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Combined Puncturing and Path Pruning for Convolutional Codes and the
Application to Unequal Error Protection

Chung-Hsuan Wang and Yi-Hsin Lin

Abstract—In this paper, puncturing and path pruning are
combined for convolutional codes to construct a new coding
scheme for unequal error protection (UEP), called the hybrid
punctured and path-pruned convolutional codes. From an alge-
braic viewpoint, we show that the hybrid codes not only inherit
all the advantages of the conventional rate-compatible punctured
convolutional codes and path-compatible pruned convolutional
codes but also can provide more flexible choices of protection
capability for UEP. In addition, a data-multiplexing scheme
originally proposed for path-pruned codes which can guarantee
smooth transition between rates without additional zero-padding
for frame termination is proven applicable to the hybrid codes
to improve the system throughput.

Index Terms—Convolutional codes, path pruning, puncturing,
unequal error protection.

I. INTRODUCTION

CHANNEL coding for unequal error protection (UEP) has
recently attracted significant research interests, since it

can make the best use of the channel bandwidth for many prac-
tical applications, e.g., broadcast systems, packet-switching
networks, and visual/speech communication systems, etc.
Among convolutional codes, there exist two UEP schemes:
the rate-compatible punctured convolutional (RCPC) codes [1]
and the path-compatible pruned convolutional (PCPC) codes
[2]. RCPC codes achieve UEP by puncturing off different
amounts of coded bits of the parent code∗. For PCPC codes,
UEP is accomplished by pruning away different amounts of
the low-weight paths from the trellis of the parent code.

Both approaches provide remarkable UEP performance but
have many complementary properties in nature. For instance,
compared with the parent code, RCPC codes are of higher
rates and poorer bit error rate (BER) performance but PCPC
codes are of lower rates and better BER performance. RCPC
codes can easily provide flexible choices of code rate but suffer
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∗For convenience, the ordinary convolutional code to be punctured or

pruned is called the parent code, and the resulting RCPC codes or PCPC
codes are called the children codes.

from large number of the long error events which implies the
decoder will require a longer path memory [1]. PCPC codes,
on the other hand, take the advantages of sparse distance
spectra and shorter error events, but only few of rates are
available if the (n, k) parent codes of small k are chosen [2].
By comparing the code tables searched in [1]–[4], PCPC codes
are observed to have better UEP capabilities than RCPC codes
for some choices of rate and memory. Yet in other cases,
RCPC codes can have better UEP performance than PCPC
codes. In this paper, puncturing and path pruning are combined
for convolutional codes to construct a new UEP scheme, called
the hybrid punctured and path-pruned convolutional codes,
which can not only gain the advantages of both schemes but
also mitigate the respective drawbacks.

II. COMBINED PUNCTURING AND PATH PRUNING

To consider both of the effects of puncturing and path
pruning, we first derive an algebraic formulation of the hybrid
codes†. Recall the puncturing and pruning processes in [1]
and [2], respectively. Consider an (n, k) parent code C with
generator matrix G(D). A puncturing table A with period p is
defined as an n× p matrix with the (u, v)th entry au,v taking
value from {0, 1} ∀ 0 ≤ u < n, 0 ≤ v < p. Puncturing C by
A can generate the punctured code of the following equivalent
generator matrix:

G(D)[p] · P (1)

where G(D)[p] denotes the equivalent kp×np generator matrix
of C by depth-p blocking [5] and P is the puncturing matrix
corresponding to A obtained from the pn×pn identity matrix
by deleting its (j +1)th column ∀ j ∈ {n∗v+u|∀ au,v = 0}.
For pruning with k̂ active inputs, a path locating matrix Θ(D)
is defined as a k̂ × k polynomial matrix with 1 ≤ k̂ < k.
Pruning C by cascading Θ(D) ahead of G(D) can obtain the
path-pruned code with generator matrix

Θ(D) · G(D). (2)

Suppose C is first pruned by Θ(D) and then punctured by
A. By (1) and (2), the resulting hybrid code is now of the
following generator matrix:

(Θ(D) · G(D))[p] · P . (3)

†In the rest of this paper, the hybrid punctured and path-pruned convolu-
tional codes are called the hybrid codes for convenience.
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To further manipulate (3), consider Lemma 1. (Please see
Appendix for the detailed proof.)

