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In order to enhance the immune algorithm (IA) performance and find the optimal 

solution when dealing with difficult problems, we propose an efficient immune-based 
particle swarm optimization (IPSO) for use in TSK-type neuro-fuzzy networks for solv-
ing the identification and prediction problems. The proposed IPSO combines the im-
mune algorithm (IA) and particle swarm optimization (PSO) to perform parameter 
learning. The IA uses the clonal selection principle, such that antibodies between others 
of high similar degree are affected, and these antibodies, after the process, will have 
higher quality, accelerating the search and increasing the global search capacity. The 
PSO algorithm has proved to be very effective for solving global optimization. It is not 
only a recently invented high-performance optimizer that is easy to understand and im-
plement, but it also requires little computational bookkeeping and generally only a few 
lines of code. Hence, we employed the advantages of PSO to improve the mutation 
mechanism of immune algorithm. Experiments with synthetic and real data sets have 
performed in order to show the applicability of the proposed approach and also to com-
pare with other methods in the literature.    
 
Keywords: neuro-fuzzy network, immune system algorithm, particle swarm optimization, 
backpropagation, identification, prediction   
 
 

1. INTRODUCTION 
 

Neuro-fuzzy networks [1-4] are gaining research interest. They not only have at-
tracted considerable attention in recent years due to their diverse applications in fields 
such as pattern recognition, image processing, and control, but they can also handle im-
precise information through linguistic expressions. However, these models often have a 
serious drawback; that is, they use the backpropagation (BP) learning algorithm [2, 3]. 
Using the steepest descent optimization technique in BP training could minimize the er-
ror function, allowing the algorithm to reach the local minima very fast, but never finds a 
global solution. In addition, BP training performance depends on the initial system pa-
rameter values. For different network topologies one must derive new mathematical ex-
pressions for each network layer.  
 
Received October 26, 2006; revised April 24, 2007; accepted June 1, 2007.  
Communicated by Pau-Choo Chung. 



CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE 

 

1506 

 

Considering the aforementioned disadvantages, suboptimal performance occurs, 
even for a suitable neuro-fuzzy network topology. Hence, technologies capable of train-
ing the system parameters and finding the global solution while optimizing the overall 
structure are needed. 

Recently, there has been a great deal of interest in the use of immune systems and 
algorithms in computer science and engineering [5-9]. Adem Kalinli [5] proposed an 
artificial immune algorithm for an infinite impulse response (IIR) filter design. Liao [6] 
embedded chaos search capability in immune genetic algorithms to solve short-term 
thermal generating unit commitment problems. Liao’s method uses fuzzy systems to de-
termine the rate of crossover and mutation mechanism. Wen [7] proposed an immune 
evolutionary algorithm for sphericity error evaluation. A self-adaptive mutation operator 
was constructed to divide the mutation step size of every antibody according to its envi-
ronment. Zhou’s proposal [8] was based on the immune recognition principle to predict 
the performances of hot-rolled steel bars. Chun [9] employed an immune algorithm (IA) 
as the search method for the shape optimization of an electromagnetic device. Chun’s 
search method improved the global search performance of the genetic algorithm by using 
the immune network theory. However, these approaches in the fundamental methodolo-
gies are not dramatic in terms of overall performance. Recently, some researchers [10-12] 
have developed several hybrid methods that combine particle swarm optimization and 
immune algorithm. Ge and Liang [10] proposed an immune particle swarm optimization 
that based on the receptor editing in immune systems. The inactive particles are recog-
nized and 25% of them are edited after each generation. Wang et al. [11] embedded the 
idea of the particle swarm optimization into the clonal selection algorithm. The antibod-
ies can be improved using the particle swarm optimization before clonal selection. The 
principles of information diffusion and clonal selection are incorporated into the particle 
swarm optimization to achieve a better diversity and break away from local optimal solu-
tions using InformPSO by Lv et al. [12]. In this study, we also proposed an efficient hy-
brid learning algorithm to avoid falling in a local optimal solution. Our method is differ-
ent from [10-12]. We employed the advantages of PSO to improve the mutation scheme 
of immune algorithm. 

