
September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

International Journal of Pattern Recognition
and Artificial Intelligence
Vol. 22, No. 6 (2008) 1215–1240
c© World Scientific Publishing Company

HIDING IMAGES USING MODIFIED SEARCH-ORDER
CODING AND MODULUS FUNCTION

YU-JIE CHANG∗,‡, RAN-ZAN WANG† and JA-CHEN LIN∗

∗Department of Computer Science
National Chiao Tung University, Hsinchu, 300, Taiwan, R.O.C.

†Department of Computer Science and Engineering
Yuan Ze University, Chung-Li, 320, Taiwan, R.O.C.

‡yjchang@cis.nctu.edu.tw

This paper proposes a method for hiding an important image in a cover image whose
size is limited. In this method, in order to save space, a modified search-order coding
(MSOC) technique first transforms the important image, then, a randomization proce-
dure permutes the transformed image to further increase the security. Finally, a modulus
function embeds the permuted code in a cover image; notably, in the modules function,
the modulus base used for a pixel is determined according to the variance of its neighbor-
ing pixels. Experimental results show that the images are of high quality. Comparisons

with reported methods are provided.

Keywords: Data hiding; modulus function; search-order coding; steganography.

1. Introduction

With the rapid development of the Internet and WWW technologies, digital media,
such as text, image, audio and video are transmitted via a network. Since Inter-
net is public, the transmitted material is exposed. As a result, how to protect
important or private message during a transmission becomes an interesting and
important research issue. One of the possible solutions for protecting important
data against illegal access is using encryption techniques.4 An encryption scheme
encodes an important image in such a way that it is nearly impossible for any
person who does not possess the secret key to decode the cipher-image. The
cipher-image might appear noisy, and so assure the content of the important
image is not readable before decoding. However, looking noisy might thus attract
the attention of attackers during the transmission activity; and hence increases
the risk of facing attacks. Steganography is an art of concealed communication
which aims to send the important image silently under the cover of some carrier
signals,10 and thus compensates the aforementioned drawback of encryption tech-
nique. Unlike encryption techniques which make the content of the important image

1215

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1216 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

unreadable, steganography tries to cheat the hackers by concealing the existence
of the content. (After hiding the important image in a cover image, they become a
so-called stego-image, which still looks like the cover image, although the important
image can be extracted from the stego-image.) Usually, if encryption is combined
with a steganography scheme, the protection becomes more powerful.

In the literature, many image steganography methods have been proposed. A
very simple approach is the least-significant-bits (LSB) substitution scheme.1,14

This kind of method replaces directly certain bits of the cover image’s pixels with
the pixels’ bits of the important image; and a random permutation process to the
important data is often conducted to enhance the security level of the method.11

In 2001, Wang et al.14 used a genetic algorithm to approximate a theoretically-
optimal solution of the simple LSB substitution method; however, due to the nature
of genetic algorithms, the computation time is quite huge. Chan and Cheng1 used
another pixel adjustment process to enhance the quality of the stego-image obtained
by the simple LSB substitution method, and its extra computational cost is rela-
tively small compared with Ref. 14. Chang et al.2 also used another algorithm to
search for optimal substitution for the simple LSB substitution method. Although
their PSNR performance is similar to Wang et al.’s method14 (to hide a 256 × 256
important image Jet, the PSNR of the 512×512 Lena stego-images in Refs. 14 and
2 are, respectively, 44.172 and 44.169dB); their embedding takes only about 1/7 of
the time needed by Wang et al.’s method.14

To explore more steganography techniques, other studies based on vector quan-
tization (VQ) have also been introduced.3,6 In Ref. 3, Chung et al. proposed to hide
an image using singular value decomposition (SVD) and VQ techniques. By using
partial SVD procedure on both the important image and cover image, they hid
some quantized singular values of a diagonal matrix corresponding to the impor-
tant image in the less significant SVD components of the cover image. They can
hide an important image whose size is as large as that of the cover image, but the
degradation of the extracted important image is not very small.