Lemma 1: Consider an (n, k) convolutional code with
generator G(D) which is pruned by the path locating matrix
Θ(D) to obtain the child code Ĉ . The generator matrix of
the equivalent (np, kp) code constructed by blocking Ĉ with
depth-p is of the form

Θ(D)[p] · G(D)[p]

where Θ(D)[p] and G(D)[p] denote the depth-p blocked ver-
sions of Θ(D) and G(D), respectively.

By Lemma 1, it implies that (Θ(D) ·G(D))[p] = Θ(D)[p] ·
G(D)[p], and hence the generator matrix in (3) can be deduced
to

Θ(D)[p] · (G(D)[p] · P). (4)

However, if C is first punctured by A and then pruned by
Θ(D)‡, by (1) and (2), the generator matrix of the resulting
hybrid code is just of the form in (4). Therefore, we have the
following important result on combining puncturing and path
pruning.

Theorem 1: Given a parent code for combined puncturing
and path pruning, the same hybrid code will be obtained no
matter whether we first do path pruning or puncturing.

Example 1: Given a convolutional code C with generator
matrix

G(D) =
[

D 1 + D 1 + D
D2 + D + 1 D 0

]
let C be first pruned by a path locating matrix Θ(D) = [D2 +
1 1] and then punctured by the following puncturing table A
with period 2:

A =

[
1 1
0 1
1 1

]
and P =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

where P is obtained from the 6×6 identity matrix by deleting
its second column since a1,0 is the only zero-entry in A.
Blocking Θ(D) · G(D) with depth-2, we have

(Θ(D)·G(D))[2] =
[

D + 1 D + 1 D + 1 D D D + 1
D2 D2 D2 + D D + 1 D + 1 D + 1

]
.

Therefore, by (3), the resulting hybrid code is of generator
matrix

(Θ(D)·G(D))[2]·P=
[

D + 1 D + 1 D D D + 1
D2 D2 + D D + 1 D + 1 D + 1

]
. (5)

On the other hand, suppose C is first punctured and then path-
pruned by the same A and Θ(D). By depth-2 blocking, we
have

Θ(D)[2] =
[

D + 1 1 0 0
0 0 D + 1 1

]
and

G(D)[2] =

⎡
⎣ 0 1 1 1 1 1

D + 1 0 0 1 1 0
D D D 0 1 1
D D 0 D + 1 0 0

⎤
⎦ .

‡To match the dimension after depth-p blocking, G(D)[p] · P is cascaded
with Θ(D)[p], instead of Θ(D), in (4).

Fig. 1. Source-controlled scenario of combined path pruning and puncturing
for UEP.

By (4), we have

Θ(D)[2]·(G(D)[2]·P) =
[

D + 1 D + 1 D D D + 1
D2 D2 + D D + 1 D + 1 D + 1

]
. (6)

By comparing (5) and (6), the same hybrid code is obtained
no matter whether we first do puncturing or path pruning.

III. APPLICATION OF THE HYBRID CODES TO UEP

Given an (n, k) parent code, puncturing generates only
children codes of higher rates and worse protection capabilities
by (1). Path pruning contrarily generates children codes of
lower rates and better protection capabilities by (2). However,
if the parent code is to be path-pruned and punctured (with
period p) simultaneously by (3) or (4), we can obtain the
hybrid codes of more available rates, i.e., l1p/(l1p + l2)
∀ 1 ≤ l1 ≤ k and 1 ≤ l2 ≤ (n − l1)p with values
ranging from 1

n to kp
kp+1 , which can provide both of better

and worse BER performances than the parent code. Morevoer,
RCPC and PCPC codes can be decoded by a single Viterbi
decoder for their parent codes as long as the add-compare-
select units are modified to accommodate the puncturing effect
for metric computation [1] and to identify the valid state-
transition after path pruning [2], respectively. With both of
the above modifications, the hybrid codes can be shown to
preserve the desirable single-decoder property by Theorem 1.
Owing to these advantages, the hybrid codes are well suitable
for the application to UEP.