This study presents the efficient immune-based particle swarm optimization (IPSO) 
for use in TSK-type neuro-fuzzy network to solve the identification and prediction prob-
lems. The proposed IPSO combines the immune algorithm (IA) and particle swarm op-
timization (PSO) to perform parameter learning. The IA uses the clonal selection princi-
ple to affect antibodies between others of high similar degree, and these antibodies, after 
the process, will be of higher quality, accelerating the search, and increasing the global 
search capacity. The PSO algorithm, proposed by Kennedy and Eberhart [13], has proved 
to be very effective for solving global optimization. It is not only a recently invented 
high-performance optimizer that is easy to understand and implement, but it also requires 
little computational bookkeeping and generally only a few lines of code [14]. In order to 
avoid trapping in a local optimal solution and to ensure the search capability of a near 
global optimal solution, mutation plays an important role in IPSO. Therefore, we employ 
the advantages of PSO to improve mutation mechanism of immune algorithm. The pro-
posed method can improve the searching ability and greatly increase the converging 
speed that we can observe in the simulations. 
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2. STRUCTURE OF THE TSK-TYPE NEURO-FUZZY NETWORK 

    In this paper, we adopt a TSK-type neuro-fuzzy network with IPSO to solve the 
identification and prediction problems. The structure of a TSK-type neuro-fuzzy network 
is shown in Fig. 1, where N and R are, respectively, the number of input dimensions and 
the number of rules. It is a five-layer network structure. The representation of input xi and 
output y is  
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where u(l) denotes the output of a node in the lth layer; ii xu =)1( ; mij and σij are, respec-
tively, the mean and the deviation of a Gaussian membership function of the jth term of 
the ith input variable xi; and wij are the corresponding parameters of the consequent part. 
The detailed TSK-type neuro-fuzzy network is described in our previous research [15]. 
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Fig. 1. The structure of the TSK-type neuro-fuzzy network. 
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3. THE EFFICIENT IMMUNE-BASED PARTICLE SWARM 
OPTIMIZATION (IPSO) 

In this section, we describe and the immune-based particle swarm optimization 
(IPSO). The IA uses the clonal selection principle to accelerate the search and increase 
global search capacity. The PSO algorithm has proved to be very effective for solving 
global optimization. Therefore, an efficient immune-based particle swarm optimization 
(IPSO), which combines the immune algorithm (IA) and particle swarm optimization 
(PSO), is proposed for the TSK-type neuro-fuzzy network in this study. 

Analogous to the biological immune system, the proposed algorithm has the capa-
bility of seeking feasible solutions while maintaining diversity. The proposed IPSO com-
bines the immune algorithm (IA) and particle swarm optimization (PSO) to perform pa-
rameter learning. The IA uses the clonal selection principle to accelerate the search and 
increase global search capacity. The PSO algorithm has proved to be very effective for 
solving global optimization. It is not only a recently invented high-performance opti-
mizer that is very easy to understand and implement, but it also requires little computa-
tional bookkeeping and generally only a few lines of code. In order to avoid trapping in a 
local optimal solution and to ensure the search capability of a near global optimal solu-
tion, mutation plays an important role in IPSO. Moreover, the PSO adopted in evolution-
ary algorithm yields high diversity to increase the global search capacity, as well as the 
mutation scheme. Therefore, we employed the advantages of PSO to improve the muta-
tion mechanism of immune algorithm. A detailed IPSO of the TSK-type neuro-fuzzy 
network is presented in Fig. 2. The whole learning process is described step-by-step 
below. 

(A) Coding step 
The coding step is concerned with the membership functions and the corresponding 

parameters of the consequent part of a fuzzy rule that represent antibodies suitable for 
IPSO. We will discuss this first. This step codes a rule of a TSK-type neuro-fuzzy net-
work into an antibody. Fig. 3 shows an example of a TSK-type neuro-fuzzy network 
coded into an antibody (i.e. an antibody represents a rule set), where i and j represent the 
ith dimension and the jth rule, respectively. In this paper, a Gaussian membership func-
tion is used with variables representing the mean and deviation of the membership func-
tion. Each fuzzy rule has the form in Fig. 1, where mij and σij represent a Gaussian mem-
bership function with mean and deviation of the ith dimension and jth rule node and wij 
represents the corresponding parameters of consequent part. 

(B) Determine the initial parameters by self-clustering algorithm 
The initial parameters of a TSK-type neuro-fuzzy network were computed by the 

self-clustering algorithm (SCA) method [16]. That is, we used SCA method to determine 
the initial mean and deviation of the antecedent part. Before the IPSO method is designed, 
the initial antibodies in the populations are generated according to the initial parameters 
of the antecedent part and the consequent part. 

It is a distance-based connectionist clustering algorithm. In any cluster, the maxi-
mum distance between an example point and the cluster center is less than a threshold 
value. This clustering algorithm sets clustering parameters and affects the number of 
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Fig. 2. Flowchart of the proposed IPSO. 

