
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1505-1520 (2008)

1505

Efficient Immune-Based Particle Swarm Optimization
Learning for Neuro-Fuzzy Networks Design

CHENG-JIAN LIN1, CHENG-HUNG CHEN2 AND CHI-YUNG LEE3

1Department of Computer Science and Information Engineering
National Chin-Yi University of Technology

Taichung, 411 Taiwan
E-mail: cjlin@cyut.edu.tw

2Department of Electrical and Control Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan
3Department of Computer Science and Information Engineering

Nan Kai Institute of Technology
Nantou, 542 Taiwan

In order to enhance the immune algorithm (IA) performance and find the optimal

solution when dealing with difficult problems, we propose an efficient immune-based
particle swarm optimization (IPSO) for use in TSK-type neuro-fuzzy networks for solv-
ing the identification and prediction problems. The proposed IPSO combines the im-
mune algorithm (IA) and particle swarm optimization (PSO) to perform parameter
learning. The IA uses the clonal selection principle, such that antibodies between others
of high similar degree are affected, and these antibodies, after the process, will have
higher quality, accelerating the search and increasing the global search capacity. The
PSO algorithm has proved to be very effective for solving global optimization. It is not
only a recently invented high-performance optimizer that is easy to understand and im-
plement, but it also requires little computational bookkeeping and generally only a few
lines of code. Hence, we employed the advantages of PSO to improve the mutation
mechanism of immune algorithm. Experiments with synthetic and real data sets have
performed in order to show the applicability of the proposed approach and also to com-
pare with other methods in the literature.

Keywords: neuro-fuzzy network, immune system algorithm, particle swarm optimization,
backpropagation, identification, prediction

1. INTRODUCTION

Neuro-fuzzy networks [1-4] are gaining research interest. They not only have at-
tracted considerable attention in recent years due to their diverse applications in fields
such as pattern recognition, image processing, and control, but they can also handle im-
precise information through linguistic expressions. However, these models often have a
serious drawback; that is, they use the backpropagation (BP) learning algorithm [2, 3].
Using the steepest descent optimization technique in BP training could minimize the er-
ror function, allowing the algorithm to reach the local minima very fast, but never finds a
global solution. In addition, BP training performance depends on the initial system pa-
rameter values. For different network topologies one must derive new mathematical ex-
pressions for each network layer.

Received October 26, 2006; revised April 24, 2007; accepted June 1, 2007.
Communicated by Pau-Choo Chung.

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1506

Considering the aforementioned disadvantages, suboptimal performance occurs,
even for a suitable neuro-fuzzy network topology. Hence, technologies capable of train-
ing the system parameters and finding the global solution while optimizing the overall
structure are needed.

Recently, there has been a great deal of interest in the use of immune systems and
algorithms in computer science and engineering [5-9]. Adem Kalinli [5] proposed an
artificial immune algorithm for an infinite impulse response (IIR) filter design. Liao [6]
embedded chaos search capability in immune genetic algorithms to solve short-term
thermal generating unit commitment problems. Liao’s method uses fuzzy systems to de-
termine the rate of crossover and mutation mechanism. Wen [7] proposed an immune
evolutionary algorithm for sphericity error evaluation. A self-adaptive mutation operator
was constructed to divide the mutation step size of every antibody according to its envi-
ronment. Zhou’s proposal [8] was based on the immune recognition principle to predict
the performances of hot-rolled steel bars. Chun [9] employed an immune algorithm (IA)
as the search method for the shape optimization of an electromagnetic device. Chun’s
search method improved the global search performance of the genetic algorithm by using
the immune network theory. However, these approaches in the fundamental methodolo-
gies are not dramatic in terms of overall performance. Recently, some researchers [10-12]
have developed several hybrid methods that combine particle swarm optimization and
immune algorithm. Ge and Liang [10] proposed an immune particle swarm optimization
that based on the receptor editing in immune systems. The inactive particles are recog-
nized and 25% of them are edited after each generation. Wang et al. [11] embedded the
idea of the particle swarm optimization into the clonal selection algorithm. The antibod-
ies can be improved using the particle swarm optimization before clonal selection. The
principles of information diffusion and clonal selection are incorporated into the particle
swarm optimization to achieve a better diversity and break away from local optimal solu-
tions using InformPSO by Lv et al. [12]. In this study, we also proposed an efficient hy-
brid learning algorithm to avoid falling in a local optimal solution. Our method is differ-
ent from [10-12]. We employed the advantages of PSO to improve the mutation scheme
of immune algorithm.

This study presents the efficient immune-based particle swarm optimization (IPSO)
for use in TSK-type neuro-fuzzy network to solve the identification and prediction prob-
lems. The proposed IPSO combines the immune algorithm (IA) and particle swarm op-
timization (PSO) to perform parameter learning. The IA uses the clonal selection princi-
ple to affect antibodies between others of high similar degree, and these antibodies, after
the process, will be of higher quality, accelerating the search, and increasing the global
search capacity. The PSO algorithm, proposed by Kennedy and Eberhart [13], has proved
to be very effective for solving global optimization. It is not only a recently invented
high-performance optimizer that is easy to understand and implement, but it also requires
little computational bookkeeping and generally only a few lines of code [14]. In order to
avoid trapping in a local optimal solution and to ensure the search capability of a near
global optimal solution, mutation plays an important role in IPSO. Therefore, we employ
the advantages of PSO to improve mutation mechanism of immune algorithm. The pro-
posed method can improve the searching ability and greatly increase the converging
speed that we can observe in the simulations.

