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Abstract

Perishable products are commonly seen in inventory management. By allowing shortages and backlogging, the impact
on the cost from the decay of the products can be balanced out. In a recent paper published in Computers and Industrial
Engineering [P.L. Abad, Optimal lot size for a perishable good under conditions of finite production and partial backor-
dering and lost sale, Comput. Ind. Eng. 38 (2000) 457-465] considered a problem in such context. However, his algorithm
was incomplete due to flaws in his solution procedure. The purpose of this note is to explore the same production inventory
models with a mixture of partial backordering and lost sales for deteriorated items. We find the criteria for the optimal
solution for different cases and derive a formulated minimum value. By theoretical analysis, we develop a few lemmas
to reveal parameter effects and optimal solution procedure. The solutions are illustrated by solving the same examples from
Abad’s paper to illustrate the accuracy and completeness of our procedure.
© 2007 Published by Elsevier Inc.
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1. Introduction

Permitting limited planned shortages can reduce the pressure on high production capacity and hence result
in a smoother production schedule. Firms are able to maintain a backlog of orders to certain loyal customers
without losing their business. However, the costs of shortages or lost sales should not be exorbitant to

* Corresponding author.
E-mail address: yangklung@yahoo.com.tw (G.K. Yang).

0307-904X/$ - see front matter © 2007 Published by Elsevier Inc.
doi:10.1016/j.apm.2007.06.022


mailto:yangklung@yahoo.com.tw

G.K. Yang et al. | Applied Mathematical Modelling 32 (2008) 17581768 1759

facilitate the feasibility of the strategy. If the cost of holding inventory is significantly higher than the shortage
cost, permitting occasional brief shortages to lower the average inventory level may be a sound business prac-
tice to reduce the total cost.

There has been a great amount of research considering partial backordering in the inventory model. Mont-
gomery et al. [1] established continuous review and periodic review inventory models that considered a mix-
ture of backorders and lost sales. Kim and Park [2] considered a continuous review system with constant
lead-time where a fraction of the unfilled demand was backordered and the backorder cost was assumed to
be proportional to the length of the shortage period. Padmanabhan and Vrat [3] developed an inventory
model with a mixture of backorders and lost sales such that the backlogged demand rate was dependent upon
the negative inventory level during the stock out period. Raafat et al. [4] also derived an alternative method for
finding the optimal replenishment schedule for Mak’s [5] model in which an inventory model with Weibull
distributed deterioration and backlogging is considered. Wee [6] developed an economic production lot size
model for deteriorating items with partial backordering and obtained the time intervals and cycle times that
minimize the total cost function. Padmanabhan and Vrat [7] presented inventory models for deteriorating
items with stock-dependent selling rates and derived the profit functions with and without backlogging and
complete backlogging cases. DeCroix and Arreola-Risa [8] explored the potential benefits of offering economic
incentives to backorder as a strategy for inventory management when the system involves an unreliable sup-
ply. Chung et al. [9] considered the Padmanabhan and Vrat [7] problem and developed the necessary and suf-
ficient conditions for the optimal profit per unit time function solutions. Abad [10] considered the problem of
determining the lot size for perishable goods under finite production with exponential decay, partial backor-
dering and lost sales. Zeng [11] studied the effects of using a partial backordering approach to control inven-
tory under deterministic and stochastic demands, respectively. Wu and Ouyang [12] investigated the lot size,
reorder point inventory model, including variable lead-time with partial backorders and an imperfect produc-
tion process.

The model studied by this note is identical to that of Wee [6] and Abad [10] where they showed that the
inventory model is a constrained, non-linear problem with convexity characteristics. Abad used the Solver
in MS/Excel to solve for the solutions. However, there are critical flaws in his analytical process, rendering
the resulting solutions incorrect. We will point out the questionable proofs in his model and establish the nec-
essary and sufficient conditions for the minimum solution to occur inside the interior section of the cost func-
tion. A theorem to determine the criterion for the existence and uniqueness of the minimum solution is
subsequently developed. We will derive simple formulated optimal solutions for each case, respectively.
Numerical examples are given to illustrate all results obtained in this note.

2. Notations and assumptions
Notations and assumptions from Wee [6] and Abad [10] are adopted except for a few minor modifications

from Abad and simplification of some expressions. We outline these notations in the following for the sake of
completeness and easy reference.