  

 
Fig. 3. Coding a TSK-type neuro-fuzzy network into an antibody in the IPSO method. 

clusters to be estimated. In the clustering process, the data examples come from a data 
stream. The clustering process starts with an empty set of clusters. The clusters will be 
updated and changed depending on the position of the current example in the input space. 
 
(C) Produce initial population 

In the immune system, the antibodies are produced in order to cope with the antigens. 
In other words, the antigens are recognized by a few of high affinity antibodies (i.e. the 
antigens are optimal solutions). The first initial antibody utilizing a real variable string is 



CHENG-JIAN LIN, CHENG-HUNG CHEN AND CHI-YUNG LEE 

 

1510 

 

generated by self-clustering algorithm, and the other antibodies of population are gener-
ated to add random value by first antibody. 

 
(D) Calculate affinity values 

For the large number of various antigens, the immune system has to recognize them 
for their posterior influence. In biological immune system, affinity refers to the binding 
strength between a single antigenic determinants and an individual antibody-combining 
site. The process of recognizing antigens is to search for antibodies with the maximum 
affinity with antigens. The affinity value is a performance measure of an antibody and its 
value is obtained according to the error function. In this paper, the affinity value is de-
signed according to the follow formulation: 

2
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y y
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=
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where yk represents the kth model output, d
ky  represents the desired output, and Nt repre-

sents the number of the training data. In the problems, the higher affinity refers to the 
better antibody. 
 
(E) Production of sub-antibodies 

In this step, we will generate several neighborhoods to maintain solution variation. 
This strategy can prevent the search process from becoming premature. We can generate 
several clones for each antibody on feasible space by Eqs. (3) and (4). Each antibody 
regarded as parent while the clones regarded as children (sub-antibodies). In other words, 
children regarded as several neighborhoods of near parent. 

 
mean and deviation : clons[childreni_c] = antibody[parenti] + α (3) 
weight : clons[childreni_c] = antibody[parenti] + β (4) 
 

where parenti represents the ith antibody from the antibody population; childreni_c repre-
sents clones number c from the ith antibody; α and β are parameters that control the dis-
tance between parent. In this scheme, α and β are important parameters. The large values 
lead to the speed of convergence slowly and the search of optimal solution difficulty, 
whereas the small values lead to fall in a local optimal solution easily. Therefore, the 
selection of the α and β will critically affect the learning results, and their values will be 
based on practical experimentation or on trial-and-error tests. 
 
(F) Mutation of sub-antibodies based on particle swarm optimization 

In order to avoid trapping in a local optimal solution and to ensure the search capa-
bility of near global optimal solution, mutation plays an important role in IPSO. More-
over, the PSO adopted in evolution algorithm yields high diversity to increase the global 
search capacity, as well as the mutation step. Hence, we employed the advantages of parti-
cle swarm optimization (PSO) to improve mutation mechanism. Through the mutation 
step, only one best child can survive to replace its parent and enter the next generation. 
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PSO is not only a recently invented high-performance optimizer that is very easy to 
understand and implement, but it also requires little computational bookkeeping and, 
generally, only a few lines of code. Each particle has a velocity vector iv  and a position 
vector ix  to represent a possible solution. The velocity for each particle is updated by 

1 2( 1) ( ) () ( ( )) () ( ( ))i i i iv k v k rand Lbest x k rand Gbest x kω φ φ+ = ∗ + ∗ ∗ − + ∗ ∗ −  (5) 

where ω is the coefficient of inertia, φ1 is the cognitive study, and φ2 is the group study. 
The rand() is uniformly distributed random numbers in [0, 1]. The term iv  is limited to 
the range max .v±  If the velocity violates this limit, it will be set at its proper limit. 
Changing velocity enables every particle to search around its individual best position and 
global best position. Based on the updated velocities, each particle changes its position 
according to the following: 

( 1) ( ) ( 1).i i ix k x k v k+ = + +    (6) 

When every particle is updated, the affinity value of each particle is calculated again. 
If the affinity value of the new particle is higher than those of local best, then the local 
best will be replaced with the new particle. Moreover, in the mutation step, each antibody 
in the population must be mutated only one time by PSO in each generation. The muta-
tion step flowchart is presented in Fig. 4. 
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Fig. 4. The flowchart of the mutation step. 