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1507

2. STRUCTURE OF THE TSK-TYPE NEURO-FUZZY NETWORK

 In this paper, we adopt a TSK-type neuro-fuzzy network with IPSO to solve the
identification and prediction problems. The structure of a TSK-type neuro-fuzzy network
is shown in Fig. 1, where N and R are, respectively, the number of input dimensions and
the number of rules. It is a five-layer network structure. The representation of input xi and
output y is

(1) 2
(4)

02
1 111(5)

(1) 2
(3)

21 1 1

()
exp

()
exp

NR NR i ij
j ij ij

j ii ijj
R NR

i ij
j

j j i ij

u m
w w xu

y u
u mu

σ

σ

= ===

= = =

⎧ ⎫⎡ ⎤− ⎧ ⎫⎪ ⎪ ⎪ ⎪− ⋅ +⎢ ⎥⎨ ⎬ ⎨ ⎬
⎪ ⎪⎢ ⎥ ⎩ ⎭⎪ ⎪⎣ ⎦⎩ ⎭= = =

⎡ ⎤−
−⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑∏∑

∑ ∑∏
 (1)

where u(l) denotes the output of a node in the lth layer; ii xu =)1(; mij and σij are, respec-
tively, the mean and the deviation of a Gaussian membership function of the jth term of
the ith input variable xi; and wij are the corresponding parameters of the consequent part.
The detailed TSK-type neuro-fuzzy network is described in our previous research [15].

x1 x2

y

∑
=

+
n

i
ii xww

1
101 ∑

=

+
n

i
ii xww

1
202

… …

…

…

Layer 1
(Input nodes)

Layer 2
(membership

function nodes)

Layer 3
(rule nodes)

Layer 4
(Consequent

nodes)

Layer 5
(Output nodes)

∑
=

+
n

i
ii xww

1
303

Fig. 1. The structure of the TSK-type neuro-fuzzy network.

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1508

3. THE EFFICIENT IMMUNE-BASED PARTICLE SWARM
OPTIMIZATION (IPSO)

In this section, we describe and the immune-based particle swarm optimization
(IPSO). The IA uses the clonal selection principle to accelerate the search and increase
global search capacity. The PSO algorithm has proved to be very effective for solving
global optimization. Therefore, an efficient immune-based particle swarm optimization
(IPSO), which combines the immune algorithm (IA) and particle swarm optimization
(PSO), is proposed for the TSK-type neuro-fuzzy network in this study.

Analogous to the biological immune system, the proposed algorithm has the capa-
bility of seeking feasible solutions while maintaining diversity. The proposed IPSO com-
bines the immune algorithm (IA) and particle swarm optimization (PSO) to perform pa-
rameter learning. The IA uses the clonal selection principle to accelerate the search and
increase global search capacity. The PSO algorithm has proved to be very effective for
solving global optimization. It is not only a recently invented high-performance opti-
mizer that is very easy to understand and implement, but it also requires little computa-
tional bookkeeping and generally only a few lines of code. In order to avoid trapping in a
local optimal solution and to ensure the search capability of a near global optimal solu-
tion, mutation plays an important role in IPSO. Moreover, the PSO adopted in evolution-
ary algorithm yields high diversity to increase the global search capacity, as well as the
mutation scheme. Therefore, we employed the advantages of PSO to improve the muta-
tion mechanism of immune algorithm. A detailed IPSO of the TSK-type neuro-fuzzy
network is presented in Fig. 2. The whole learning process is described step-by-step
below.

(A) Coding step
The coding step is concerned with the membership functions and the corresponding

parameters of the consequent part of a fuzzy rule that represent antibodies suitable for
IPSO. We will discuss this first. This step codes a rule of a TSK-type neuro-fuzzy net-
work into an antibody. Fig. 3 shows an example of a TSK-type neuro-fuzzy network
coded into an antibody (i.e. an antibody represents a rule set), where i and j represent the
ith dimension and the jth rule, respectively. In this paper, a Gaussian membership func-
tion is used with variables representing the mean and deviation of the membership func-
tion. Each fuzzy rule has the form in Fig. 1, where mij and σij represent a Gaussian mem-
bership function with mean and deviation of the ith dimension and jth rule node and wij
represents the corresponding parameters of consequent part.

(B) Determine the initial parameters by self-clustering algorithm
The initial parameters of a TSK-type neuro-fuzzy network were computed by the

self-clustering algorithm (SCA) method [16]. That is, we used SCA method to determine
the initial mean and deviation of the antecedent part. Before the IPSO method is designed,
the initial antibodies in the populations are generated according to the initial parameters
of the antecedent part and the consequent part.

It is a distance-based connectionist clustering algorithm. In any cluster, the maxi-
mum distance between an example point and the cluster center is less than a threshold
value. This clustering algorithm sets clustering parameters and affects the number of

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1509

Begin

Create initial parameters by
self-clustering algorithm

Production of initial antibody
population

Calculate affinity values

Production of
sub-antibodies (children)

Mutation of sub-antibodies
(children) based on PSO
to replace their parents

Promotion and suppression of
antibodies

Termination

End

Differentiation toward
the memory cellElitism Selection

Yes

No

Fig. 2. Flowchart of the proposed IPSO.

Fig. 3. Coding a TSK-type neuro-fuzzy network into an antibody in the IPSO method.

clusters to be estimated. In the clustering process, the data examples come from a data
stream. The clustering process starts with an empty set of clusters. The clusters will be
updated and changed depending on the position of the current example in the input space.

