicated in
Section I; thus, we will present it in Appendix B.

IV. OO-THEORY-BASED FOUR-STAGE APPROACH

The OO theory [13]-[15] is a recently developed optimiza-
tion methodology designed to solve a hard optimization prob-
lem for a good-enough solution with high probability. The basic
idea of the OO theory is using a surrogate model to quickly
evaluate the estimated performance of a solution to select an
estimated good-enough subset from the candidate solution set
using limited computation time. When the size of the solution
space is huge, the reduction of the search space can be done
in several stages. The surrogate models in the stages can range
from very rough to more refined ones, and the exact model will
be employed in the last stage when there are only few solutions
left in the candidate solution set.

Therefore, to obtain a good-enough solution of (1) while
using limited computation time to meet the real-time ap-
plication requirement in the OFDM system, we employ an
OO-theory-based four-stage approach, as presented in the
following.

A. Stage 1: Reduce the Search Space of Subcarrier Assignment
Using a Continuous-Optimal-Solution-Based Model

Intuitively, a true solution that is neighboring to the optimal
solution of the continuous version of the considered problem
may be a good-enough solution. However, all the possible
subcarrier assignments prn, k=1,...,K, n=1,..., N are
neighboring to the optimal continuous solution, which is de-
noted by pz’n. Wong et al. [3] chose the closest one, which,
however, may cause infeasibility, and even if it is feasible, there
is no guarantee that it is a good-enough subcarrier assignment,
as indicated in Section II. Thus, in this stage, we will reduce the
subcarrier assignment patterns by excluding all the ineffective
subcarrier assignments based on our solution process for ob-
taining the approximate continuous optimal solution of (2). As
previously indicated, o (=1),01,...,0j,,. is a decreasing
sequence of o such that o1 = no;. Welet pj, , (o) denote the
optimal continuous py ,, of (3) when o = o;. Then, we claim
that subcarrier n is inappropriate to be assigned to user k if
Pr.n(0j) =0 forevery j = 0,1,..., jmax. The reason for this
is simple, as stated in the following.

We let p;, (o) denote the largest pj (o) among all
k =1,..., K for the given n. The term in the objective function
of (3) regarding o is S0 S°K (0/2)p2 . The sensitivity
of this term with respect to pj (o) is ap’;c"n(a). Suppose we
increase o by Ac. Then, the decrease of pj, ., (o) by the amount
—App..n, Where we assume Apy, ,, > 0, will cause an approxi-
mate extra reduction of the objective value due to the increase
of o by —pj. ,(0)AcApy, n. Thus, decreasing pj, ,, (o) will be
most beneficial if we increase o. This implies that increasing o
in (3) will force p;, (o) to decrease. Then, by the constraint

2911

Zszl Pr,n = 1 for a given n, if pz,’n(o) decreases, there must
be at least one k" € {1,..., K}, k" # k', such that py, (o)
will increase. Among p;. . (0), k=1,..., K, n=1,...,N,
the ones with pj, , (¢) = 0 are the most possible candidates to
be pii . (0), because the increase of such P.n(0) will cause
an approximately zero increment in the objective value because
Prn(0)AcApy., = 0. Thus, if they do not, it simply implies
that it is inappropriate to assign subcarrier n to those users with
P..n(0) = 0and remaining 0 while o increases. We have solved
a sequence of (3) with o, 7 =0,1,...,jmax and obtained
p’,;n(aj),j =0,1,..., jmax for all k and n. Then, based on the
above argument, we have that p;, ,,(0;) = 0,7 = 0,1, ..., jmax
implies that subcarrier n is not suitable to be assigned to
user k because when o increases to o; (0; > 0jy1), re-
mains 0 as pj, . (0;41)-

Therefore, our crude model for selecting roughly good sub-
carrier assignment patterns in this stage can be stated as follows.
We first set py,, =0 for the (k,n)’s whose corresponding
optimal continuous pj, ,(¢) =0 for all 0 = 0¢,01,...,0j,..-
We denote 7, as the number of Pk,n’s that are not set to
be 0 for a given n. Then, there will be v, possible subcar-
rier assignment patterns for a given n, which means these
Yn nonzero pi,’s take turns to be 1. Subsequently, we
will choose feasible subcarrier assignment patterns from the
Hf:le vn, possible patterns and form the set of roughly good
subcarrier assignment patterns that resulted in this stage. It
should be noted that checking the feasibility of a pattern,
e.g., (P11, s PK,1s---s P1N,- -, PK,N), 15 simply checking
whether M 25:1 Pkn = Ry hold for every k.

Remark 3: The reduction of the search space of subcarrier
assignments had been reduced from K (which is considered
to be the worst case and may include the infeasible patterns)
to Hgil ~n. Based on our simulation experience, a lot of ~,,’s
are 1.

B. Stage 2: Choose s Estimated Good-Enough Subcarrier
Assignment Patterns Using an Approximate Model

To evaluate the estimated performance of the feasible sub-
carrier assignment patterns obtained in stage 1, we will employ
an approximate model to estimate the total power consump-
tion of each pattern as follows. For a given feasible pattern
(P1,1s- s PEs -3 PLN - - -5 PE,N) WE et Ny, = Zle Pk,n
and &y = Zle pkmak?n/Nk denote the total number of
subcarriers assigned to and the average power consumption
coefficient of user k, respectively. We assume that the re-
quested data rate R of user k are equally distributed to the
assigned subcarriers. Then, the approximate power consumed
by user k, which is denoted by Py, can be calculated by
Py = (Ny./@2) fx(Ry/Ny). Consequently, the estimated total
consumed power for the given pattern, which is denoted by
Pr, will be Pr = 25:1 Py,. We apply the above estimation
process to each feasible pattern obtained in stage 1 and pick the
s (= 50) patterns with the smallest Pr to form the estimated
good-enough subset, which is denoted by SS.

Remark 4: Based on the surrogate model with modeling
noise w, the selected s patterns will contain at least y actual
top =% patterns among the Hf:f:l ~», With a probability of 0.95.