 
(G) Promotion and suppression of antibodies 

In order to affect antigens and keep diversity to a certain degree, we use information 
entropy theory to measure the diversity of antibodies. If the affinity between two anti-
bodies is greater than the suppression threshold Thaff, these two antibodies are similar, 
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Fig. 5. The coding of antibody population. 

 
and the antibody of lower affinity value is reduced a small amount of value λ. Fig. 5 
shows the immune algorithm composed of N antibodies having L genes. 

From information entropy theory, we get 

1
( ) log

N

l il il
i

IE N P P
=

= −∑    (7) 

where Pil is the probability that the ith allele comes out at the lth gene. The diversity of 
the genes is calculated using Eq. (7). The average entropy value IE(N) of diversity can be 
also computed as follows: 

1

1( ) ( )
L

l
l

IE N IE N
L =

= ∑   (8) 

where L is the size of the gene in a antibody. Eq. (8) yields the diversity of the antibody 
pool in terms of the entropy. There are two kinds of affinities in IPSO. One explains the 
relationship between an antibody and an antigen using Eq. (2). The other accounts for the 
degree of association between the jth antibody and the kth antibody and measures how 
similar these two antibodies are. It can be calculated by using 

1_
1 (2)jkAffinity Ab

IE
=

+
  (9) 

where Affinity_Abjk is the affinity between two antibodies j and k, and IE(2) is the en-
tropy of only the antibodies j and k. This affinity is constrained from zero to one. When 
IE(2) is zero, the genes of the ith antibody and the kth antibody are the same. 
 
(H) Elitism selection 

When a new generation is created, the risk of losing the best antibody is always ex-
istent. In this study, we adopt elitism selection to overcome the above-mentioned problem. 
Therefore, the antibodies are ranked in ascending order of their affinity values. The best 
antibody is kept as the parent for the next generation. Moreover, the best antibody and the 
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others antibodies with high antigenic affinity are transformed into long-lived B memory 
cells. Elitism selection improves the efficient of IPSO considerably, as it prevents losing 
the best result. 

4. ILLUSTRATIVE EXAMPLES 

In order to demonstrate the performance of the proposed IPSO approach, several 
experiments were conducted on the identification and prediction problems. The initial 
parameters before training are given in Table 1. All the programs were developed using 
Visual C++ 6.0 on a Pentium IV 3.2GHz desktop computer. 

Table 1. The initial parameters before training. 
Parameters Value 

Antibody Population Size 50 
Coding Type Real Number 

Clones number c 5 
 

Example 1: Identification of Nonlinear Dynamic System. 
The first example used for identification is described by the difference equation 

3
2

( )( 1) ( ).
1 ( )

y ky k u k
y k

+ = +
+

  (10) 

The output of this equation depends nonlinearly on both its past value and the input, 
but the effects of the input and output values are additive. The training input patterns are 
randomly generated in the interval [− 2, 2] for training data, λ is 0.01, α is in the interval 
[− 0.009, 0.001], and β is in the interval [− 0.001, 0.049]. Evolution progressed for 1000 
generations. After using the self-clustering algorithm (SCA) [16] for performing input 
space partition, we obtain seven clusters (fuzzy rules). To show the effectiveness of the 
proposed IPSO method, an immune algorithm (IA) [9] and the particle swarm optimiza-
tion (PSO) [13] are applied to the same problem. Figs. 6 (a)-(c) show the outputs of the 
three methods for the input u(k) = sin(2πk/25). According to these results, the identifica-
tion ability of the IPSO method was better than those of the IA and PSO methods. 

Fig. 7 shows the best situation learning curves of the three methods. In this figure, 
we find that the proposed IPSO method obtains a lower RMS (root mean square) error 
than the others. We also compare the performance of our model with some existing mod-
els [17, 18]. The performance indices considered include rms error, number of parame-
ters, and training steps. The comparison results are tabulated in Table 2. Lin [18] pro-
posed a hybrid system that incorporates a priori knowledge into the selection of initial 
parameter values. The fuzzy system contains five rules. After the parameter learning, the 
RMS error of hybrid system approximates 0.04. The results are shown in the fourth col-
umn of Table 2. Narendra and Paethasarathy [17] using neural networks with two hidden 
layers, one with twenty units and other with ten units, and carried out the identification 
process for 100000 training steps. After the parameter learning, the RMS error of neural  
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     (a) The proposed IPSO method.                (b) The PSO method [13]. 

 
(c) The IA method [9]. 

Fig. 6. Results of the desired output. 

 
Fig. 7. The learning curves of the proposed IPSO method, the PSO [13] and the IA [9]. 