In Ref. 6, before the embedding process, Hu and Lin first encoded the impor-
tant image according to a given codebook. Then, the obtained indices and related
parameters are encrypted by a cipher scheme such as the Data Encryption Stan-
dard (DES).4 Finally, the encrypted data is embedded in the cover image using
the LSB substitution. The hiding capacity of their scheme can be large, and the
scheme can even embed multiple important images by using a codebook of smaller
size and increasing the number of LSBs used in each pixel of the cover image. How-
ever, the quality of the extracted important images usually degraded. To reveal the
important image without any loss, Wu and Tsai15 utilized the difference among two
adjacent pixels in the cover image to hide the important data. However, the hiding
capacities of their so-called PVD steganographic scheme depend on the nature of
the cover image (smooth or noisy), and are usually smaller comparing with the
aforementioned VQ-based method. In order to improve the hiding capacity, Wu
et al.16 utilized the simple LSB substitution method in smooth area of the cover

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1217

image, and still used the PVD method15 in edge area. Compared with the PVD
method,15 this mixed version16 obtains not only larger hiding capacity, but also
better stego-image quality.

In this paper, a steganographic method based on the modified search-order
coding (MSOC) and a variance-based modulus function is proposed. The MSOC
scheme utilizes the feature of high correlation among adjacency pixels (i.e. many
neighboring pixels are with similar gray-values) to encode the important image.
An adjustable threshold T is used in the MSOC; and this T directly controls the
quality of the extracted image. Finally, to embed the MSOC output code in a
cover image, at each pixel of the cover image, its {Northwest, North, West} three-
neighbor variance is evaluated to estimate the hiding capacity of the pixel, and
the MSOC output code is embedded in the cover image using two sets of modulus
function. Notably, in order to have the ability of extracting the important image in
the future, the evaluation of the aforementioned variance uses the stego-pixel-values
(rather than the original cover-pixel-values) of the three neighbors. This is because
the {Northwest, North, West} three-neighboring-pixels are already modified to hide
data in them, and we do not keep the cover image after embedding; therefore, in
the future decoding-phase, the evaluation of the variance can only use stego-image
neighbors, not the original cover-image neighbors.

The rest of the paper is organized as follows. Section 2 takes a brief review of
the SOC and the modulus embedding function. The details of the proposed method
are described in Sec. 3. Experimental results are shown in Sec. 4. The discussions
are in Sec. 5, and the summary is in Sec. 6.

2. Related Works

In this section, the related works are briefly reviewed to provide some necessary
background knowledge. To begin with, the search-order coding (SOC)5 is briefly
reviewed in Sec. 2.1. Then, the embedding methods using modulus function12,13 are
briefly discussed in Sec. 2.2.

2.1. Review of the search-order coding (SOC) tool

Vector quantization (VQ) is a simple technique to compress images. According to a
given codebook, an index file is generated as the compression result for each given
image. To reduce the size of the index file further, Hsieh and Tsai5 proposed the use
of the search-order coding (SOC). The SOC algorithm in Ref. 5 encodes traditional
VQ indices with fewer bits by utilizing the fact that there exists high correlation
among adjacent indices, i.e. there exist many blocks whose VQ indices also appear
in their neighborhood blocks. Recall that in traditional VQ, each block of the given
image is represented by an index. So, the whole image is represented by an index file
in which the number of indices (counting repetition) equals the number of blocks.
The SOC algorithm encodes the index file of an image in an index by index manner
(or equivalently, block by block). All of the indices that appear in a predefined search

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1218 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

path, which just cover a small area of the neighborhood blocks, are called search
points (SP), and the nonsearch points are just those indices whose block location
are beyond the range covered by the predefined search path. To encode the current
not-yet-processed index, people begin a search along a predefined path. The search
is in order to find whether a nearby block also has the same VQ index used by
the current block. If a match is found in nearby area, then the original index value
(OIV) of the current block is replaced by a search-order code (SOC) that indicates
the position of the matched block in the search path; the SOC uses fewer bits than
the OIV. On the other hand, if no match can be found in nearby area, then Ref. 5
still uses the OIV of the current block. In general, a SOC is defined as an order in
which the indices of the already-processed neighborhood blocks are compared with
the index of the current block. Of course, to let the decoder distinguish between the
SOC and OIV, an extra indicator bit (the flag) is added in front of the resulting
compression code for each index.