2912

There exists a quantitative relationship between the values of
s, ¥, T, w, and Hﬁzl Yn, as indicated in [15]. In general, a
larger s can have more y and less z, but it will take more time
for further evaluation. Therefore, for the real-time application
consideration, we set s = 50.

C. Stage 3: Choose | Estimated Good-Enough Subcarrier
Assignment Patterns From the SS

To evaluate the s (= 50) subcarrier assignment patterns
by using an exact model is still very time consuming when
meeting the real-time application requirement. Therefore, we
will employ a more refined model than the one used in stage 2
to select [(= 3) estimated good-enough patterns from SS.
The more refined model that we employ here is a supervised
learning artificial neural network (ANN) used to evaluate the
estimated consumed power of user k for a given subcarrier
assignment pattern (p1.1,...,0K,1,---,P1,N;-- -, PK,N). This
ANN model is constructed off-line using 5000 input/output
pairs, and the details are described in the following.

The data associated with user k£ are the data rate re-
quest [y, the power consumption coefficient ay ., n =
1,..., N, and the subcarrier assignment pattern regarding
user k, ie., (pr1,...,pr). For such a given data vector
(Rky Qe 1y« oy QN PR1y- -5 PEN) L, an optimal bit alloca-
tion algorithm or the so-called greedy algorithm [16] can be
used to optimally allocate the bits to the assigned subcarrier
to meet the data rate request while minimizing the power
consumption of user k.> However, the dimension of the vector
(Riy Qe 1y« oy Qb Ny PRy - - - PEN) T is very large. Thus, we
will employ (Rk,Nk,dk,dak)T to characterize user k& and
serve as the input vector to the ANN, where Nk and &y
had been defined in stage 2, and doy, = maxy, p, =1 Ok —
ming p, =1 Ok . Consequently, the 5000 input/output pairs
used to train the ANN can be obtained as follows. We uni-
formly select 5000 pairs of (R, Ny;) from the following ranges:
Ry € [5,150] and Ny, € [Rx/M,2R;./M]. For each Ny, we
randomly select distinct n1,...,nyg from {1,...,N}, and
randomly select ay ,,, from the range [0,1.5] for each ¢ =
1,..., N - The &, and day, can be computed accordingly. Thus,
we have 5000 input vectors of the form (Ry, Nk, G, dog) T
Now, for each (Rk,Nk,ak,nl,...,ak,nﬁk), we can use the
greedy algorithm to compute the corresponding minimum con-
sumed power of user k denoted by Pj. Thus, (R, Nk, a, dag)
and P, form an input/output pair. We then use the obtained
5000 input/output pairs to train a three-layer ANN. The input
layer consists of four neurons, which correspond to Ry, Nk,
Ak, and day.. We use 15 neurons in the hidden layer, and each
neuron uses tansig [17] as the transfer function to calculate
the output from the summed value of its inputs. There is
only one neuron in the output layer that corresponds to the
consumed power P}, of user k, and we use purelin [17] as the
transfer function. Using the above-mentioned 5000 input/output
pairs, we train this ANN by the Levenberg—Marquardt method
proposed in [18].

2This optimal bit allocation for each subcarrier assignment pattern is what
we mean by the exact model, and it is used for the ANN’s off-line training.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

Remark 5: In general, the more neurons, if there are not too
many, there are in the hidden layer, the more accurate the ANN
will be. Although our ANN is trained off-line, more neurons in
the hidden layer will increase the dimension of the arc weights,
thus increasing the computation time to obtain the output of
the ANN, which may hurt our purpose of real-time application.
Since what we care about here is the performance orders rather
than the performance values of the tested input vectors, perfect
accuracy is not necessary. Therefore, to save on computation
time, we select a moderate number of neurons, i.e., 15, in
the hidden layer. In addition, there exist various activation
functions such as step function, hard limiter, ramp, tansig,
purelin, etc. [17]. Which function to be used really depends
on the application. In our problem, we found that fansig and
purelin are the most suitable activation functions for the hidden
layer and output layer, respectively. Furthermore, we found
that the Levenberg—Marquardt method converges quickly in
training our ANN. _

Once the ANN is trained, we can estimate P, of each
subcarrier assignment pattern in SS by setting up the cor-
responding input (Rk,Nk,&k,dak) and feeding it into the
ANN, and the output will be the estimated]Sk. Thus, the
estimated total consumed power of a subcarrier assignment
pattern, which is denoted by Pr, in SS will be Pr = Zszl Py,
and the [(= 3) patterns with the smallest estimated Pr among
the s will be the estimated good-enough subcarrier assignment
patterns determined in this stage.

Remark 6: In [19], we have found out through simulation
that by using a more accurate surrogate model to evaluate
s (= 50) candidate solutions, the top [(= 3) solutions will
contain the actual best among the s with a probability of 0.99.

D. Stage 4: Determine the Good-Enough Subcarrier
Assignment and Bit Allocation

Since there are only [(= 3) subcarrier assignment patterns
left, we can use the exact model, i.e., the greedy algorithm,
to calculate the optimal consumed power Pr for each pattern
with very limited computation time. The subcarrier assignment
associated with the optimal bit allocation, corresponding to the
smallest Py among the three, will be the good-enough solution
of (1) that we look for.

V. TEST RESULTS AND COMPARISONS

In this section, we will test the performance of the proposed
approach in the aspects of solution quality and computational
efficiency. We will also compare our approach with the existing
subcarrier assignment and bit allocation algorithms such as the
algorithm proposed by Wong et al. [3], the linear programming
approach proposed by Kim et al. [5], the iterative algorithm
proposed by Ergen et al. [6], and Zhang’s approach [8].

As depicted in Fig. 1, we assume that the OFDM system
has 128 subcarriers (i.e., N = 128) over a 5-MHz band. The
system uses M -ary quadrature amplitude modulation (MQAM)
such that the square signal constellations 4-QAM, 16-QAM,
and 64-QAM carry two, four, and six bits/symbol, respectively;
therefore, in this system, D = {0,2,4,6}, and M = 6. We
adopt the following formula for fi(ck) in fk(ckyn)/ai’n,

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH

appearing in (1), and this formula holds for all £ in MQAM
at a given BER denoted by P, [3]:3

2
flo)= % [Q‘l (Z)} (2°=1) (16)
where Q~!(z) is the inverse function of
Qz) = L 7e2ﬂdt a7
Ve

and N denotes the noise power spectral density (PSD) level.*

Remark 7: The fi(c) in our hardware implementation is
not limited to the formula given in (16), which is simply an
example formula for the purpose of comparisons. However, we
have to admit that once a function or a form of f;(c), which
may correspond to certain coding and modulation schemes, is
assumed, changing hardware is not as easy as the software.