Table 2. Performance comparison of various existing models. 
 IPSO PSO [13] IA [9] Hybrid System [18] Neural Networks [17] 

RMS error 0.017 0.097 0.1 0.04 0.07 
Number of 
parameters 63 63 63 80 270 

Training steps 1000 1000 1000 30000 100000 
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m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
Antibody 2 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.20
Antibody 3 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.19
Antibody 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Antibody 5 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.06
Antibody 6 0.21 0.18 -1.09 -0.01 0.88 -0.09 -0.64 -0.66 -1.04 0.68 … 0.07 -0.30 0.51 0.44 0.31 affinity = 5.02
Antibody 7 0.95 0.40 -1.25 0.03 0.60 0.07 -0.20 -0.59 -1.19 0.52 … 0.09 -0.33 0.47 0.41 0.31 affinity = 4.99
Antibody 8 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Antibody 9 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 4.95
Antibody 10 -0.20 -0.62 -1.21 -0.03 0.79 0.26 -0.49 -0.53 -1.07 0.59 … 0.16 -0.18 0.15 0.40 0.41 affinity = 4.91

… … … … … … … … … … … … … … … … … …
Antibody 46 0.09 0.44 -0.97 -0.09 0.66 -0.12 -0.66 -0.63 -0.71 0.67 … 0.36 -0.27 0.04 0.42 0.36 affinity = 4.11
Antibody 47 0.33 0.95 -1.30 0.09 0.53 -0.07 -0.33 -0.66 -1.03 0.82 … 0.23 -0.38 0.10 0.49 0.37 affinity = 4.10
Antibody 48 0.82 0.29 -1.18 -0.12 0.58 0.13 -0.35 -0.66 -1.11 0.65 … 0.12 -0.23 0.36 0.30 0.28 affinity = 3.98
Antibody 49 0.68 0.10 -1.23 0.12 0.50 0.05 -0.41 -0.62 -1.15 0.49 … 0.14 -0.36 0.51 0.41 0.34 affinity = 3.98
Antibody 50 0.13 -0.17 -1.17 0.07 0.05 0.27 -0.27 -0.60 -0.94 0.81 … 0.08 -0.18 0.14 0.39 0.36 affinity = 3.94  

(a) The initial populations using SCA learning method. 

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Memory cell 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
Memory cell 2 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21
Memory cell 3 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21
Memory cell 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.09
Memory cell 5 0.21 0.18 -1.09 -0.01 0.88 -0.09 -0.64 -0.66 -1.04 0.68 … 0.07 -0.30 0.51 0.44 0.31 affinity = 5.06
Memory cell 6 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Memory cell 7 0.95 0.40 -1.25 0.03 0.60 0.07 -0.20 -0.59 -1.19 0.52 … 0.09 -0.33 0.47 0.41 0.31 affinity = 5.04
Memory cell 8 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 5.01
Memory cell 9 0.43 0.01 -1.22 -0.07 0.63 0.01 -0.50 -0.65 -1.15 0.50 … 0.10 -0.30 0.34 0.41 0.33 affinity = 4.97
Memory cell 10 0.43 -0.06 -1.21 -0.07 0.50 0.00 -0.42 -0.64 -1.14 0.47 … 0.13 -0.28 0.21 0.48 0.32 affinity = 4.96
Memory cell 11 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Memory cell 12 0.24 0.33 -1.14 -0.01 -0.04 -0.04 -0.07 -0.68 -0.93 0.80 … 0.08 -0.20 0.16 0.47 0.29 affinity = 4.95
Memory cell 13 -0.20 -0.62 -1.21 -0.03 0.79 0.26 -0.49 -0.53 -1.07 0.59 … 0.16 -0.18 0.15 0.40 0.41 affinity = 4.91
Memory cell 14 0.87 -0.18 -1.22 0.02 0.51 0.06 -0.24 -0.44 -1.11 0.37 … 0.08 -0.34 0.36 0.51 0.33 affinity = 4.90
Memory cell 15 0.80 0.18 -0.62 0.25 0.13 0.07 -0.21 -0.52 -0.92 0.74 … -0.02 -0.32 0.26 0.38 0.33 affinity = 4.88  

(b) The antibodies into long-lived B memory cells by elitism selection. 