Consider W groups of source data Sl’s, each of the required
BER Pb,l; assume Pb,1 ≥ Pb,2 ≥ · · · ≥ Pb,W without
loss of generality. To provide UEP for Sl’s by the hybrid
scheme, we first choose a proper parent code together with
W pairs of the puncturing tables and path locating matrices
(Al, Θl(D))’s to generate a family of children codes Ĉl’s,
each of free distance df (Ĉl) to satisfy Pb,l. (A(l)’s and
Θl(D)’s should be carefully selected to avoid catastrophic
encoders for Ĉl’s and to satisfy the single-decoder property,
respectively.) Based on the source-controlled scenario in Fig.
1, Al and Θl(D) are dynamically switched for puncturing
and path pruning as Sl is fed to the encoder, thus fulfilling the
desire for UEP. However, similar to the pure RCPC and PCPC
schemes, the dynamic switching of (Al, Θl(D))’s may cause
unpredictable degradation of the UEP performance designed
for hybrid codes. Conventionally, puncturing and path pruning
are regulated by the rate-compatible criterion [1] and the path-
compatible criterion [2], respectively, to guarantee the UEP
performance. Let Pl denote the puncturing matrix associated
with Al for all l. In terms of Pl’s and Θl(D)’s, the rate-
compatible criterion and path-compatible criterion can be
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Fig. 2. Multiplexing schemes for UEP.

expressed as

Pl ⊆ Pl+1 and Θl+1(D) = θl(D) · Θl(D), ∀ 1 ≤ l < W
(7)

where Pl ⊆ Pl+1 means that all columns of Pl are contained
in Pl+1 and θl(D)’s are some polynomial matrices. Both
of the criteria can then be directly applied to the hybrid
codes to mitigate the undesired performance degradation, since
puncturing and path pruning can be independently conducted
by Theorem 1. Under the above restrictions, we have Theorem
2 to assure the UEP performance of hybrid codes.

Theorem 2: Consider a parent code C which is processed
by W pairs of puncturing tables and path locating matrices
(Al, Θl(D))’s satisfying the rate-compatible criterion and
the path-compatible criterion in (7) to generate a family of
children codes Ĉl’s, each of free distance df (Ĉl). Suppose
we have df (Ĉl) ≤ df (Ĉl+1), ∀ 1 ≤ l < W . Then, all
codewords across the switching boundaries between φ pairs
of (Al1 , Θl1(D)), (Al2 , Θl2(D)), · · · , (Alφ , Θlφ(D)) with
1 ≤ li ≤ W ∀ 1 ≤ i ≤ φ for combined puncturing and
path pruning will have a distance min1≤i≤φ df (Ĉli) at least.

Moreover, in [1], Sl’s are suggested to be grouped into
super frames before encoding as the conventional multiplexing
scheme depicted in Fig. 2. In this scheme, Sl is followed
by Sl+1 ∀ 1 ≤ l < W to achieve the minimum distance
loss guaranteed by the rate-compatible criterion; extra (all-
zero) tail bits are inserted at the end of every super frame
to avoid the abrupt switching from SW to S1. However, by
Theorem 2, the distance between any two codewords of the
hybrid code can be shown to be lower bounded by df (Ĉl)
no matter the puncturing tables and path locating matrices
are switched either from (Al, Θl(D)) to (Al+1, Θl+1(D))
or from (Al+1, Θl+1(D)) to (Al, Θl(D)). Suppose Sl’s are
multiplexed by the new scheme in Fig. 2 which is originally
proposed for pure PCPC codes [2], where no tail bits are
required but Sl’s are multiplexed in a reverse order for
alternate super frames. Accordingly, the puncturing tables and
path locating matrices are restricted to switch either from
(Al, Θl(D)) to (Al+1, Θl+1(D)) or from (Al+1, Θl+1(D))
to (Al, Θl(D)), ∀ 1 ≤ l < W ; the same distance loss as the
conventional multiplexing scheme can thus be obtained even
without additional overheads.

For performance verification, both of the multiplexing
schemes are simulated with the same family of hybrid codes
in Table I. In this family, the parent code (of memory 5)

Fig. 3. Average BER of source bits in a super frame for different multiplexing
schemes on additive white Gaussian noise channels at signal-to-noise ratio 4
dB with binary phase-shift keying modulation, where six groups of data Si’s
∀ 1 ≤ i ≤ 6 (each containing 8 bits per super frame) are protected by
the code family in Table I. (The solid lines denote the designed BER of the
children codes.)