Notations

1(2) net stock (on hand — backorders) level at time ¢

P production rate for the item (units/period)

d demand rate (units/period)

0 wastage coefficient, assumed to be constant (i.e., exponential decay)
0I(t)  wastage rate at time ¢

r duration of inventory cycle when there is positive inventory
A duration of inventory cycle for which there exists stock out
iR interim time-spans

C unit product cost

Cy setup cost

e inventory carrying cost/unit/period
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c3 backordering cost/unit/period
Cs4 penalty cost of lost sale including lost profit ($/unit)
B the fraction of demand backordered

(I'*,2") the pair of minimum solution of the inventory model
B(I') g—zﬂm(;ﬁ(r) +2IA(T)) + c4(1 — B)ydmI' — ¢i — (¢ + ) (pB(I') — dT')

P—d+Blg{)
A
4 (c+%)(p—d) —ca(1 — B)dm
c4(1—B)dmb
Iy éln 1+ (5) (C9+CZ)<;(_d)—)C4(1—B)dm9:| , when 4 >0

AT)  the solution of (c +%) % = ¢3BdmJ. + c4(1 — B)dm, when 4> 0, for I'y < I' < 0o

B(I'y) 04(1 —B)deo —C1 — (C +%2)[p/3(1"0) — dr()]

| C2 — —C. — m 2
Bloo) fc+)Inf— ¢ 4 (0reled all s

HI,7) e+ (c+%)(pp(I') — dI') +% Bdmi* + c4(1 — B)dm..

§ _ ro_
QT2 (T +2)(e+9) Bhdeh—) — (I, )

r if (c +%)5In5 —c; >0, then I satisfies that C(I",0) =0

Assumptions

. The planning horizon is infinite.

. Demand occurs at a known steady constant rate d.

. The production rate is a constant p and is strictly greater than the demand rate, i.e., p > d.

. The goods decays at an exponential rate 6.

. When stockout occurs, demand is partially backlogged. The fraction of demand backordered B is assumed
to be between zero and one, i.e., 0 < B < 1.

. Production quantity in each cycle is kept constant.

. The cost of a deteriorated item (taking into account the salvage value) is known.

8. There are no space or budget limitations. Nor are there any limitations in terms of production lot size or

number of setups per year.

W\ W=

~

3. Mathematical model

The problem that Wee [6] and Abad [10] tried to solve is the minimization of the average total cost during
the inventory and shortage cycle of time-span I' + 4. That is

. F(I',2)
MinlI(I', 1) = —== 1
ing1(r ) = 1)
subject to I' = 0, A > 0 and I + A, where
. C C3 2
F(ri)=ci+ (c+ 5) (pB(T) = dI') + 5 Bdmi? + cy(1 — B)dm? 2)

is the total cost during the cycle of time-span I' + A with f(I') = 4 In[1 + 1% (exp'? — 1)]. Abad [10] constructed
Assumption 1 and proved Proposition 1 as follows.

Assumption 1. The set G= {(I', ))|[ + 1> 0, F(I',A) >0} is not a null set.
In Appendix A of this note, we prove that Assumption 1 of Abad [10] is unnecessary and can be removed.

Proposition 1. II(I, A) is a strictly pseudoconvex function on G.
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In Proposition 1 of Abad [10], he proved that the objective function I1(I', 2) is a strictly pseudoconvex func-
tion on G. In Bazarra et al. [13], after showing that I1(I', 1) being strictly pseudoconvex, if (I'j, 1) is a solution
for the first partial derivative system, then (I'y, ;) will be the global minimum. Abad [10] predicted that owing
to the boundaries I' = 0 and 1 > 0 being linear, the function I1(I', A) will have a unique global minimum.

In the following, we establish the necessary and sufficient conditions for which the minimum solution
occurs in the interior section. We will also establish the criteria for which the minimum solution may degen-
erate to infinity on the boundary when the system of first partial derivatives has no solution. In other words,
Abad’s paper contains questionable results. Moreover, we derive a formulated minimum value. From the
same numerical examples of Abad [10], we demonstrate that our method improves the minimum value with
an average saving of 27.28%.