In all simulations presented in this section, we set P, =
10~* for each user, and the wireless channel is modeled as
a frequency-selective channel consisting of six independent
Rayleigh multipaths. Each multipath is modeled by Clark’s
flat-fading model [20]. We assumed that the delays and the
corresponding gains of the six paths are 100 - p ns and e~2?
(exponentially decay), respectively, where p =0, 1, 2, 3, 4,
and 5 denote the multipath index. Hence, the relative power of
the six multipath components are 0, —8.69, —17.37, —26.06,
—34.74, and —43.43 dB. We also assume that the average
subcarrier channel gain F|ay, p, |2 is unity for all k£ and n. Based
on the above assumptions, we generate power consumption co-
efficients a, ,, k=1,..., K, n=1,..., N using MATLAB
for our simulations.

We consider various numbers of users by setting K = 2,4, 8§,
16, and 32. For each K, we randomly generate 500 sets of ay, ,
k=1,...,K, n=1,...,N, based on the aforementioned
power consumption coefficient generation process and denote
a' as the ith set in the 500. We assume a fixed total requested
data rate R (= 512 bits/symbol) and randomly generate Ry,
k=1,..., K, based on the constraint Zszl Ry, = Rr. By the
above test setup, we have run our approach for each K, each
setof agn, k=1,...,K,n=1,..., N, and each set of I,
k=1,..., K. Wealso apply the four methods mentioned at the
beginning of this section to the same test.

For each K associated with the data rate request Ry, k =
1,...,K, we denote abSNR(a') as the average bit SNR’

3Equation (16) is directly borrowed from [3, Sec. V, p. 1725], which is
an approximation based on the bit-error probability 4Q((d?/(2No))*/?) and
the average energy (M — 1)d2/6 of an MQAM symbol, where d is the
minimum distance between the points in the signal constellation. Furthermore,
this formula is also used in [5], [6], and [8].

4Once No and P. are given, No/3[Q~1(P./4)]? in (16) is a constant
denoted by B. We can rewrite f(c) = B(2° — 1), and then, f'~1(c) =
In(¢/B In 2)/1n 2, which is the term needed in (13) and (14).

STt is noted that the average required transmit power (in energy per bit) is
defined as the ratio of the overall transmit energy per OFDM symbol, i.e., Pr
in (1), to the total number of bits transmitted per OFDM symbol, which consists
of 512 bits in our test case. Moreover, we define the average bit SNR as the ratio
of the average transmit power, i.e., Py /512, to the noise PSD level Ng. As we
have assumed that all the data rates per symbol are fixed at 512 and that Ny is
just a constant, Py is thus proportional to the average bit SNR. Therefore, for
the purpose of comparison, we can use the average bit SNR to replace Pr.

2913

19.5 .
Our approach
—+—Wong et al.
19l —<——Ergenetal. ||
—o&—Kimetal.
—+—Zhang
o
G 185} .
Qo
©
[0}
&
5 18 1
>
<
17.5¢ i
17 L 1 1 I 1 1
0 5 10 15 20 25 30 35
Number of users in the system
Fig. 2. Average abSNR for K = 2, 4, 8, 16, and 32 obtained by the five
methods.

when o is used and calculate 7% abSNR(a?)/500, i.e.,
the average abSN R, resulting from the 500 o®’s using our
approach and the other four methods and report them in Fig. 2.
We can see that the 7% abSNR(a’)/500 values obtained
by our approach, which are marked by “A” in Fig. 2, are the
smallest among all the methods. Moreover, the performance
of our approach becomes even better as the number of users
increases, as can be observed in Fig. 2.

To investigate the computational efficiency of our approach
and the other four methods, we need to report the average
computation time for obtaining abSN R(a'). However, as we
have indicated in Section I that the DPG method will be
implemented by integrated circuits, the computation time of our
approach is partly real and partly estimated, and its details are
stated in the following.

All the computation times of our OO-theory-based four-
stage approach, except for the DPG algorithm, are recorded
in the employed Pentium 2.4-GHz-processor 512-MB-random-
access-memory personal computer, and we denote it by Tr. For
K =2,4,8, 16, and 32 in the test results shown in Fig. 2,
the corresponding average Tr’s for obtaining abSN R(a*) are
1.214, 1.686, 3.386, 5.366, and 11.136 ms, respectively. To
estimate the computation time of the DPG method, we base
on 90-nm CMOS integrated circuit technology and denote this
estimated computation time as Tr. We let ®, @, and read-only
memory (ROM) denote the operations multiplication, addition,
and accessing the data of the ROM, respectively, and we define
T\.y as the computation time for performing the operation (-).
Referring to the work of Hsu ef al. [21] and Kanan et al. [22],
Ty = 1.0 ns for a 16 x 16 bit multiplication,6 and it takes
1.2 ns to access the data in the ROM. In practical designs, the
circuit complexity of a 16 x 16 bit multiplication is five times
greater than that of a 16 4 16 bit addition [23, Ch. 5, p. 113, and
Ch. 13, p. 433]; thus, we can set T; ~ 0.2 ns. Then, based on

5The 16-bit data type has enough precision for the implementation of the
DPG algorithm, because the resulting p; ~ that we need from the hardware

computation is only whether pj, is zero or nonzero and not how accurate the
,
nonzero value is.