TABLE I
THE FAMILY OF HYBRID CODES FOR SIMULATION IN FIG. 3 (G(D):

GENERATOR MATRIX OF PARENT CODE, rc : CODE RATE OF CHILD CODE,
Θ(D): PATH LOCATING MATRIX, A: PUNCTURING TABLE)

G(D) =
(
D5 + D3 + D + 1 D5 + D4 + D3 + D2 + 1

)
Θ(D) = (D3 + D2 + 1 D2 + 1)

rc A
2
8

(
1 1 1 1
1 1 1 1

)T

2
7

(
0 1 1 1
1 1 1 1

)T

2
6

(
0 1 1 1
0 1 1 1

)T

2
5

(
0 0 1 1
0 1 1 1

)T

2
4

(
0 0 0 1
0 1 1 1

)T

2
3

(
0 0 0 1
0 0 1 1

)T

T denotes the operation of taking transpose.

with depth-2 blocking is properly punctured and path pruned
to provide 6-level UEP under the rate-compatible and path-
compatible criteria. Let every super frame contain 6 groups
of source data, each consists of 8 bits. Extra 5 zero bits are
required in the conventional scheme for every super frame.
The BER curves in Fig. 3 indicate that the hybrid codes
with dynamic switching of (Al, Θl(D))’s can achieve the
designed UEP performance as expected in Theorem 2. The
new multiplexing scheme is also observed to provide almost
the same UEP performance as the conventional one even
without the extra overheads for frame termination.

IV. CONCLUSIONS

In this paper, puncturing and path pruning are combined
for convolutional codes to construct a new UEP scheme.
Compared with the pure RCPC and PCPC codes, the hybrid
codes not only inherit all the advantages of both schemes
but also can mitigate the respective drawbacks and provide
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Φ1(D)[p] + Φ2(D)[p] =

⎛
⎜⎜⎜⎝

Φ1,0 + Φ2,0 Φ1,1 + Φ2,1 · · · Φ1,p−1 + Φ2,p−1

Φ1,0 + Φ2,0 · · · Φ1,p−2 + Φ2,p−2

. . .
...

Φ1,0 + Φ2,0

⎞
⎟⎟⎟⎠

+
max(d1, d2)∑

l=1

Dl

⎛
⎜⎜⎜⎝

Φ1,lp + Φ2,lp Φ1,lp+1 + Φ2,lp+1 · · · Φ1,(l+1)p-1 + Φ2,(l+1)p-1
Φ1,lp-1 + Φ2,lp-1 Φ1,lp + Φ2,lp · · · Φ1,(l+1)p-2 + Φ2,(l+1)p-2

...
...

. . .
...

Φ1,(l-1)p+1 + Φ2,(l-1)p+1 Φ1,(l-1)p+2 + Φ2,(l-1)p+2 · · · Φ1,lp + Φ2,lp

⎞
⎟⎟⎟⎠

more flexible choices of UEP capability. From an algebraic
viewpoint, we show that the hybrid codes can be constructed
in spite of the order of puncturing and path pruning; it has
also been proven that the conventional rate-compatible and
path-compatible criteria can be directly applied to the hybrid
codes to assure the designed performance for UEP. In addition,
the efficient data-multiplexing scheme originally presented
for PCPC codes is shown applicable to the hybrid codes to
improve the system throughput.

APPENDIX PROOF OF LEMMA 1

To prove Lemma 1, we first show the following properties
for code blocking:

Property 1. (Φ1(D) + Φ2(D))[p] = Φ1(D)[p] + Φ2(D)[p]

Property 2. (Ψ1 · Ψ2D
η1+η2)[p] = (Ψ1D

η1)[p] · (Ψ2D
η2)[p]

where Φ1(D), Φ2(D) denote two arbitrary additive polyno-
mial matrices, Ψ1, Ψ2 stand for two arbitrary multiplicative
binary matrices, and η1, η2 are non-negative integers. Decom-
pose Φ1(D) and Φ2(D) as Φi(D) =

∑di

l=0 Φi,lD
l ∀ i =

1 and 2, where Φi,l’s are some binary matrices and di is the
maximum degree of Φi(D). By code blocking, for i =1 and
2, we have

Φi(D)[p] =

⎛
⎜⎝

Φi,0 Φi,1 · · · Φi,p−1
Φi,0 · · · Φi,p−2

. . .
.
.
.

Φi,0

⎞
⎟⎠

+
∑di

l=1 Dl

⎛
⎜⎝

Φi,lp Φi,lp+1 · · · Φi,(l+1)p−1
Φi,lp−1 Φi,lp · · · Φi,(l+1)p−2

.