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22
*Children 1* 0.51 0.35 -0.87 0.12 -0.04 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.16 0.33 affinity = 5.23
*Children 2* 0.51 0.35 -0.87 0.12 -0.03 -0.11 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.51 0.15 0.34 affinity = 5.24
*Children 3* 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.52 0.15 0.30 affinity = 5.28
*Children 4* 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.50 0.15 0.34 affinity = 5.25
*Children 5* 0.51 0.35 -0.87 0.12 -0.04 -0.10 -0.21 -0.65 -0.92 0.54 … 0.19 -0.32 0.48 0.15 0.33 affinity = 5.22
Antibody 2 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21

*Children 1* 0.55 -0.02 -0.99 0.04 0.07 0.14 -0.23 -0.58 -1.05 0.58 … 0.14 -0.31 0.44 0.34 0.36 affinity = 4.69
*Children 2* 0.56 0.08 -0.96 0.10 0.52 -0.03 -0.25 -0.64 -1.07 0.57 … 0.17 -0.21 0.46 0.25 0.44 affinity = 5.11
*Children 3* 0.52 0.27 -0.96 0.04 0.13 0.02 -0.31 -0.57 -1.09 0.57 … 0.15 -0.33 0.46 0.28 0.38 affinity = 5.16
*Children 4* 0.56 0.21 -0.87 -0.02 0.27 -0.06 -0.24 -0.61 -0.96 0.54 … 0.15 -0.32 0.45 0.27 0.33 affinity = 4.70
*Children 5* 0.54 0.24 -1.16 0.06 0.14 -0.05 -0.37 -0.60 -0.93 0.56 … 0.16 -0.27 0.49 0.15 0.35 affinity = 4.96
Antibody 3 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21

*Children 1* 0.78 0.50 -1.15 0.07 -0.05 0.35 -0.40 -0.81 -1.07 0.50 … 0.08 -0.32 0.52 0.17 0.32 affinity = 5.01
*Children 2* 0.80 0.86 -1.15 0.12 -0.28 0.24 -0.68 -0.68 -1.06 0.44 … 0.07 -0.33 0.51 0.18 0.32 affinity = 4.39
*Children 3* 0.61 0.62 -1.15 0.10 -0.24 0.33 -0.42 -0.73 -1.21 0.52 … 0.15 -0.32 0.51 0.44 0.31 affinity = 5.04
*Children 4* 0.74 0.86 -0.98 0.11 -0.21 0.02 -0.56 -0.68 -1.23 0.39 … 0.06 -0.34 0.51 0.41 0.31 affinity = 3.63
*Children 5* 0.72 0.53 -1.04 0.12 -0.24 0.13 -0.67 -0.72 -1.23 0.53 … 0.10 -0.32 0.51 0.27 0.32 affinity = 4.83

… … … … … … … … … … … … … … … … … …
Antibody 50 0.13 -0.17 -1.17 0.07 0.05 0.27 -0.27 -0.60 -0.94 0.81 … 0.08 -0.18 0.14 0.39 0.36 affinity = 3.94
*Children 1* 0.33 0.90 -1.25 0.11 0.43 -0.09 -0.30 -0.65 -1.03 0.78 … 0.23 -0.34 0.13 0.24 0.34 affinity = 4.41
*Children 2* 0.49 0.76 -0.93 0.11 0.17 -0.08 -0.33 -0.66 -0.98 0.67 … 0.23 -0.37 0.20 0.21 0.36 affinity = 3.15
*Children 3* 0.37 0.74 -1.08 0.10 0.37 -0.08 -0.29 -0.66 -1.03 0.80 … 0.20 -0.34 0.41 0.38 0.38 affinity = 4.41
*Children 4* 0.48 0.60 -0.97 0.11 0.03 -0.09 -0.22 -0.66 -0.96 0.77 … 0.21 -0.36 0.45 0.17 0.35 affinity = 4.42
*Children 5* 0.38 0.72 -1.06 0.11 0.18 -0.08 -0.24 -0.66 -0.93 0.56 … 0.18 -0.35 0.33 0.25 0.34 affinity = 4.25  