2914

TABLE 1
AVERAGE COMPUTATION TIMES (IN MILLISECONDS) FOR OBTAINING
abSN R(a*) FOR VARIOUS NUMBERS OF USERS

Computation
oime (ms) 4 8 16 3

Method

Our approach 1.42 2.21 4.63 8.49 18.63
Wong et al. 103.32 185.3 371.3 701.2 | 1507.1
Ergen et al. 10.18 14.9 18.8 31.1 532
Kim et al. 24.95 30.5 40.6 96.6 | 2259
Zhang 26.81 425 453 60.3 88.1

the last column of Table III (see Appendix B), we have Tpp1 =
6.6 ns, Tpg2z = 2.2 ns, Tpgs = 1.6 ns, Tpgs = 1.2 ns, and
Tpr7 = 1.0 ns. In our simulations, the values of tax X Jmax
are set to be 8000, 10000, 12000, 15000, and 18000 for
cases of K =2, 4, 8, 16, and 32, respectively. Thus, based
on (18) and (19) in Appendix C, the estimated computation
times (1'g) of the DPG method are 0.208, 0.52, 1.248, 3.12, and
7.488 ms for the cases when K = 2, 4, 8, 16, and 32, re-
spectively. Summing up Tr and Tg, the estimated average
computation times of our approach to obtain abSN R(c*) for
various K’s are reported in the second row of Table 1. We
also report the average computation times of the other four
methods on the same test case in rows 3-6 of Table I. The
method proposed by Wong et al. is the most computationally
consuming, as indicated in [5]-[9]. Considering that the frame
length of a wideband OFDM is 20 ms [24], the proposed
approach can meet the real-time application requirement for
high mobility circumstances.

As demonstrated above, our approach outperforms the other
four methods in the aspect of power consumption, and we can
obtain the results in real time.

Remark 8: It seems unfair that the computation times of
our algorithm are partly estimated from hardware perfor-
mance, while the computation times of the other algorithms
are entirely from computer simulation. In fact, what we
want to assert is that we can achieve the best performance
among all the methods (the comparison results shown in
Fig. 2) in real time (the data shown in the second row of
Table I).

Remark 9: As we have indicated in Remark 2, the DPG
method is simple, and hence, it takes more iterations to con-
verge. However, the key to helping speed up our approach
is its hardware implementability, which is the reason behind
why we estimate its computation time based on the hardware
architecture shown in Appendix B rather than the commonly
adopted expression.

Remark 10: In the deep-submicrometer technology, the ef-
fect of the wire delay is prominent, particularly in the design
of a large area or complicated routing. There are two types
of wire delay in our hardware architecture: the intra and inter
wire delay. The intra wire delay is the wire delay inside the
hardware component of a processing element (PE), such as the
multiplier. The inter wire delay is the wire delay between PEs
and registers of the hardware architecture shown in Fig. 5 of
Appendix B. The intra wire delay plays a dominant role in the
overall wire delay; however, they had been taken into account

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

TABLE 1I
AVERAGE (d — D/d) x 100% FOR EACH SET OF N, K AND ABPS

N K Average d(;D x100%
ABPS=3 | ABPS=4 | ABPS=5
32 4 0.246 0.300 0.283
32 6 0.646 1.260 0.874
32 8 1.606 1.634 1.115
32 10 1.837 1.778 1.568
64 4 0.198 0.114 0.131
64 8 0.557 0.422 0.241
64 12 1.872 1.663 1.295
64 16 2.227 2.328 2.090
128 4 0.056 0.081 0.080
128 8 0.131 0.110 0.144
128 16 0.501 0.863 0.852
128 32 2.572 2.842 2.793
Average 1.037 1.116 0.956

in our estimation of computation time. Since our hardware
architecture is very regular and modular, the inter wire delay
can, at most, be a small fraction of Tk, i.e., the estimated
computation time of the DPG algorithm, and will not affect the
real-time application.

To evaluate the actual goodness of the obtained good-enough
solutions, we should compare with the optimal solution of (1)
using extensive simulations. To cover more system conditions
in our simulations, we consider the cases when N = 32, 64,
and 128 and take four various K’s for each N. We define the
average bit per subcarrier (ABPS) as Zle Ry /N to denote
the congestion condition of the system. We set M = 6 and
consider three cases of ABPS, namely ABPS = 3, 4 and 5, for
each N and each K. For each (N, K, ABPS), we randomly
generate 250 sets of R, kK = 1,..., K, based on the constraint
on ABPS, and randomly generate a set of ay, ,, K =1,..., K,
n=1,...,N for each set of Ry, k=1,..., K. We employ
(16) for the f(c) but set P, = 10~* and Ny = 1. Table II shows
the average of 250 (d — D)/d x 100% for each (N, K, APBS),
where D and d denote the actual optimal power consumption
of (1) and the power consumption of good-enough solution
obtained by our approach, respectively. For each ABPS, the
average of the average (d — D)/d x 100% of various N’s and
K’s is shown in the last row of Table II, which indicates
that the average deviation of d from D is around 1.0% in
various congestion conditions of the system. This shows that
the good-enough solutions that we obtained are really good
enough.

VI. CONCLUSION

In this paper, we have proposed an OO-theory-based four-
stage approach to solve the adaptive subcarrier assignment and
bit allocation problem of a multiuser OFDM system for a good-
enough feasible solution. To resolve the computational com-
plexity problem caused by the DPG method in our approach,
we propose a hardware architecture to implement the DPG
method to exploit deep-submicrometer technology. Compared
with some existing methods, the quality of the good-enough
feasible solution obtained by our approach is excellent, and
the estimated computation time meets the real-time application
requirement.

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH

APPENDIX A
HARDWARE-IMPLEMENTABLE ALGORITHM
OF THE DPG METHOD

To further enhance the computation speed, we will propose
a hardware architecture to implement the DPG method. To do
so, we need to put the DPG method in algorithmic steps that
can be mapped into the operations of the arrays of PEs, which
are defined as the hardware for carrying out the arithmetic
operations in the DPG method. First, we should modify the
convergence criteria of the DPG method by setting a large-
enough number of iterations, e€.g., tmax, such that if ¢ > .,
we assume that the DPG method converges. Furthermore, we
should predetermine the value of jy,ax, Which is the number of
times that o will be reduced.