.

.
.
.
.

. . .
.
.
.

Φi,(l−1)p+1 Φi,(l−1)p+2 · · · Φi,lp

⎞
⎟⎠

(A-1)
where Φi,l turns to be a zero matrix if l > di and all zero
matrices in the blank area are neglected for convenience. By
(A-1), for i = 1 and 2, it implies that the value of Φ1(D)[p] +
Φ2(D)[p] is as shown at the top of the page, which is the same
as the direct decomposition of (Φ1(D)+Φ2(D))[p] by (A-1),
hence completing the proof of Property 1.

Next, by (A-1), we have

(ΨiD
ηi)[p] =

Dφi

⎛
⎜⎜⎜⎝

0 · · · 0︸ ︷︷ ︸ Ψi

ηi mod p
. . .

Ψi

ηi mod p

⎧⎪⎨
⎪⎩

0
.
.
.
0

⎞
⎟⎟⎟⎠+ Dφi+1

⎛
⎜⎜⎜⎜⎝

0
.
.
.
0

⎫⎪⎬
⎪⎭ p − (ηi mod p)

Ψi

. . . p − (ηi mod p)

Ψi

︷ ︸︸ ︷
0 · · · 0

⎞
⎟⎟⎟⎟⎠

(A-2)

where 0 denotes the zero matrix with the same size as Ψi

and φi = �ηi+1
p 	 − 1 for i = 1 and 2. By (A-2), multiplying

(Ψ1D
η1)[p] by (Ψ2D

η2)[p] directly results in

(Ψ1D
η1)[p] ·(Ψ2D

η2)[p] =Dφ3

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 Ψ1 · Ψ2

. . .
Ψ1 · Ψ2

0

.

.

.
0

⎞
⎟⎟⎟⎟⎟⎠

+Dφ3+1

⎛
⎜⎜⎜⎜⎜⎝

0

.

.

.
0

Ψ1 · Ψ2

. . .
Ψ1 · Ψ2 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(A-3)
where

φ3 =

{
�η1+1

p 	+�η2+1
p 	−2, if 1+(η1 mod p)+(η2 mod p)≤p

�η1+1
p 	+�η2+1

p 	−1, if 1+(η1 mod p)+(η2 mod p)>p
.

Moreover, by (A-3), we have

(Ψ1 ·Ψ2D
η1+η2)[p] =Dφ4

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 Ψ1 · Ψ2

. . .
Ψ1 · Ψ2

0

.

.

.
0

⎞
⎟⎟⎟⎟⎟⎠

+Dφ4+1

⎛
⎜⎜⎜⎜⎜⎝

0

.

.

.
0

Ψ1 · Ψ2

. . .
Ψ1 · Ψ2 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(A-4)
where φ4 = �η1+η2+1

p 	 − 1. Since it can be shown that φ4

= φ3 ∀ η1, η2, comparing (A-3) with (A-4), we thus obtain
(Ψ1 · Ψ2D

η1+η2)[p] = (Ψ1D
η1)[p] · (Ψ2D

η2)[p].

Let Θ(D) and G(D) be decomposed as Θ(D) =∑dΘ
l=0 ΘlD

l and G(D) =
∑dG

l=0 GlD
l, where Θl’s and Gl’s

are some binary matrices, and dΘ and dG denote the maximum
degrees of Θ(D) and G(D), respectively. By Properties 1 and
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2, we have

(Θ(D) · G(D))[p]

= (
∑dΘ

l1=0 Θl1D
l1 ·∑dG

l2=0 Gl2D
l2)[p]

= (
∑dΘ

l1=0

∑dG

l2=0 Θl1 · Gl2D
l1+l2)[p]

=
∑dΘ

l1=0

∑dG

l2=0(Θl1 · Gl2D
l1+l2)[p] (by Property 1)

=
∑dΘ

l1=0

∑dG

l2=0(Θl1D
l1)[p] · (Gl2D

l2)[p] (by Property 2)
=

∑dΘ
l1=0(Θl1D

l1)[p] ·∑dG

l2=0(Gl2D
l2)[p]

= (
∑dΘ

l1=0 Θl1D
l1)[p] · (∑dG

l2=0 Gl2D
l2)[p] (by Property 1)

= Θ(D)[p] · G(D)[p]

therefore completing the proof.
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