4. Improved mathematical model

Taking the first partial derivatives for [1(I', 1) yields

om__ 1 _ [(r +2)(e+5) (p—d)dlexp = 1) _pp (3)

or  (I+%) 0/ p+d(exp™ —1)
and
oIl 1 ) ,
ST m (I + 2)[c3BdmA + c4(1 — B)dm] — F(I', 2)]. (4)
Solving the system of & =0 and 2 = 0 results in
c —d)d(exp™ — 1
(chgZ) va—&-a?(e(xpg .y ) = ¢3Bdml + c4(1 — B)dm. (5)
Assume that for A(I') = ;%m for I' > 0, which yields d’é—(rr) = % >0, A0)=0 and
limp_ ., A(I') = 1. On the other hand, assume that I'y satisfies the equation
o\ (p—d)d(exp™ —1)
(ch?) p+d(exp? —1) = ca(l = B)dm (6)

c4(1-B)dm0
cO0+cy)(p—d)—cq(1—B)dm0O

and by solving Eq. (6), we have I'y = § In [1 + (&) i } The necessary and sufficient condition

with respect to a given A for I' can thus be established in the following lemma.

Lemma 1. With a given 1, Eq. (5) has a solution for I if and only if (c +%3)(p — d) > c3Bdma + c4(1 — B)dm.

To simplify the expression, we assume that 4 = (¢ +2)(p — d) — c4(1 — B)dm. From Lemma 1, we know
that when 4 > 0, for each A satisfying Mﬁ > /. = 0, there exists a unique I" such that the pair (4,I") satisfies
Eq. (5). On the other hand, when 4 > 0, it means that for each I satisfying oo > I' > Iy, there exists a 4, say
M), such that (A(I'), I') satisfies Eq. (5). By Eq. (6), it yields that A(I'¢) = 0. Consequently, there exists a one-
to-one and onto relationship between I and /.

Next, we try to solve aa—’} = 0, that is, solving

[I" + J)[esBdmi. + ca(1 — B)dm] = ¢; + (c n %2) (pB(I) +dI) + %Bdmxz + (1 — B)dmo. (7)
Motivated by Eq. (7) and A(I') satisfying Eq. (5) for I'g < I' < oo, we define B(I') as
B(I) = S Bdm(7(1) +2IAD)) + ca(1 = B)dml" = ¢1 - (c+ c—;) (pB(I) — dI). 8)

Using Eq. (5), we rewrite Eq. (8) as

B(I') =

e\ (p—d)d(exp—1) 2
[(e+5) ety — sl = Bdm| 10, dyafexp™ — 11 (pB(D) — dD) | (c+ ) — ¢
2¢3Bdm p+d(exp™ — 1) 0 g

©)
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As given in Appendix B, we can show that B(I') is a strictly increasing function of I". Moreover, we know that
B(I'y) = c4(1 — B)dmI'o — c1 — (¢ +3)[pP(I'y) — dI'o). We now consider lim,_.,B(I') and define B(co)=
limp_ ., B(I'). Then as given in Appendix C, we can show that

B(oo) =7 (c n c—;) 1n§ gy 4 Ot e)lp ;Cf;;mi;z(l = Bldmd)’ (10)

In the above discussion, we have found the criteria that ensure the existence of the solution for the first
partial derivative system of I1(I’, ), which leads to Lemma 2 as established in the following.

Lemma 2. There exists a solution for the first partial derivative system of II(I', 1) if and only if A >0, B(I'g) <0
and B(co) > 0.
Next, if we assume that C(I",1) satlsfymg CY) and limp_ o (I, 2) = (0, 1), we have from Eq. (3)

(r+4)?
oc(r i)

_2) (p — d)pdOexp™ -0 (n
[p+d(exp® — 1D~

It can be easily verified that
— © Py _
C(c0,0) = (c+0)91n(d) . (12)

From C(I' =0,4) = —¢; — —Bdm/L —c4(1 =B)dmi < 0to C(oo,4) = (c+3)(Ap—d)+5In(§)) + C(I' =0, 1),
depending on the value of C(oo 1), we have two cases:

(a) If C(c0,4) > 0, the minimum value of {II(I',1): I’ = 0} occurs at I'(4), where C(I'(4),4) = 0; and
(b) if C(0c0,4) < 0, the minimum value of {II(I',A) : I' = 0} occurs as I" approaches to infinity with its min-
imum value limy_ . I1(I", 2) = (c +Z)(p — d).