It can be observed that all the computation formulas of the
DPG method, namely, (8), (9), and (13)—(15), achieve a com-
plete decomposition property, i.e., the computations for each
k and each n can be carried out independently. Furthermore,
all these computations consist of simple arithmetic operations
only. These facts imply that the DPG method is very suitable
for hardware implementation. However, it is not wise to assign
a PE to calculate each individual component, e.g., calculating
Pk.,n for every k and every n in (14), because this will make the
size of the integrated circuit chip too big to be implemented.
Therefore, to render the difficulty of chip size, we can use
N arrays of PEs such that the nth PE array will take care
of all the K computations corresponding to one n in (8),
(9), and (13)—(15). Although such an arrangement seems to
degrade the computational speed, in fact, it will not affect
the purpose of real-time application, as shown in Section V
and Appendix C. On the basis of using N PE arrays, we can
put the DPG method in the following parallel-computation
algorithmic steps.

Step 0) Set the values of A(0), ¢(0), n(< 1), tmax, and
Jmax; set j =0and t = 0.

Step 1) Setk = 1and R(9¢p(A(t))/OAL) = —1 for each n.

(Note that R(0p(A(t))/ONL) represents a tempo-

rary memory for the term 0¢(A(t))/ON2.)

Compute in parallel (7% ., Pk n) by calculating (13)

and (14) for each n.

Project in parallel (7, pr,) onto the range

([0, Mpg], [0,1]) for each n using (15) to obtain

(Pkn» Pr,n) for each n.

Compute (D$(A(1))/0M;) = Rk = 0y Frn-

Compute in parallel R(IP(A(t))/OANL) =

R(0d(A(t))/ON2) + pi,n for each n.

Update A7 (t + 1) = AL(t) + B(p(A())/OAD).

If £k = K, go to Step 8); otherwise, set k = k + 1,

and return to Step 2).

Update in parallel M2(t+1) = M2(t) +

B(dp(A(t))/OA2) for each n. [Note that the

value of (DP(A(t))/ON) = S b e — 1 is

stored in R(Op(A(t))/OAL).]

If t > timax, go to Step 10); otherwise, set t =t +

1, and return to Step 1).

Seto(j + 1) =no(y).

Step 2)
Step 3)
Step 4)
Step 5)

Step 6)
Step 7)

Step 8)

Step 9)

Step 10)

2915
write data write data write data write data write data
v
t
K S s s =1
"DRUVZ)) R(0) /_(. R(AT..... Q)]_C R(('l,n’pl,n) -~ R(d;/)(/l(’)))
T Bp el RO’ G
¥ v ! 7
read data read data read data read data read data
Type 1 Type 2 Type 3
[>: write enable D> : register indicator D reset

Fig. 3. Three types of registers for storing the temporary computed values of
the DPG algorithm.

Step 11) If 5 > jmax, g0 to Step 12); otherwise, set j =
J+1, AL(0) = AL(t) for each k, AL (0) = A2 (t)
for eachn, k = 1, and t = 1, and return to Step 1).
Step 12) Stop.
Remark 11: The reason behind why we execute Step 5) for
K iterations to calculate O¢(A(t))/ONE for each n is because
we use N instead of N - K PE arrays.

APPENDIX B
HARDWARE COMPUTING ARCHITECTURE
OF THE DPG ALGORITHM

Mapping the DPG algorithm into a hardware architecture
needs to consider the following four parts: 1) the data storage;
2) the computations; 3) the iteration count and the convergence
detection for branching the data flow; and 4) the interconnec-
tions between PEs and data storage elements. In the following,
we will present the details of each part.

1) Regarding the data storage, we employ registers to store
the constants 7, tmax, Jmaxs 3, Ry, a%m, and 1/ai7n of
the algorithm and the temporary values of the variables
AL (), R(O6(A))/0AL), Ap(t), k=1,.... K, a(j),
(Plons Pen)s k=1,..., K generated in the algorithm.
For the sake of simplicity in interconnection, the reg-
isters for storing the constants are embedded in the PE
responsible for the computations that need the constants.
However, there are three types of registers, denoted by
R(A), for storing the temporary computed values of the
variables A, as shown in Fig. 3. For example, R(\?)
denotes the register for storing the computed value of
AP. The type 1 registers are for storing the computed
values of A\? and o; \? is updated when k£ = K, and o
is updated when both k = K and t = ., as indicated
in Steps 7) and 8) and Steps 9) and 10), respectively.
Therefore, a write enable controlled by the value of k& and
t is needed, as shown in Fig. 3. The type 2 registers are
K -bank registers for storing the computed values of A},
k=1,...,K, or (fkn,prn) k=1,...,K, such that
the kth bank will store the value of A}, or (7, Pk.n)-
Since the iteration index of the innermost loop of the
DPG algorithm is k, we need a register indicator & to
point to the corresponding register bank, as shown in
Fig. 3. Furthermore, A}, and (7 ., fk,n) are computed
for every k, and thus, type 2 registers are always write
enabled. The type 3 register is for storing the value of
Zle p1,n — 1; therefore, a type 3 register is always write
enabled. However, its value has to be reset to —1 when

2916

2)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

TABLE III
CHARACTERISTICS OF PEs

PE Alg(;tlp‘nmic ECn:)E:td;rid Input Data [from] Output Data [to] CCO(:;ppL:‘g[iig/n
A O [RUAND], o()H[R(0)], ~ o~ 2 g
PE! Step2 a}, /o " nh e P ns Den) [PE2 5@8&2@® & 1ROMS
n €p k.n k.n /1/(([) [R(/ll ,,,,, /1}\')] (k, I[)k3)[] ROM
"~ %, [PE*1. 5, [PE}].
PE2 Step3 (F o Di) [PEL] Fntt S, 2Q&I®
ko 7% (P> 012 [R((F 05 0,)- K =1, K]
K
A b, , —1[PE®
PE} Step 8 B ;p“” (PEa], A2+ 1D [RAN)] 1IQ&1®
A (D[R]
dp(A(t
PE* Step4 R, Py [PEF Loy [PER] (’;(ff)) [PE’] log,(N +1) ®
Yk
IPAD) (4
5 A r [PE]’ F i r
PE Step 6 B o4 (E+ D[R ...,)] I®&1®
A OIRMU ... A)]
k=1
- IPAWD) k
n -1[R > ~ 0p(A
PE® Step5 - ,Z::‘p 1 LR FY) Zp,m —1[R(%)J’Ei] 1®
PinPEL] =l "
PE” Step 10 n () [R(o)] o(j+D[R(o)] 1®
§® - operation of a multiplication; @ : operation of an addition; RQM: operation of accessing data of a ROM.
k = 1, as shqwn in F.lg. 3. It shf)uld be noted that the T & _]f> T _;_» oT __c:nvergence
action of writing data into the registers occurs at the end

of the clock pulse (i.e., at the positive edge of the next
clock pulse) when write enable is active. For example, o
in R(o) is updated to 011 at the end of the clock pulse
corresponding to both k = K and t = tyax.