(c) The generated sub-antibodies (children).  
Fig. 8. The evolutionary process of population for the proposed IPSO. 
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m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.17 -0.33 0.52 0.15 0.30 affinity = 5.28
Antibody 2 0.59 -0.14 -1.21 -0.02 0.76 0.16 -0.38 -0.53 -1.11 0.59 … 0.13 -0.22 0.44 0.42 0.42 affinity = 5.21
Antibody 3 0.81 1.05 -1.22 0.07 -0.29 0.36 -0.70 -0.82 -1.26 0.38 … 0.03 -0.32 0.51 0.42 0.32 affinity = 5.21
Antibody 4 0.90 0.35 -1.22 0.00 0.60 0.05 -0.25 -0.65 -1.16 0.51 … 0.12 -0.32 0.47 0.42 0.34 affinity = 5.09
Antibody 5 0.30 0.25 -1.07 0.10 0.62 -0.10 -0.36 -0.65 -0.98 0.55 … 0.12 -0.32 0.51 0.34 0.32 affinity = 5.15
Antibody 6 0.90 0.35 -1.22 0.00 0.60 0.05 -0.26 -0.65 -1.16 0.51 … 0.11 -0.32 0.45 0.42 0.32 affinity = 5.06
Antibody 7 0.74 0.39 -1.12 0.10 0.21 0.00 -0.20 -0.64 -1.12 0.52 … 0.13 -0.32 0.51 0.36 0.33 affinity = 5.41
Antibody 8 0.87 0.05 -1.18 0.25 0.62 0.06 -0.28 -0.23 -1.13 0.55 … 0.18 -0.33 0.35 0.42 0.28 affinity = 5.01
Antibody 9 0.43 0.01 -1.22 -0.07 0.63 0.01 -0.50 -0.65 -1.15 0.50 … 0.10 -0.30 0.34 0.41 0.33 affinity = 4.97
Antibody 10 0.46 0.07 -1.15 -0.01 0.17 -0.09 -0.25 -0.65 -1.05 0.50 … 0.16 -0.31 0.38 0.42 0.31 affinity = 5.02

… … … … … … … … … … … … … … … … … …
Antibody 46 0.48 0.26 -0.98 0.02 0.04 -0.03 -0.35 -0.67 -1.02 0.54 … 0.16 -0.27 0.31 0.21 0.37 affinity = 5.27
Antibody 47 0.54 0.43 -1.21 0.11 -0.05 0.00 -0.15 -0.43 -1.19 0.73 … 0.14 -0.34 0.50 0.38 0.15 affinity = 4.85
Antibody 48 0.39 0.23 -0.74 0.02 0.15 -0.14 -0.43 -0.67 -0.94 0.70 … 0.13 -0.29 0.49 0.21 0.32 affinity = 4.71
Antibody 49 0.26 0.44 -0.97 -0.02 0.40 -0.12 -0.49 -0.64 -0.74 0.65 … 0.25 -0.32 0.40 0.41 0.37 affinity = 4.96  

(d) The populations through the mutation step based on PSO. 

m 11 σ 11 m 21 σ 21 w 01 w 11 w 21 m 12 σ 12 m 22 … m 27 σ 27 w 07 w 17 w 27

Antibody 1 0.26 0.29 -0.96 0.08 -0.02 -0.08 -0.23 -0.65 -0.93 0.58 … 0.14 -0.30 0.24 0.21 0.36 affinity = 5.61
Antibody 2 0.56 0.12 -1.03 0.08 0.08 -0.02 -0.22 -0.65 -1.04 0.53 … 0.14 -0.32 0.49 0.37 0.36 affinity = 5.59
Antibody 3 0.34 0.76 -1.19 0.10 -0.03 -0.03 -0.15 -0.64 -0.96 0.60 … 0.14 -0.32 0.41 0.39 0.30 affinity = 5.53
Antibody 4 0.51 0.17 -1.07 0.12 0.18 0.01 -0.27 -0.63 -1.10 0.53 … 0.14 -0.36 0.49 0.32 0.36 affinity = 5.46
Antibody 5 0.49 0.30 -0.92 0.07 0.01 -0.10 -0.34 -0.66 -0.94 0.52 … 0.06 -0.34 0.33 0.29 0.31 affinity = 5.46
Antibody 6 0.70 -0.07 -0.91 0.12 0.10 -0.06 -0.21 -0.56 -1.02 0.47 … 0.17 -0.35 0.47 0.37 0.31 affinity = 5.42
Antibody 7 0.74 0.39 -1.12 0.10 0.21 0.00 -0.20 -0.64 -1.12 0.52 … 0.13 -0.32 0.51 0.36 0.33 affinity = 5.34
Antibody 8 0.82 0.33 -1.21 -0.02 0.14 0.02 -0.21 -0.66 -1.11 0.53 … 0.12 -0.30 0.44 0.23 0.31 affinity = 5.33
Antibody 9 0.55 0.26 -1.02 0.07 -0.12 -0.03 -0.09 -0.65 -0.90 0.63 … 0.21 -0.32 0.44 0.28 0.34 affinity = 5.26
Antibody 10 0.51 0.35 -0.87 0.12 -0.03 -0.10 -0.21 -0.65 -0.92 0.54 … 0.18 -0.33 0.51 0.15 0.32 affinity = 5.22