In the following, we consider the minimization problem of II(I’,2). We have shown that Assumption 1 of
Abad [10] always holds, and also the minimization problem always has an optimal solution, since it is bounded
below by zero. If the interior points of {(I,A): " = 0, 2 = 0 and I + 2> 0} do not have a solution for this
minimization problem, the minimum must occur on the boundary. Hence, as shown in Appendix D, we con-
sider the following four cases for the boundary points: (a) I' =0, (b) 2 =10, (c) 4 — oo, and (d) I’ — oco. We list
the key results in the next lemma.

Lemma 3. The minimum value for II(I', 1) along the boundary A= 0 satisfies that

(1) if C(00,0)>0, then it occurs at I where C(I',0)=0 with a (rf;)l and the minimum value
1(T,0) = (c + )7@ 4) (expr”—l); and
pd(expl0—1)
(2) if C(0,0)<0, then the minimum can be obtained as I' — oo such that the minimum value satisfies
limp_ [I(I',0) = (c +3)(p — d).

By combining the above results, Theorem 1 can be established as follows.

Theorem 1. The minimum solution (I'*, ") of this inventory model can be divided into the following cases:

(1) If the conditions A > 0, B(I'y) < 0 and B(co) > 0 hold, then (I'*, 2"y = (I'*, 2 (I'*)) where I'* satisfies Eq. (8)
as B(I'*y= 0 and ¥ (I'*) satisfies Eq. (5).

(2) otherwise, B B
(a) if C(00,0)> 0, then (I'*, ") = (I',0) where C(I',0) =0, and
(b) if C(c0,0) <0, then I'" = cc.



G.K. Yang et al. | Applied Mathematical Modelling 32 (2008) 17581768 1763

Proof. It is sufficient to show that IT(I'*, i#(I'*)) < II(T,0). Using & — 0 at (Ir'*,2#(r'")), it can be derived
that

e, ey = ECRAEN) (e (o= didlexp™ ~ 1 "~
’ r#* 4 7(rt) 0/ p+d(exp™—1)
Since I satisfies that C(I",0) = 0, we have
- + (c+2)(pB(T) — dT —d)d(exp’ — 1
r p+d(expl?—1)
From Eq. (9), we know that
s [l o pan]
c(re,0) = - Sc:Bdm <0. (15)

Moreover, from C(T, 0) = 0, Eq. (15) and C(I',0) being an increasing function of I', it follows that I'* < I.
Observing that A(I') is an increasing function of I' and then by Egs. (13) and (14), we establish that
o(r#,#(r+)) < n(r,0). O

Next, we consider Case (2) with C(00,0) < 0. We know that by Appendix D, Case (d), when I' — oo,
limp_ JI(I',A) = (¢ +3)(p — d) is the minimum value. However, owing to some operational constraints,
for examples, capacity of storage spaces and limited budget, we may only extend the inventory period to,
say I'y. Hence, we turn to minimizing II(I';,2) for 0 < 1 <oco. According to Egs. (4), (6) and (7), solving
LI1(I'y, 2) = 0 is equivalent to solving

2P+ 2T +ay =0, (16)
where ay = —2— [c4(1 — B)dmI'y — ¢ — (c + ‘72) (pp(I'y) — dFl)]. Therefore, the complex solutions for Eq. (16)

c3Bdm

are =T+ 1/[‘% —ag. To simplify the expression, we assume A, = —I'| + \/Ff — ag, and then divide
the minimization problem for I1(I'y, 4) into the following two cases: (i) @y < 0, and (ii) ag > 0.

For Case (i), it yields that /; = 0. Moreover, as %H(I},A) <0, for 0< A</ and %H(Fl,}v) > 0, for
A <A <00, 2 is therefore the minimum solution for (I}, 1).

For Case (ii), as it implies that there is no nonnegative solution for Eq. (16) and %H(Fl,i) > 0, for
0 < 2 <00, A =0 is therefore the minimum solution for I1(I'y, ).

These findings are summarized by Lemma 4.