Regarding the computations, we employ seven types of
PE to carry out all the arithmetic operations required in
the DPG algorithm. These PEs are named as PE}T, PE%,
PEi, PE%, PE®, PEfL, and PE’, where the superscript
denotes the type of PE, the subscript denotes the index
of the array, and the PE without any subscript means that
itis single in the NV PE arrays. Each type of PE consists of
different hardware components that are needed for calcu-
lating a specific step in the DPG algorithm and yields the
results that are needed in other step or steps. We will state
the hardware components in a PE and its corresponding
algorithmic step in the following. In the nth PE array, PEL
performs Step 2) and outputs the computed (7.1, Pk n)
to PE2; its hardware components depend on the function
fx(c). In addition, PE} consists of registers for storing
o}, and 1/af , for all k and a register indicator k
for choosing the corresponding register. PE2 consists of
six multipliers, four adders, and several comparators to
perform Step 3) and output the computed (74, frn)
to PEJ, PE*, and R((Fn,py,) k=1,...,K); PE}
consisting of a register (for storing the constant), one
adder, and one multiplier is designed to perform Step 8)
and output the computed N (¢ + 1) to R(A2); PES con-
sists of one adder to perform Step 5) and output the
computed S, pr.n — 1to R(A¢(A(t))/ON2) and PE2.
The single PE* consists of log,(N + 1) adders to per-
form Step 4) and output the computed 9p(A(t))/ON;,
to the single PE®. In addition, PE* consists of regis-

Fig. 4. Three counters.

3)

ters for storing Ry for all k£ and a register indicator k
to choose the corresponding register. The single PE®
consisting of a register (for storing the constant B),
one adder, and one multiplier is designed to per-
form Step 6); PE® outputs the computed A} (¢ + 1) to
R(\],...,\%). The single PE” consists of a register
for storing the constant 1 and a multiplier to perform
Step 10); PE” outputs the computed o(j + 1) to R(o).
We summarize the characteristics of these PEs in Table II1
to indicate the corresponding algorithmic step, embedded
constant, input data [from], output data [to], and the
computation complexity of a PE, which is shown in the
last column and will be analyzed later.

There are three loops in the DPG algorithm, and the
number of iterations in each loop has been set fixed. A
branching will occur when completing the iterations of
a loop, as described in Steps 7), 9), and 11). Therefore,
we need three counters to count the number of iterations
consumed in each loop to control the branching of the
DPG algorithm.

The three counters are the k-counter, ¢-counter, and
j-counter, which are denoted by CT_k, CT_¢, and CT_j,
respectively, and represented by the square blocks shown
in Fig. 4. The values of CT_k and CT_t¢ will be fed
into the corresponding registers for proper operation. For
example, the value k of CT_k will be used to indicate the
iteration index of the innermost loop, i.e., Steps 1)-7), to
point to the corresponding register bank in the type 2 reg-
isters. When k = K, there will be a branching at Step 7)
such that the output data of PE2, which performs Step 8),

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH

1\
r--4 CT k - .-
‘ ! :
] \ :
[l | ,
[l | !
] \ H
] \ ,
' | ,
] \ ,
- -- L
] | :
] \ ,
] \ ,
] \ ,
] \ ,
r- r- [
] | ,
] | ,
] | :
] | ,
] \ :
1| \ :
' \ N
i i 5
] | ,
] | :
] | ,
P 30Al —
FAop R | | L k200, | 1o w220
) S— i S [
N e Y e A
G| L o RCp, !_*>R((ﬁ‘2, Pr2). :_*> R((A5,415),
to OO A.A,(I:K,l,pk,J) “"(;K,,E’:al(_z)) '”»(’:Ima,b;(,g))
stage 1 l
4—)—| Buffer I: \L
1
1
1
PE’ F-lCT s
]
| mmmm e e
_——a !
ko) e o]
_

Fig. 5. Hardware architecture of the DPG algorithm.

will be written into the register R(A2). A similar reason
applies to CT_t. When t = t,,,,«, there will be a branch-
ing at Step 9) such that the output data of PE”, which
performs Step 10), will be written into the register R(o).
Furthermore, when the value of CT_k changes from K to
1, the value of the register R(O¢(A(t))/IA?) will be reset
to —1 to perform Step 1). The value of CT_j will be used
to detect the convergence of the DPG algorithm. Thus,
when j = jmax, the DPG algorithm will be stopped and
will output the approximate solution of (2), i.e., (71, pn),
k=1,...,K,n=1,...,N.

The counters are designed such that CT_k will circu-
late from 1 to K and increase by 1 for every clock pulse,
CT_t will circulate from 1 to ¢,,.x and increase by 1 for
every K clock pulses, and CT_j will increase by 1 for
every K - tpax clock pulses.

4) Now, we are ready to interconnect the array PEs, regis-
ters, and counters to execute the DPG algorithm. From
the columns of the input data [from] and the output data
[to] in Table III, we can use solid lines with arrow heads
to indicate the direction of the data flow to interconnect
the PEs and registers, as shown in Fig. 5, in which we
assume N = 3 and do not show the system clock for the
sake of simplicity.

The three counters, namely CT_k, CT_¢, and CT_j, as
previously described, are used to count the number of iterations

2917

and control the branching of data flow. Therefore, to distinguish
from the regular data flow, we use the dashed lines with arrow
heads to indicate the flow of counter values to the corresponding
registers, as shown in Fig. 5.