(C) Produce initial population

In the immune system, the antibodies are produced in order to cope with the antigens.
In other words, the antigens are recognized by a few of high affinity antibodies (i.e. the
antigens are optimal solutions). The first initial antibody utilizing a real variable string is

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1510

generated by self-clustering algorithm, and the other antibodies of population are gener-
ated to add random value by first antibody.

(D) Calculate affinity values

For the large number of various antigens, the immune system has to recognize them
for their posterior influence. In biological immune system, affinity refers to the binding
strength between a single antigenic determinants and an individual antibody-combining
site. The process of recognizing antigens is to search for antibodies with the maximum
affinity with antigens. The affinity value is a performance measure of an antibody and its
value is obtained according to the error function. In this paper, the affinity value is de-
signed according to the follow formulation:

2

1

1

1 ()
tN

d
k k

t k

Affinity value

y y
N =

=

−∑
 (2)

where yk represents the kth model output, d
ky represents the desired output, and Nt repre-

sents the number of the training data. In the problems, the higher affinity refers to the
better antibody.

(E) Production of sub-antibodies

In this step, we will generate several neighborhoods to maintain solution variation.
This strategy can prevent the search process from becoming premature. We can generate
several clones for each antibody on feasible space by Eqs. (3) and (4). Each antibody
regarded as parent while the clones regarded as children (sub-antibodies). In other words,
children regarded as several neighborhoods of near parent.

mean and deviation : clons[childreni_c] = antibody[parenti] + α (3)
weight : clons[childreni_c] = antibody[parenti] + β (4)

where parenti represents the ith antibody from the antibody population; childreni_c repre-
sents clones number c from the ith antibody; α and β are parameters that control the dis-
tance between parent. In this scheme, α and β are important parameters. The large values
lead to the speed of convergence slowly and the search of optimal solution difficulty,
whereas the small values lead to fall in a local optimal solution easily. Therefore, the
selection of the α and β will critically affect the learning results, and their values will be
based on practical experimentation or on trial-and-error tests.

(F) Mutation of sub-antibodies based on particle swarm optimization

In order to avoid trapping in a local optimal solution and to ensure the search capa-
bility of near global optimal solution, mutation plays an important role in IPSO. More-
over, the PSO adopted in evolution algorithm yields high diversity to increase the global
search capacity, as well as the mutation step. Hence, we employed the advantages of parti-
cle swarm optimization (PSO) to improve mutation mechanism. Through the mutation
step, only one best child can survive to replace its parent and enter the next generation.

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1511

PSO is not only a recently invented high-performance optimizer that is very easy to
understand and implement, but it also requires little computational bookkeeping and,
generally, only a few lines of code. Each particle has a velocity vector iv and a position
vector ix to represent a possible solution. The velocity for each particle is updated by

1 2(1) () () (()) () (())i i i iv k v k rand Lbest x k rand Gbest x kω φ φ+ = ∗ + ∗ ∗ − + ∗ ∗ − (5)

where ω is the coefficient of inertia, φ1 is the cognitive study, and φ2 is the group study.
The rand() is uniformly distributed random numbers in [0, 1]. The term iv is limited to
the range max .v± If the velocity violates this limit, it will be set at its proper limit.
Changing velocity enables every particle to search around its individual best position and
global best position. Based on the updated velocities, each particle changes its position
according to the following:

(1) () (1).i i ix k x k v k+ = + + (6)

When every particle is updated, the affinity value of each particle is calculated again.
If the affinity value of the new particle is higher than those of local best, then the local
best will be replaced with the new particle. Moreover, in the mutation step, each antibody
in the population must be mutated only one time by PSO in each generation. The muta-
tion step flowchart is presented in Fig. 4.

Rank

1

2

.

.

.

N-1

N

Antibody
Population

Antibody 1

Antibody 2

.

.

.

Antibody N-1

Antibody N

Original Population New Population

Generation P Generation P+1

Children 1

Children c

...

Children 1

Children c

...

Children 1

Children c

...

Children 1

Children c

...

Mutation based on PSO One best child can survive to
replace its parent/Sort

Clones

Children 1

Children c

...

Children 1

Children c

...

Children 1

Children c

...

Children 1

Children c

...

Rank

1

2

.

.

.

N-1

N

Antibody
Population

Antibody 1

Antibody 2

.

.

.

Antibody N-1

Antibody N

Fig. 4. The flowchart of the mutation step.

(G) Promotion and suppression of antibodies

In order to affect antigens and keep diversity to a certain degree, we use information
entropy theory to measure the diversity of antibodies. If the affinity between two anti-
bodies is greater than the suppression threshold Thaff, these two antibodies are similar,

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1512

gene

….. …..antibody 1
.....

antibody k

antibody N

.....

….. …..

….. …..

1 2 ….. l ….. L-1 L

d1

dk

dN

Fig. 5. The coding of antibody population.

and the antibody of lower affinity value is reduced a small amount of value λ. Fig. 5
shows the immune algorithm composed of N antibodies having L genes.