Lemma 4. When Case (2) with C(co,0) < 0 happens and the largest possible inventory period is represented as
I'y, the minimum solution for II(I'|, /) can be divided into the following two cases:

(1) If ag <0, then 2, = —-TI'1 + \/Ff — ay Is the minimum solution.
(1) If ap > 0, then A= 0 is the minimum solution.

Finally, we consider the instantaneous case where p — oo. From m — 1, Eq. (5) can be revised as

(c0 4 ¢3)(exp™ — 1) = ¢3B0A + c4(1 — B)0. (17)
Moreover, since lim,_..pf(I') =4 (exp'’~'), we obtain the special case of B(I') as
do? ¢ ro 2 o\ d ro ro
BN =757 [(c +§) (exp™ — 1) — es(1 —B)] + (c+§) 5 (Ibexp’” + 1= exp’) — ¢y, (18)
On the other hand, it implies that
d
C(I,0) = (c n %) 5 (Ibexp’” + 1 —exp’) — ;. (19)



1764 G.K. Yang et al. | Applied Mathematical Modelling 32 (2008) 17581768

From 4 = (¢ +3)(p — d) — c4(1 — B)dm and Egs. (10) and (12), it yields that when p — oo, then 4> 0,
B(00) > 0, and C(c0,0) > 0. In Appendix E, we show the procedure for simplifying the expression of B(I).
It implies that when p — oo

d Cy
B(Io) =5 (e +5)[(1+2)In(1 +2) =2 e, (20)
where z = "tf(};z)g. Consequently, the results for the infinite production rate can be established in Lemma 5.

Lemma 5. The minimum solution (I'*, ") of the inventory model for the instantaneous replenishment case can be
divided into the following two cases:

(1) If the conditions of Eq. (20), B(I'g) < 0, holds, then (I'*, ") = (I'*, J*(I'*)), where I'* satisfies Eq. (18) as
B(I'*)= 0 and 3*(I'*) satisfies Eq. (17).
(2) Otherwise, (I'*,2*) = (I',0), where C(I',0) =0 from Eq. (19).

5. Numerical examples

To demonstrate the advantage of our method, we consider the same numerical example as Abad [10] with
the following data: p = 750 units/week; d =400 units/week; ¢ = $20/units; ¢; = $1000/production run;
¢> = $2/unit/week; 0 =0.1; ¢3 = $4/unit/week backordered; ¢4 = $10/unit lost sale and B=0.7. Abad [10]
examined the sensitivity analyses with respect to various relevant parameters. We quote his results in Table 1.

Using our method, for example, B=0.7, we have 4 =13,300>0, I'o=0.896, B(I'j) =—701 <0 and
B(c0) = 334,000 > 0, from Theorem 1 case (1), so the minimum solution is the solution for the first partial deriv-
ative system, (I'*, 7*(I'*)). When B = 0.3, we have 4 = 11,910 > 0, I'y = 2.838, B(I')) = 1939 > 0, (¢ + %) In2 =
188,582 and ¢; = 1000 from Case (2) of Theorem 1, then the minimum solution is the minimum solution for the
boundary along 4 =0 (I',0). We compute the same examples and list the results in Table 2.

Comparison of Tables 1 and 2 indicates that our method can find the optimal solution. The range of our
saving for these five examples from 40.85% to 15.44% and its average is 27.28%.

Finally, we illustrate the extreme case where setup costs become very big, for example, ¢; = 4 x 10°. We list
some possibilities to demonstrate that the optimal solution will be attained when I — co. When I’ is chosen,
the value of 1 is derived according to Eq. (7).

Table 1

Sensitivity analysis with respect to B (reproduced from Abad [10, Table 1])

B 0.1 0.3 0.7 0.85 1

r 1.175 1.175 0.921 0.791 0.674
A 0 0 1.105 1.251 1.335
I(r, 2 1717.163 1717.163 1354.421 1167.58 996.75

Table 2

Sensitivity analysis with respect to B by our method

B 0.1 0.3 0.7 0.85 1

r 1.645 1.645 1.505 1.334 1.162
A 0 0 0.722 0.994 1.156
I(r, 2 1219.115 1219.115 1116.081 990.223 863.421
Table 3

The extreme case for B=0.7 and ¢; =4 x 10°

r r=1 r=10 r=100 I =1000 I =5000 I =7000

Y, 34.444 25.480 16.433 15.157 15.032 15.023

I, 2) 22357.35 18435.93 14655.61 14040.25 14016.21 14011.59
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When I’ is chosen, the value of 4 is derived according to Lemma 4.