For the sake of simplicity, we will illustrate how the hard-
ware architecture executes the DPG algorithm for one array as
follows.

We initialize the values of registers R(Od(A(t))/ON2)
(Step 1: R(Op(A(t))/ON2) = —1), R(A2) (Step 0: A2 = 0),
R(AT,...,\%) (Step0: A\, =0, k=1,...,K),R(c) (Step 0:
og = 1), the counter values of CT_k (Step 1: k=1), CT_t
(Step 0: t = 1), CT_j (Step 0: j = 1), and command PE}1 to
start execution. Then, PE} will perform Step 2) and output the
resulting (7x n, Pk) to PE2, as shown in Fig. 5. Then, PEZ will
perform Step 3) and output the resulting (7, Px.n) to PES,
PE%, and R((Pkn, Pr,m), k=1,..., K). It should be noted that
the data (7, fr,n) Will be written into the kth register bank
of R((Pk,ns Pr,n), K =1,..., K), as selected by the value k of
the counter CT_k, as shown in Fig. 5. Once PE* receives the
computed 74 ,, 7 = 1,..., N from the N PE2s, it will perform
Step 4) and output the value of d¢(A(t))/IN], to the single
PE®. Then, PE® will perform Step 6) to update A% (¢), and the
updated value will be sent to register banks R(AT,..., \%).
In the meantime, PE® will perform Step 5) using the com-
puted data py, from PE2 and the data S 7! j1, —1
in R(Op(A(t))/OAL) and will then output the resulting data
Zle pr.n to R(Op(A(t))/OA2) and PE3, as shown in Fig. 5.
The above calculations and data flow complete one iteration of
the innermost loop, i.e., Steps 1)-7), and should be done in one
clock pulse, whose period needs to be long enough such that the
output data of all PEs can reach steady states. The counter CT_k
will increase by 1 for each activation of a clock pulse (Step 7).
As k increases by 1, the output of the register R(\], ..., \)
will be A 11 instead of A}, and hence, the next iteration of the
innermost loop starts.

The above process will repeat, and a branching will occur
when the value of CT_k reaches K. When k = K, the write
enable of the register R(A?2) will be active, and the output data
of PE2, which performs Step 8) with input data from PES and
R(A?), as shown in Fig. 5, will be written into R(A?). After this
clock pulse, the value of CT_k will start from 1 again, and the
value of CT_t will be increased by 1 (Step 9). As ¢ increases
by 1, the value of \?, n=1,...,N, as well as A}, k=
1,..., K, has been updated, and hence, the next iteration of
the middle loop starts.

The above process will repeat, and a branching will occur
when the value of CT_t reaches ty.x (Step 9), which will
activate the write enable of R(o), and the output data of
PE’, which performs Step 10 with input data from R(o), as
shown in Fig. 5, will be written into R(o). In the meantime,
the value of CT_k will start from 1 again, and CT_t also
starts from 1, while the value of CT_j will be increased
by 1 (Step 11). As j increases by 1, the above process starts
all over with a new o (= 0;41). This process will proceed until
CT_j reaches jmax, which implies that the DPG algorithm
converges (Step 12), and then, as shown in Fig. 5, the buffer
will be activated to output the data (7, pr.pn). k=1,..., K,
n=1,...,N, the solution of (3) when ¢ =0, _,, or the

2918

approximate solution of (2). This completes the description of
the execution of the DPG algorithm for one PE array.

In Fig. 5, we can see that the structure is very regular,
modular, and locally interconnected; hence, it is hardware
implementable.

Remark 12: By exploiting the merits of hardware compu-
tation and parallelism of the DPG algorithm, the computation
time estimated based on the hardware architecture is almost
independent of the NV, but it is at the cost of large area
when N is large. By taking N = 128 for example, we need
1666 multipliers in the hardware architecture, which is huge in-
deed. Manufacturing an integrated circuit with large gate counts
is a challenging issue; however, it can be resolved due to the
advancement of the semiconductor manufacturing technology.

APPENDIX C
COMPUTATION COMPLEXITY OF THE DPG ALGORITHM

As previously indicated, the clock period should be long
enough such that the outputs of all PEs can reach steady states
during an iteration. In other words, the clock period should be
longer than the computation time of the critical path, i.e., the
most time-consuming path of the DPG hardware architecture.
To identify the critical path, we need to analyze the computation
complexity of each PE first. The computation complexity of a
PE can be directly derived from its corresponding arithmetic
operations. For example, PE* performing Step 4) of the DPG al-
gorithm requires log, (N + 1) stages of adders, and therefore, it
takes log, (N + 1)@, where @ denotes an arithmetic operation
of addition. A similar reasoning applies to PE?L, PE?L, PE®, PE%,
and PE”. However, the hardware component of PE. depends
on fi(c). A typical fi(c) can be B - (2¢— 1), where B is a
constant, and we may then use six multipliers, three adders, and
one ROM to perform Step 2), though the details of which are
omitted here. We have reported the computation complexity of
all PEs in the last column of Table III. The data propagation
time between PEs and registers are negligible compared with
addition or multiplication, and the action of writing data into or
reading data from a register consumes time of no more than that
of one addition. We let T¢j,ck denote the to-be-designed clock
period. Identifying the critical path in Fig. 5, we have

Toock = Tpgr + Tpg2 + Tpgs + Tpps + Tppr + 215 (18)

where Tp: and Tpys denote the time complexity of executing
PE!, and PE/, respectively, and 27}, represents the time that is
needed for writing data into and reading data from registers.
Note that the action of writing data into the three registers
in the critical path occurs simultaneously. Therefore, writing
data into three registers only counts for one 7. A similar
reasoning applies to reading data from these registers. Hence,
the computation time of the proposed DPG algorithm is

K- tmax . jmax : Tclock~ (19)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
who gave them constructive comments and helpful suggestions
to improve the readability of this paper.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

REFERENCES

[1] J. Blogh, P. Cherriman, and L. Hanzo, “Comparative study of adaptive
beam-steering and adaptive modulation-assisted dynamic channel alloca-
tion algorithms,” IEEE Trans. Veh. Technol., vol. 50, no. 2, pp. 398-415,
Mar. 2001.