From information entropy theory, we get

1
() log

N

l il il
i

IE N P P
=

= −∑ (7)

where Pil is the probability that the ith allele comes out at the lth gene. The diversity of
the genes is calculated using Eq. (7). The average entropy value IE(N) of diversity can be
also computed as follows:

1

1() ()
L

l
l

IE N IE N
L =

= ∑ (8)

where L is the size of the gene in a antibody. Eq. (8) yields the diversity of the antibody
pool in terms of the entropy. There are two kinds of affinities in IPSO. One explains the
relationship between an antibody and an antigen using Eq. (2). The other accounts for the
degree of association between the jth antibody and the kth antibody and measures how
similar these two antibodies are. It can be calculated by using

1_
1 (2)jkAffinity Ab

IE
=

+
 (9)

where Affinity_Abjk is the affinity between two antibodies j and k, and IE(2) is the en-
tropy of only the antibodies j and k. This affinity is constrained from zero to one. When
IE(2) is zero, the genes of the ith antibody and the kth antibody are the same.

(H) Elitism selection

When a new generation is created, the risk of losing the best antibody is always ex-
istent. In this study, we adopt elitism selection to overcome the above-mentioned problem.
Therefore, the antibodies are ranked in ascending order of their affinity values. The best
antibody is kept as the parent for the next generation. Moreover, the best antibody and the

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1513

others antibodies with high antigenic affinity are transformed into long-lived B memory
cells. Elitism selection improves the efficient of IPSO considerably, as it prevents losing
the best result.

4. ILLUSTRATIVE EXAMPLES

In order to demonstrate the performance of the proposed IPSO approach, several
experiments were conducted on the identification and prediction problems. The initial
parameters before training are given in Table 1. All the programs were developed using
Visual C++ 6.0 on a Pentium IV 3.2GHz desktop computer.

Table 1. The initial parameters before training.
Parameters Value

Antibody Population Size 50
Coding Type Real Number

Clones number c 5

Example 1: Identification of Nonlinear Dynamic System.
The first example used for identification is described by the difference equation

3
2

()(1) ().
1 ()

y ky k u k
y k

+ = +
+

 (10)

The output of this equation depends nonlinearly on both its past value and the input,
but the effects of the input and output values are additive. The training input patterns are
randomly generated in the interval [− 2, 2] for training data, λ is 0.01, α is in the interval
[− 0.009, 0.001], and β is in the interval [− 0.001, 0.049]. Evolution progressed for 1000
generations. After using the self-clustering algorithm (SCA) [16] for performing input
space partition, we obtain seven clusters (fuzzy rules). To show the effectiveness of the
proposed IPSO method, an immune algorithm (IA) [9] and the particle swarm optimiza-
tion (PSO) [13] are applied to the same problem. Figs. 6 (a)-(c) show the outputs of the
three methods for the input u(k) = sin(2πk/25). According to these results, the identifica-
tion ability of the IPSO method was better than those of the IA and PSO methods.

Fig. 7 shows the best situation learning curves of the three methods. In this figure,
we find that the proposed IPSO method obtains a lower RMS (root mean square) error
than the others. We also compare the performance of our model with some existing mod-
els [17, 18]. The performance indices considered include rms error, number of parame-
ters, and training steps. The comparison results are tabulated in Table 2. Lin [18] pro-
posed a hybrid system that incorporates a priori knowledge into the selection of initial
parameter values. The fuzzy system contains five rules. After the parameter learning, the
RMS error of hybrid system approximates 0.04. The results are shown in the fourth col-
umn of Table 2. Narendra and Paethasarathy [17] using neural networks with two hidden
layers, one with twenty units and other with ten units, and carried out the identification
process for 100000 training steps. After the parameter learning, the RMS error of neural

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1514

 (a) The proposed IPSO method. (b) The PSO method [13].

(c) The IA method [9].

Fig. 6. Results of the desired output.

Fig. 7. The learning curves of the proposed IPSO method, the PSO [13] and the IA [9].

Table 2. Performance comparison of various existing models.
 IPSO PSO [13] IA [9] Hybrid System [18] Neural Networks [17]

RMS error 0.017 0.097 0.1 0.04 0.07
Number of
parameters 63 63 63 80 270

Training steps 1000 1000 1000 30000 100000

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1515

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
Antibody 2 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.20
Antibody 3 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.19
Antibody 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Antibody 5 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.06
Antibody 6 0.21 0.18 -1.09 -0.01 0.88 -0.09 -0.64 -0.66 -1.04 0.68 … 0.07 -0.30 0.51 0.44 0.31 affinity = 5.02
Antibody 7 0.95 0.40 -1.25 0.03 0.60 0.07 -0.20 -0.59 -1.19 0.52 … 0.09 -0.33 0.47 0.41 0.31 affinity = 4.99
Antibody 8 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Antibody 9 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 4.95
Antibody 10 -0.20 -0.62 -1.21 -0.03 0.79 0.26 -0.49 -0.53 -1.07 0.59 … 0.16 -0.18 0.15 0.40 0.41 affinity = 4.91

… … … … … … … … … … … … … … … … … …
Antibody 46 0.09 0.44 -0.97 -0.09 0.66 -0.12 -0.66 -0.63 -0.71 0.67 … 0.36 -0.27 0.04 0.42 0.36 affinity = 4.11
Antibody 47 0.33 0.95 -1.30 0.09 0.53 -0.07 -0.33 -0.66 -1.03 0.82 … 0.23 -0.38 0.10 0.49 0.37 affinity = 4.10
Antibody 48 0.82 0.29 -1.18 -0.12 0.58 0.13 -0.35 -0.66 -1.11 0.65 … 0.12 -0.23 0.36 0.30 0.28 affinity = 3.98
Antibody 49 0.68 0.10 -1.23 0.12 0.50 0.05 -0.41 -0.62 -1.15 0.49 … 0.14 -0.36 0.51 0.41 0.34 affinity = 3.98
Antibody 50 0.13 -0.17 -1.17 0.07 0.05 0.27 -0.27 -0.60 -0.94 0.81 … 0.08 -0.18 0.14 0.39 0.36 affinity = 3.94

(a) The initial populations using SCA learning method.