From Table 3, we observe that when I approaches infinity then the value of II(I', A) will decrease to its
minimum value (¢ +Z)(p — d) = 14,000. When having a high setup cost, it implies inventory holding duration
should be extended as long as possible to lessen average total cost. From a practical view, the product types
must be simplified to decrease the effect on setup cost for rearranging production procedures, including equip-
ment preparation and adjustment. Stock must be held continuously and the machine should operate uninter-
ruptedly to reduce shutdown loss (because of setup and shortage) in regular procedure, to gain minimum
average total cost.

6. Conclusion

We had pointed out in this note the questionable results in Abad’s paper and provided a new and correct
solution. From our theorem, the decision maker can decide where to search for the optimal solution. Review-
ing the sensitivity analysis in Abad’s paper, he examined 25 examples. However, he was not aware that some-
times the optimal solution approaches infinity. Therefore, our detailed analytical work patches the leak in
Abad’s paper, with a variety of proposed examples explaining the background and strategy that we meet in
real cases. Finally, we deduced the optimal values via complete procedures that are mathematically sound.
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Appendix A. The proof for Assumption 1 of Abad [10]

Here we prove that Assumption 1 of Abad [10]is always valid. The verification is divided into the following
cases: (1) I'>0, and (2) I' =0.

Under the condition of I' > 0, to show that F(I", /) is positive for any combination of constants ¢, ¢ + 7, ¢3
and ¢y, it is sufficient to prove that pf(I") — dI" > 0 for I > 0, when 6 > 0 and limgﬂow exists and is posi-
tive. We will divide it into two cases: (a): 6 > 0 and (b): § =0.

For Case (a), sdince pB(I') —dI'> 0 is equivalent to 4 In(1 +4exp” — 1) > dI', that is, equivalent to
%(exp”’ —1)>exp’” — 1, we assume that ¢=x and 0 =y with 0<x<1 and y>0. By fixing x with
0 <x <1 and letting f{y) = x(exp” — 1) — (exp™ — 1) for y > 0, with f{0) =0 and % = x(exp® — exp?) > 0,
it yields that f{y) > 0 for y > 0. Consequently, for 6 > 0, we derive that %(expm -1 > exp?'fm — 1.

For case (b), we compute

pln [1 + 9 (exp"’ — 1)} —dr

') —drI’
fim PP =l _ o
0=0 0 00 0?
-1
p[l —|—§(exp”’)} ¢Texp'’ —drI
= lim
0—0 26

exp’® — 1 —4(exp’? — 1
=limdrl P p( P )
60 20[1 +4(exp!? — 1)}

— tm dr(1l —dp "pexp™
0=0 2[1 + 9 (exp!? — 1)} +204 T'exp!
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On the other hand, we find £ (p — d)f* +%d(I"' — §)* with

In [1+4(exp’? —1) dp-! ro
o L p L Ip~ I'exp _d
B(I,0) = lim B(I", 0) = lim 5 *%%Hg(expmq)*pr‘
Then, we have %(p—d)(j—jf)znt%d(l - ) 2=2 24(p— d)I'*, which means when 0 =0

d
F(I ) = ¢ —l—%}—)(p —d)r+ %Bdmlz + (1 — B)dmo,

which is the total cost per cycle in the model without deterioration.

For the case of I' =0, from f(0) = 0, it yields that F(0, 1) = ¢; + %Bdmﬂvz + ¢4(1 — B)dm/. such that F(0, 1)
has the desired property.

Therefore, we finish the proof for Assumption 1 of Abad [10] that F(I', 1) > 0 is always valid. Consequently,
Assumption 1 of Abad’s [10] should thus be dropped from the discussion.