… … … … … … … … … … … … … … … … … …
Antibody 46 0.26 0.44 -0.97 -0.02 0.40 -0.12 -0.49 -0.64 -0.74 0.65 … 0.25 -0.32 0.40 0.41 0.37 affinity = 4.70
Antibody 47 0.61 0.35 -0.87 0.08 -0.04 -0.09 -0.15 -0.64 -0.91 0.60 … 0.17 -0.33 0.51 0.14 0.36 affinity = 4.69
Antibody 48 0.26 0.04 -0.99 0.09 0.04 0.27 -0.21 -0.62 -0.94 0.63 … 0.10 -0.30 0.30 0.22 0.32 affinity = 4.69
Antibody 49 0.51 0.34 -1.06 0.09 0.09 0.30 -0.30 -0.69 -1.01 0.44 … 0.16 -0.30 0.42 0.15 0.32 affinity = 4.67  

(e) The evolved populations through promotion and suppression. 
Fig. 8. (Cont’d) The evolutionary process of population for the proposed IPSO. 

networks approximates 0.07. The results are shown in the fifth column of Table 2. In 
Table 2, we obtain a smaller RMS error (0.017) and require fewer adjustable parameters 
than some existing models. Finally, Fig. 8 shows the evolutionary process of populations 
using the proposed IPSO. The initial populations using SCA learning method are shown 
in Fig. 8 (a). Fig. 8 (b) presents the antibodies into long-lived B memory cells by elitism 
selection. The generated sub-antibodies using Eqs. (3) and (4) are shown in Fig. 8 (c). 
Through the mutation step based on PSO, the evolved population is shown in Fig. 8 (d). 
Fig. 8 (e) shows the new population through promotion and suppression. 
 
Example 2: Forecast of the Sunspot Number. 

The sunspot numbers exhibit nonlinear from 1700 to 2004, non-stationary, and non- 
Gaussian cycles that is difficult to predict [19]. The inputs xi are defined as x1(t) = yd

1(t − 
1), x2(t) = yd

1(t − 2), and, x3(t) = yd
1(t − 3), where t represents the year and yd

1(t) is the sun-
spot numbers at the t year. 

In this example, the first 180 years (from 1705 to 1884) of the sunspot numbers 
were used to train the proposed IPSO model while the remaining 121 years (from 1885 to 
2004) of the sunspot numbers were the used to test. We set the threshold value in the 
self-clustering algorithm (SCA) [16] to 80. After self-clustering algorithm process, the 
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nine clusters (fuzzy rules) were obtained, the λ is 0.008, α is in the interval [− 3, 3], and 
β is in the interval [− 0.2, 0.2]. After 500 generations of training, the final average RMS 
error of the prediction output approximates 11.36. We also compared the performance 
with the IA [9] and PSO [13] method. The evolution learning also was 500 generations. 
The best situation learning curves of the three methods are shown in Fig. 9 Table 3 tabu-  

lated the RMS error, the training error (governed by 

1884
1 1

1705

| ( ) ( )|
),

180

d

t

y t y t

=

−∑  and the fore-  

casting error (governed by 

2004
1 1

1885

| ( ) ( )|
).

121

d

t

y t y t

=

−∑  As shown in Table 3, the proposed IPSO  

method performs a better performance than other models. 

 
Fig. 9. The learning curves of the proposed method, the IA [9], and the PSO [13]. 

Table 3. Performance comparison of various existing models. 
Methods Training case RMS error Training error Forecast error 

IPSO 500 11.36 9.47 14.51 
IA [9] 500 17.10 16.70 18.78 

PSO [13] 500 22.49 16.73 19.17 

5. CONCLUSION 

In this paper, the efficient immune-based particle swarm optimization (IPSO) is 
proposed to improve the searching ability and the converge speed. We proposed the 
IPSO for use in TSK-type neuro-fuzzy networks. The advantages of the proposed IPSO 
method are summarized as follows: (1) We employed the advantages of PSO to improve 
the mutation mechanism; (2) The complicated problems can be better solved than IA and 
PSO; (3) There is more of a likelihood to get a global optimum compared to heuristic 
methods; (4) The experimental results have shown that our method obtains better results 
than other existing methods in accuracy rate and convergence speed. 

In this study, the size of each coding of antibodies is fixed for overall population. If 
the linguistic terms are the same or the similar in different rules, then the similar pa-
rameters will be generated constantly. In the future work, we will make the coding of 
antibodies more flexible according to the fuzzy rules similarity measure [20]. 
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