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Memory cell 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
Memory cell 2 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21
Memory cell 3 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21
Memory cell 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.09
Memory cell 5 0.21 0.18 -1.09 -0.01 0.88 -0.09 -0.64 -0.66 -1.04 0.68 … 0.07 -0.30 0.51 0.44 0.31 affinity = 5.06
Memory cell 6 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Memory cell 7 0.95 0.40 -1.25 0.03 0.60 0.07 -0.20 -0.59 -1.19 0.52 … 0.09 -0.33 0.47 0.41 0.31 affinity = 5.04
Memory cell 8 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 5.01
Memory cell 9 0.43 0.01 -1.22 -0.07 0.63 0.01 -0.50 -0.65 -1.15 0.50 … 0.10 -0.30 0.34 0.41 0.33 affinity = 4.97
Memory cell 10 0.43 -0.06 -1.21 -0.07 0.50 0.00 -0.42 -0.64 -1.14 0.47 … 0.13 -0.28 0.21 0.48 0.32 affinity = 4.96
Memory cell 11 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Memory cell 12 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Memory cell 13 -0.20 -0.62 -1.21 -0.03 0.79 0.26 -0.49 -0.53 -1.07 0.59 … 0.16 -0.18 0.15 0.40 0.41 affinity = 4.91
Memory cell 14 0.87 -0.18 -1.22 0.02 0.51 0.06 -0.24 -0.44 -1.11 0.37 … 0.08 -0.34 0.36 0.51 0.33 affinity = 4.90
Memory cell 15 0.80 0.18 -0.62 0.25 0.13 0.07 -0.21 -0.52 -0.92 0.74 … -0.02 -0.32 0.26 0.38 0.33 affinity = 4.88

(b) The antibodies into long-lived B memory cells by elitism selection.

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
Children 1 0.51 0.35 -0.87 0.12 -0.04 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.16 0.33 affinity = 5.23
Children 2 0.51 0.35 -0.87 0.12 -0.03 -0.11 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.51 0.15 0.34 affinity = 5.24
Children 3 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.52 0.15 0.30 affinity = 5.28
Children 4 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.50 0.15 0.34 affinity = 5.25
Children 5 0.51 0.35 -0.87 0.12 -0.04 -0.10 -0.21 -0.65 -0.92 0.54 … 0.19 -0.32 0.48 0.15 0.33 affinity = 5.22
Antibody 2 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21

Children 1 0.55 -0.02 -0.99 0.04 0.07 0.14 -0.23 -0.58 -1.05 0.58 … 0.14 -0.31 0.44 0.34 0.36 affinity = 4.69
Children 2 0.56 0.08 -0.96 0.10 0.52 -0.03 -0.25 -0.64 -1.07 0.57 … 0.17 -0.21 0.46 0.25 0.44 affinity = 5.11
Children 3 0.52 0.27 -0.96 0.04 0.13 0.02 -0.31 -0.57 -1.09 0.57 … 0.15 -0.33 0.46 0.28 0.38 affinity = 5.16
Children 4 0.56 0.21 -0.87 -0.02 0.27 -0.06 -0.24 -0.61 -0.96 0.54 … 0.15 -0.32 0.45 0.27 0.33 affinity = 4.70
Children 5 0.54 0.24 -1.16 0.06 0.14 -0.05 -0.37 -0.60 -0.93 0.56 … 0.16 -0.27 0.49 0.15 0.35 affinity = 4.96
Antibody 3 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21

Children 1 0.78 0.50 -1.15 0.07 -0.05 0.35 -0.40 -0.81 -1.07 0.50 … 0.08 -0.32 0.52 0.17 0.32 affinity = 5.01
Children 2 0.80 0.86 -1.15 0.12 -0.28 0.24 -0.68 -0.68 -1.06 0.44 … 0.07 -0.33 0.51 0.18 0.32 affinity = 4.39
Children 3 0.61 0.62 -1.15 0.10 -0.24 0.33 -0.42 -0.73 -1.21 0.52 … 0.15 -0.32 0.51 0.44 0.31 affinity = 5.04
Children 4 0.74 0.86 -0.98 0.11 -0.21 0.02 -0.56 -0.68 -1.23 0.39 … 0.06 -0.34 0.51 0.41 0.31 affinity = 3.63
Children 5 0.72 0.53 -1.04 0.12 -0.24 0.13 -0.67 -0.72 -1.23 0.53 … 0.10 -0.32 0.51 0.27 0.32 affinity = 4.83

… … … … … … … … … … … … … … … … … …
Antibody 50 0.13 -0.17 -1.17 0.07 0.05 0.27 -0.27 -0.60 -0.94 0.81 … 0.08 -0.18 0.14 0.39 0.36 affinity = 3.94
Children 1 0.33 0.90 -1.25 0.11 0.43 -0.09 -0.30 -0.65 -1.03 0.78 … 0.23 -0.34 0.13 0.24 0.34 affinity = 4.41
Children 2 0.49 0.76 -0.93 0.11 0.17 -0.08 -0.33 -0.66 -0.98 0.67 … 0.23 -0.37 0.20 0.21 0.36 affinity = 3.15
Children 3 0.37 0.74 -1.08 0.10 0.37 -0.08 -0.29 -0.66 -1.03 0.80 … 0.20 -0.34 0.41 0.38 0.38 affinity = 4.41
Children 4 0.48 0.60 -0.97 0.11 0.03 -0.09 -0.22 -0.66 -0.96 0.77 … 0.21 -0.36 0.45 0.17 0.35 affinity = 4.42
Children 5 0.38 0.72 -1.06 0.11 0.18 -0.08 -0.24 -0.66 -0.93 0.56 … 0.18 -0.35 0.33 0.25 0.34 affinity = 4.25

(c) The generated sub-antibodies (children).
Fig. 8. The evolutionary process of population for the proposed IPSO.