Appendix B. The proof for B(I') being a strictly increasing function of I

From &-B(I') = $ Bdm[2(T) dg(r) +2MI) + 22 d’ ] + 04(1 —B)dm — (c +%) 4 =ddexpll) ince J(T) sat-

ptd(exp! 1) 2

isfies Eq. (5), we may simplify dﬁ( = c3Bdm(I" + /1( )) ). Using Eq. (5), we obtain

dA(I')  (cO0+c2)(p—d) dA(T") (09+cz)(p—d) pdOexp™”
dr = c3Bdm0 dr — c3Bdm0 [p + d(expro — 1)]2 '

Therefore, we derive that

dB(I') (p — d)pdOexp™
ar = A+ 5) g 7

We therefore have the condition that B(I') is a strictly increasing function of I

Appendix C. The value of B(x)

. ro ro (c+2)(p—d)—c4(1—B)dm
exp. _ exp _r _ 0 4
We know that limp_,, T = Trl{exp™ 1) — d and lim_ A(I) = - mrn Since

B(I) = 2 Bdm7(I) + esBdmA(T) + ea(1 = Bydm) — ¢y — (¢ +2) (pp(T) - )

3 pa 02 plp—d)d(exp™ — 1) &
=3 Ban () + | Ty~ BT - )} (c+5) —er

we consider
I'(p—d)d(exp™ —1)

i @ d)d(exp™ — DI — (pB(I) —dI)[p+d(exp™ — 1)]

lim — (pB(I) —dI') =

r=  p+d(exp™ —1) I'=o p+d(exp™ —1)
— tm (p— d)dOexp™T — (pB(I') — dI')dOexp"’
r—oo dBexp!?

= lim (p—d)I" — (pB(I") —dr)

= hm 0(91" 0p(I))

o fim epr()

P s
0 oo expfll)

P

0

p
==In=.
d
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Consequently, we derive that

p ( +%2) P ¢ 4 O+ e)p—d) —e(l = B)dmf)]z.

B ==
(00) o\ d 2¢3Bdmb?

Appendix D. For the boundary cases

For Case (a), along the boundary I' = 0, recall Eq. (11). We have shown that when / is fixed, the minimum
of I(I',2) will at (al) I'(A), where I'(X) satisfies the equation C(I'(1),4) =0, or (a2) I' — oo, when
C(I'(A),4) = 0 does not have solution. Therefore, the minimum solution will not occur along the boundary
r=0.

For case (b), 4 =0, it is the special situation for case (a) with 4 = 0. Then we know that

(b1) if (¢ + )45 In5 — ¢, > 0, there is a unique point, say I, such that C(I",0) = 0 and I is the optimal solu-

tion for I1(I',0) and II(T",0) = (c+23) p-didlexp” 1) yng
prd(expT0-1)

(b2) on the other hand, if (c+%)%Inf—c; <0, the minimum will occur when I' — oo such that
lim_ II(I',0) = (¢ +3)(p — d).
For Case (c), 4 — oo, since we can rewrite II(I', 1) as

Lo + (c+2)(pB(I') —dI') — c4(1 — B)dmI" + % BdmI™
Ir'+2 '

m(r, ) = %Bdm(ﬂv — )+ cs(1 — B)dm

When I is fixed, if we take 4 — oo, the value of II(I',A) — oo. Then, we do not need to consider the case
A — oo for this minimum problem.
For Case (d), I' — oo, we have

c+Y[plin(l +42(exp® — 1)) —dI'
lim IT1(I', ) = lim (e Dlpg In(1 15 (exp ) ]
I'—oo I'—oco F—|—/1

-1 re
im (e +2) [F (22T ) ]
=00 0/ 10\1+dp'(exp™ —1)
(42 (p—
= (c—|— 0)(p d).

Since I1(I",0) < lim;_, I1(I',0) = (c + 2)(p — d), we do not need to consider Case (d) on the boundary as
I' — oo.

Appendix E. For the instantaneous replenishment case, the value of B(I'y)

c4(1—B)dmb cs(1-B)0O . .
From Iy =7 In [1 + (&) (60+62)(;9d>€)c‘j<,73)6,”10] and z = 4c((§+f2) , when p — oo, we derive that lim, . I) =

tIn(1+2z) and lim,_..pB(I) =%
Hence, when p — oo, it follows that

lim B(Fo) = C4(1 — B)dr() —C] — (C-i—g) |:g (eXpr09 — 1) — dr()
p—00

0/10
_(b+c)zd . (b+c)dz (cb+c)d
= an(1+z) ci 0 9+ 0 gln(l+z)
d(cO+ c)

:T[(l +z)In(l +2) —z] —¢.
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