L. Xu, X. Shen, and J. W. Mark, “Fair resource allocation with guar-

anteed statistical QoS for multimedia traffic in wideband CDMA cellu-

lar network,” IEEE Trans. Mobile Comput., vol. 4, no. 2, pp. 166-177,

Mar./Apr. 2005.

[3] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser
OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel.
Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.

[4] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM sys-
tem using dynamic subchannel allocation,” in Proc. IEEE VTC—Spring,
Tokyo, Japan, May 2000, vol. 2, pp. 1085-1089.

[5] I. Kim, H. L. Lee, B. Kim, and Y. H. Lee, “Use of linear programming for
dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Trans.
Veh. Technol., vol. 55, no. 4, pp. 1195-1207, Mar. 2006.

[6] M. Ergen, S. Coleri, and P. Varaiya, “QoS aware adaptive resource alloca-

tion techniques for fair scheduling in OFDMA based broadband wireless

access systems,” IEEE Trans. Broadcast., vol. 49, no. 4, pp. 362-370,

Dec. 2003.

D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth allo-

cation and power control for OFDMA,” IEEE Trans. Wireless Commun.,

vol. 2, no. 6, pp. 1150-1158, Oct. 2003.

[8] G.Zhang, “Subcarrier and bit allocation for real-time services in multiuser
OFDM systems,” in Proc. IEEE Int. Conf. Commun., Jun. 2004, vol. 5,
pp- 2985-2989.

[9] Z. Han, Z. Ji, and K. J. R. Liu, “Low-complexity OFDMA channel al-
location with Nash bargaining solution fairness,” in Proc. IEEE Global
Telecommun. Conf., Dec. 2004, vol. 6, pp. 3726-3731.

[10] D. Luenberger, Linear and Nonlinear Programming, 2nd ed. Reading,
MA: Addison-Wesley, 1984.

[11] C.LinandS. Lin, “A new dual-type method used in solving optimal power
flow problems,” IEEE Trans. Power Syst., vol. 12, no. 4, pp. 1667-1675,
Nov. 1997.

[12] S.-Y. Lin and C.-H. Lin, “A computationally efficient method for nonlin-
ear multicommodity network flow problems,” Networks, vol. 29, no. 4,
pp- 225-244, Jul. 1997.

[13] Y. C. Ho, Soft Optimization for Hard Problem. Cambridge, MA: Harvard
Univ. Press, 1996.

[14] Y. C. Ho, C. G. Cassandras, C. H. Chen, and L. Dai, “Ordinal optimiza-
tion and simulation,” J. Oper. Res. Soc., vol. 51, no. 4, pp. 490-500,
Apr. 2000.

[15] T. W. E. Lau and Y. C. Ho, “Universal alignment probabilities and subset
selection for ordinal optimization,” J. Optim. Theory Appl., vol. 39, no. 3,
pp. 455489, Jun. 1997.

[16] S. K. Lai, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Adaptive trellis
coded MQAM and power optimization for OFDM transmission,” in Proc.
IEEE VTC, Houston, TX, May 1999, pp. 290-294.

[17] C. T. Lin and C. S. George Lee, Neural Fuzzy System: A Neuro-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[18] M. T. Hagan and M. Menhaj, “Training feedforward networks with Mar-
quardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993,
Nov. 1994.

[19] S. Lin, Y. C. Ho, and C. Lin, “An ordinal optimization theory based
algorithm for solving the optimal power flow problem with discrete con-
trol variables,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 276-286,
Feb. 2004.

[20] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.

[21] S. K. Hsu, S. K. Mathew, M. A. Anders, B. R. Zeydel, V. G. Oklobdzija,
R. K. Krishnamurthy, and S. Y. Borkar, “A 110 GOPS/W 16-bit multiplier
and reconfigurable PLA loop in 90-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 41, no. 1, pp. 256-264, Jan. 2006.

[22] R. Kanan, B. Hochet, M. Declercq, and A. Guyot, “A low-power
high storage capacity structure for GaAs MESFET ROM,” in Proc.
Int. Workshop Memory Technol. Des. Test., San Jose, CA, Aug. 1997,
pp. 58-63.

[23] K. C. Chang, Digital Systems Design With VHDL and Synthesis: An
Integrated Approach. Los Alamitos, CA: IEEE Comput. Soc. Press,
1999.

[24] J. Chuang and N. Sollenberger, “Beyond 3G: Wideband wireless data
access based on OFDM and dynamic packet assignment,” IEEE Commun.
Mag., vol. 38, no. 7, pp. 78-87, Jul. 2000.

[2

—

[7

—

LIN AND HUANG: ADAPTIVE SUBCARRIER ASSIGNMENT AND BIT ALLOCATION FOR OFDM USING OO APPROACH 2919

Shin-Yeu Lin was born in Taiwan, R.O.C. He
received the B.S. degree in electronics engineer-
ing from National Chiao Tung University, Hsinchu,
Taiwan, the M.S. degree in electrical engineering
from the University of Texas, El Paso, and the
D.Sc. degree in systems science and mathematics
from Washington University, St. Louis, MO, in 1975,
1979, and 1983, respectively.

From 1984 to 1985, he was with Washington
University, working first as a Research Associate and
then as a Visiting Assistant Professor. From 1985 to
1986, he was with GTE Laboratories, working as a Senior Member of Technical
Staff. In 1987, he joined the Department of Electrical and Control Engineering,
National Chiao Tung University, where he has been a Professor since 1992.
His major research interests include wireless communication and networks,
data mining, ordinal optimization theory and applications, and distributed
computations.

2

Jung-Shou Huang was born in Taiwan, R.O.C. He
received the B.S. degree in electrical engineering in
1996 from Tamkang University, Taipei, Taiwan, and
the M.S. degree in electrical and control engineer-
ing in 1998 from National Chiao Tung University,
Hsinchu, Taiwan, where he is currently working
toward the Ph.D. degree in electrical and control
engineering.

He is also a Digital IC Designer with Elan Mi-
croelectronics Corporation, Hsinchu, Taiwan, R.O.C.
His major research interests include optimization

theory with applications, image processing, and digital IC design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