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1516

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.52 0.15 0.30 affinity = 5.28
Antibody 2 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21
Antibody 3 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21
Antibody 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.09
Antibody 5 0.30 0.25 -1.07 0.10 0.62 -0.10 -0.36 -0.65 -0.98 0.55 … 0.12 -0.32 0.51 0.34 0.32 affinity = 5.15
Antibody 6 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Antibody 7 0.74 0.39 -1.12 0.10 0.21 0.00 -0.20 -0.64 -1.12 0.52 … 0.13 -0.32 0.51 0.36 0.33 affinity = 5.41
Antibody 8 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 5.01
Antibody 9 0.43 0.01 -1.22 -0.07 0.63 0.01 -0.50 -0.65 -1.15 0.50 … 0.10 -0.30 0.34 0.41 0.33 affinity = 4.97
Antibody 10 0.46 0.07 -1.15 -0.01 0.17 -0.09 -0.25 -0.65 -1.05 0.50 … 0.16 -0.31 0.38 0.42 0.31 affinity = 5.02

… … … … … … … … … … … … … … … … … …
Antibody 46 0.48 0.26 -0.98 0.02 0.04 -0.03 -0.35 -0.67 -1.02 0.54 … 0.16 -0.27 0.31 0.21 0.37 affinity = 5.27
Antibody 47 0.54 0.43 -1.21 0.11 -0.05 0.00 -0.15 -0.43 -1.19 0.73 … 0.14 -0.34 0.50 0.38 0.15 affinity = 4.85
Antibody 48 0.39 0.23 -0.74 0.02 0.15 -0.14 -0.43 -0.67 -0.94 0.70 … 0.13 -0.29 0.49 0.21 0.32 affinity = 4.71
Antibody 49 0.26 0.44 -0.97 -0.02 0.40 -0.12 -0.49 -0.64 -0.74 0.65 … 0.25 -0.32 0.40 0.41 0.37 affinity = 4.96

(d) The populations through the mutation step based on PSO.

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.26 0.29 -0.96 0.08 -0.02 -0.08 -0.23 -0.65 -0.93 0.58 … 0.14 -0.30 0.24 0.21 0.36 affinity = 5.61
Antibody 2 0.56 0.12 -1.03 0.08 0.08 -0.02 -0.22 -0.65 -1.04 0.53 … 0.14 -0.32 0.49 0.37 0.36 affinity = 5.59
Antibody 3 0.34 0.76 -1.19 0.10 -0.03 -0.03 -0.15 -0.64 -0.96 0.60 … 0.14 -0.32 0.41 0.39 0.30 affinity = 5.53
Antibody 4 0.51 0.17 -1.07 0.12 0.18 0.01 -0.27 -0.63 -1.10 0.53 … 0.14 -0.36 0.49 0.32 0.36 affinity = 5.46
Antibody 5 0.49 0.30 -0.92 0.07 0.01 -0.10 -0.34 -0.66 -0.94 0.52 … 0.06 -0.34 0.33 0.29 0.31 affinity = 5.46
Antibody 6 0.70 -0.07 -0.91 0.12 0.10 -0.06 -0.21 -0.56 -1.02 0.47 … 0.17 -0.35 0.47 0.37 0.31 affinity = 5.42
Antibody 7 0.74 0.39 -1.12 0.10 0.21 0.00 -0.20 -0.64 -1.12 0.52 … 0.13 -0.32 0.51 0.36 0.33 affinity = 5.34
Antibody 8 0.82 0.33 -1.21 -0.02 0.14 0.02 -0.21 -0.66 -1.11 0.53 … 0.12 -0.30 0.44 0.23 0.31 affinity = 5.33
Antibody 9 0.55 0.26 -1.02 0.07 -0.12 -0.03 -0.09 -0.65 -0.90 0.63 … 0.21 -0.32 0.44 0.28 0.34 affinity = 5.26
Antibody 10 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22

… … … … … … … … … … … … … … … … … …
Antibody 46 0.26 0.44 -0.97 -0.02 0.40 -0.12 -0.49 -0.64 -0.74 0.65 … 0.25 -0.32 0.40 0.41 0.37 affinity = 4.70
Antibody 47 0.61 0.35 -0.87 0.08 -0.04 -0.09 -0.15 -0.64 -0.91 0.60 … 0.17 -0.33 0.51 0.14 0.36 affinity = 4.69
Antibody 48 0.26 0.04 -0.99 0.09 0.04 0.27 -0.21 -0.62 -0.94 0.63 … 0.10 -0.30 0.30 0.22 0.32 affinity = 4.69
Antibody 49 0.51 0.34 -1.06 0.09 0.09 0.30 -0.30 -0.69 -1.01 0.44 … 0.16 -0.30 0.42 0.15 0.32 affinity = 4.67

(e) The evolved populations through promotion and suppression.
Fig. 8. (Cont’d) The evolutionary process of population for the proposed IPSO.

networks approximates 0.07. The results are shown in the fifth column of Table 2. In
Table 2, we obtain a smaller RMS error (0.017) and require fewer adjustable parameters
than some existing models. Finally, Fig. 8 shows the evolutionary process of populations
using the proposed IPSO. The initial populations using SCA learning method are shown
in Fig. 8 (a). Fig. 8 (b) presents the antibodies into long-lived B memory cells by elitism
selection. The generated sub-antibodies using Eqs. (3) and (4) are shown in Fig. 8 (c).
Through the mutation step based on PSO, the evolved population is shown in Fig. 8 (d).
Fig. 8 (e) shows the new population through promotion and suppression.

Example 2: Forecast of the Sunspot Number.

The sunspot numbers exhibit nonlinear from 1700 to 2004, non-stationary, and non-
Gaussian cycles that is difficult to predict [19]. The inputs xi are defined as x1(t) = yd

1(t −
1), x2(t) = yd

1(t − 2), and, x3(t) = yd
1(t − 3), where t represents the year and yd

1(t) is the sun-
spot numbers at the t year.

In this example, the first 180 years (from 1705 to 1884) of the sunspot numbers
were used to train the proposed IPSO model while the remaining 121 years (from 1885 to
2004) of the sunspot numbers were the used to test. We set the threshold value in the
self-clustering algorithm (SCA) [16] to 80. After self-clustering algorithm process, the

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1517

nine clusters (fuzzy rules) were obtained, the λ is 0.008, α is in the interval [− 3, 3], and
β is in the interval [− 0.2, 0.2]. After 500 generations of training, the final average RMS
error of the prediction output approximates 11.36. We also compared the performance
with the IA [9] and PSO [13] method. The evolution learning also was 500 generations.
The best situation learning curves of the three methods are shown in Fig. 9 Table 3 tabu-

lated the RMS error, the training error (governed by

1884
1 1

1705

| () ()|
),

180

d

t

y t y t

=

−∑ and the fore-

casting error (governed by

2004
1 1

1885

| () ()|
).

121

d

t

y t y t

=

−∑ As shown in Table 3, the proposed IPSO

method performs a better performance than other models.

Fig. 9. The learning curves of the proposed method, the IA [9], and the PSO [13].

Table 3. Performance comparison of various existing models.
Methods Training case RMS error Training error Forecast error

IPSO 500 11.36 9.47 14.51
IA [9] 500 17.10 16.70 18.78

PSO [13] 500 22.49 16.73 19.17

5. CONCLUSION

In this paper, the efficient immune-based particle swarm optimization (IPSO) is
proposed to improve the searching ability and the converge speed. We proposed the
IPSO for use in TSK-type neuro-fuzzy networks. The advantages of the proposed IPSO
method are summarized as follows: (1) We employed the advantages of PSO to improve
the mutation mechanism; (2) The complicated problems can be better solved than IA and
PSO; (3) There is more of a likelihood to get a global optimum compared to heuristic
methods; (4) The experimental results have shown that our method obtains better results
than other existing methods in accuracy rate and convergence speed.

In this study, the size of each coding of antibodies is fixed for overall population. If
the linguistic terms are the same or the similar in different rules, then the similar pa-
rameters will be generated constantly. In the future work, we will make the coding of
antibodies more flexible according to the fuzzy rules similarity measure [20].

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1518

REFERENCES

1. C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to In-
telligent Systems, Prentice-Hall, NJ, 1996.

2. L. Chen, D. H. Cooley, and J. Zhang, “Possibility-based fuzzy neural networks and
their application to image processing,” IEEE Transactions on Systems, Man and
Cybernetics − Part B: Cybernetics, Vol. 29, 1999, pp. 119-126.

3. Q. Jishuang, W. Chao, and W. Zhengzhi, “Structure-context based fuzzy neural net-
work approach for automatic target detection,” in Proceedings of IEEE International
Geoscience and Remote Sensing Symposium, Vol. 2, 2003, pp. 767-769.

4. B. Kusumoputo, P. Irwanto, and W. Jatmiko, “Optimization of fuzzy-neural struc-
ture through genetic algorithm and its application in artificial odor recognitions,” in
Proceedings of Asia-Pacific Conference on Circuits and Systems, Vol. 2, 2002, pp.
47-51.

5. A. Kalinli and N. Karabogab, “Artificial immune algorithm for IIR filter design,”
Engineering Applications of Artificial Intelligence, Vol. 18, 2005, pp. 919-929.

6. G. C. Liao and T. P. Tsao, “Application embedded chaos search immune genetic al-
gorithm for short-term unit commitment,” Electric Power Systems Research, Vol. 71,
2004, pp. 135-144.

7. X. Wen and A. Song, “An immune evolutionary algorithm for sphericity error
evaluation,” International Journal of Machine Tools & Manufacture, Vol. 44, 2004,
pp. 1077-0184.

8. Y. Zhou, D. L. Zheng, Z. L. Qiu, and G. Y. Dong, “The application of RBF networks
based on artificial immune algorithm in the performance prediction of steel bars,” in
Proceedings of the 3rd International Conference on Machine Learning and Cyber-
netics, 2004, pp. 26-29.

9. J. S. Chun, M. K. Kim, and H. K. Jung, “Shape optimization of electromagnetic de-
vices using immune algorithm,” IEEE Transactions on Magentics, Vol. 33, 1997, pp.
1876-1879.

10. H. W. Ge and Y. C. Liang, “A hidden markov model and immune particle swarm
optimization-based algorithm for multiple sequence alignment,” in Proceedings of
the 18th Australian Joint Conference on Artificial Intelligence, 2005, pp. 756-765.

11. Q. Wang, C. Wang, and X. Z. Gao, “A hybrid optimization algorithm based on
clonal selection principle and particle swarm intelligence,” in Proceedings of the 6th
International Conference on Intelligent Systems Design and Applications, Vol. 2,
2006, pp. 975-9792.

12. Y. Lv, S. Li, S. Chen, Q. Jiang, and W. Guo, “Particle swarm optimization based on
information diffusion and clonal selection,” in Proceedings of the 6th International
Conference on Simulated Evolution and Learning, 2006, pp. 521-528.

13. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE
International Conference on Neural Networks, 1995, pp. 1942-1948.

14. D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic
algorithms for phased array synthesis,” IEEE Transactions on Antennas and Propa-
gation, Vol. 52, 2004, pp. 771-779.

15. C. J. Lin and Y. J. Xu, “The design of TSK-type fuzzy controllers using a new hy-
brid learning approach,” International Journal of Adaptive Control and Processing,

EFFICIENT IMMUNE-BASED PARTICLE SWARM OPTIMIZATION LERNING

1519

Vol. 20, 2006, pp. 1-25.
16. C. J. Lin and Y. J. Xu, “A self-constructing neural fuzzy network with dynamic from

symbiotic evolution,” Intelligent Automation and Soft Computing, Vol. 11, 2005, pp.
1-15.

17. K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical sys-
tems using neural networks,” IEEE Transactions on Neural Networks, Vol. 1, 1990,
pp. 4-27.

18. C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference net-
work and its applications,” IEEE Transactions on Fuzzy Systems, Vol. 6, 1998, pp.
12-31.

19. S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee, and P. K. S. Tam, “A novel ge-
netic-algorithm-based neural network for short-term load forecasting,” IEEE Trans-
actions on Industrial Electronics, Vol. 50, 2003, pp. 793-799.

20. C. J. Lin and W. H. Ho, “An asymmetry-similarity-measure-based neural fuzzy in-
ference system,” Fuzzy Sets and Systems, Vol. 152, 2005, pp. 535-551.

Cheng-Jian Lin (林正堅) received the B.S. degree in Elec-
trical Engineering from Tatung University, Taiwan, R.O.C., in
1986 and the M.S. and Ph.D. degrees in Electrical and Control
Engineering from the National Chiao Tung University, Taiwan,
R.O.C., in 1991 and 1996. From April 1996 to July 1999, he was
an Associate Professor in the Department of Electronic Engi-
neering, Nan Kai College, Nantou, Taiwan, R.O.C. From August
1999 to January 2005, he was an Associate Professor in the De-
partment of Computer Science and Information Engineering,
Chaoyang University of Technology. From February 2005 to July

2007, he was a full Professor in the Department of Computer Science and Information
Engineering, Chaoyang University of Technology. From August 2007 to July 2008, he
was a full Professor in the Department of Electrical Engineering, National University of
Kaohsiung, Kaohsiung, Taiwan, R.O.C. Currently, he is a full Professor of Computer
Science and Information Engineering Department, National Chin-Yi University of
Technology, Taichung, Taiwan, R.O.C. He served as the chairman of Computer Science
and Information Engineering Department, Chaoyang University of Technology from
2001 to 2005. He served as the library director of Poding Memorial Library, Chaoyang
University of Technology from 2005 to 2007. Dr. Lin served as the Associate Editor of
International Journal of Applied Science and Engineering from 2002 to 2005. His current
research interests are soft computing, pattern recognition, intelligent control, image
processing, bioinformatics, and FPGA design. He has published more than 150 papers in
the referred journals and conference proceedings. Dr. Lin is a member of the Phi Tau Phi.
He is also a member of the Chinese Fuzzy Systems Association (CFSA), the Chinese
Automation Association, the Taiwanese Association for Artificial Intelligence (TAAI),
the IEICE (The Institute of Electronics, Information and Communication Engineers), and
the IEEE Computational Intelligence Society. He is an executive committee member of
the Taiwanese Association for Artificial Intelligence (TAAI).

CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE

1520

Cheng-Hung Chen (陳政宏) was born in Kaohsiung, Tai-
wan, R.O.C. in 1979. He received the B.S. and M.S. degree in
Computer Science and Information Engineering from the Chao-
yang University of Technology, Taiwan, R.O.C., in 2002 and
2004. He is currently working toward the Ph.D. degree in Elec-
trical and Control Engineering at National Chiao Tung University,
Taiwan, R.O.C. His current research interests are neural networks,
fuzzy systems, evolutionary algorithms, intelligent control, and
pattern recognition.

Chi-Yung Lee (李繼永) received the B.S. degree in Elec-
tronic Engineering from the National Taiwan University of Sci-
ence and Technology, Taiwan, R.O.C., in 1981 and the M.S. de-
grees in Industrial Education from the National Taiwan Normal
University, Taiwan, R.O.C., in 1989. From August 1989 to July
2004, he was a lecturer in the Department of Electronic Engi-
neering, Nan Kai Institute of Technology, Nantou, Taiwan, R.O.C.
Since August 2004, he has been with the Department of Computer
Science and Information Engineering, Nan Kai Institute of Tech-
nology. Currently, he is an Associate professor of Computer
Science and Information Engineering Department, Nan Kai Insti-
tute of Technology, Nantou, Taiwan, R.O.C. His current research
interests are neural networks, fuzzy systems, intelligence control,
and FPGA design.