An example of the SOC is shown in Fig. 1. The current block is at location (3, 3),
and the index value for the current block is 76. A predefined search path is shown
with arrows. In this example, assume the starting search point is the neighboring
block (3, 2), and a search-order code of N = 2 bits is used, where N is the number
of bits used to record the order of the matched position in the SOC searching.
Since 2N = 22 = 4, there are at most four SPs used for comparison excluding the
repetition points. The path 75-75-74-74 is the level 1 search. Since there is no value
that matches 76, we begin the level 2 search 75-76-. . . in the outer loop; and stop
at the first matched value 76 located at (2, 1). Since the position of block (2, 1)
is “10” (the third kind of value) in the search code, the block (3, 3) is encoded as
the search-order code “10”. Of course, a flag bit is also needed. Therefore, block
(3, 3) is coded using 1 + n = 1 + 2 = 3 bits, which is more economic than, for
example, the 8-bits index needed in traditional VQ if there are 256 = 28 distinct
code-blocks in the codebook. (In traditional VQ, each block of the given image is
represented by a code-block found in this VQ codebook, and only the code-block’s

Fig. 1. An example of the SOC algorithm.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-033.jpg&w=263&h=133

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1219

index (rather than the code-block itself) is transmitted. So, 8-bits for an index if
there are 256 = 28 distinct code-blocks.)

2.2. Review of the modulus embedding function

In 2003, Thien and Lin12 applied a modulus function to embed data in still images;
their scheme can hide data efficiently and the base value is not necessarily in
{2, 4, 8, 16, . . . }. Their scheme is simple and fast, and their experimental results
show that the qualities of the obtained stego-images are much better than that of
the simple LSB substitution method. In 2005, Wang13 observed that the quality
of the stego-image in Ref. 12 may degrade too much if a large number of bits are
embedded in a pixel of the cover image whose pixel value is small. Therefore, Wang
extended further the modulus embedding method to a more flexible extent. In his
method, the pixels of the cover image are classified into two groups: one group is
GU which contains the pixels whose values are greater than a predetermined V , and
the other group GL which contains the pixels whose value are at most V . Then,
a modulus function with a large modulus base MU is applied to embed data in
GU , and another modulus function with a small modulus base ML is preformed to
embed data in GL. This indicates that more data bits are embedded in the pixels
of GU , and fewer data bits are embedded in the pixels of GL.

The modulus embedding procedure13 are reviewed below. We first start with
a system using a single modulus base. Let the integer parameter MO denote a
modulus base. To embed a numerical data x (0 ≤ x < MO) in a pixel value yij

(0 ≤ yij ≤ 255) at position (i, j) of the cover image, we show below how to
construct the new value ŷij which can be utilized to extract x. First, calculate the
plain difference value

dij = x − (yij modMO). (1)

Then, evaluate the modified difference value d′ij by the rule

d′ij =

dij if
(
−

⌊
MO − 1

2

⌋)
≤ dij ≤

⌈
MO − 1

2

⌉
;

dij + MO if (−MO + 1) ≤ dij <

(
−

⌊
MO − 1

2

⌋)
;

dij − MO if
⌈

MO − 1
2

⌉
< dij < MO.

(2)

Then, replace the old pixel value yij by the new value

ŷij = d′ij + yij . (3)

Of course, a boundary checking procedure is needed to ensure that the gray value ŷij

falls in a valid range between Vb and Vt. Do the following adjustment if necessary:

ŷij =

{
ŷij + MO if ŷij < Vb;

ŷij − MO if ŷij > Vt.
(4)

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1220 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

Note that in this method in Ref. 13, the pixel values yij of the cover image are
classified into two groups GU and GL, and each group has its own modulus base
values: MU for GU , and ML for GL. If a pixel value yij of the cover image belongs
to GL, then the value of Vb is set to 0 and the value of Vt is set to V . On the other
hand, if yij belongs to GU , then the value of Vb is V and the value of Vt is 255.

3. The Proposed Method

In this section, we introduce our image hiding method. The flowchart of the pro-
posed method is depicted in Fig. 2. First, the MSOC is used to encode the impor-
tant image, and the output code is then permuted using a pseudo-random method.
Finally, the randomized code is embedded in the cover image by using the modulus
embedding function. Therefore, there are three major parts in our scheme: (a) the
MSOC scheme, (b) the pseudo-random permutation process, and (c) the modulus
embedding process. The details of these three parts are described in Secs. 3.1–3.3,
respectively. The extraction procedure to unveil the embedded important image
from stego-image is presented in Sec. 3.4.

3.1. The modified search-order coding (MSOC)

Instead of processing the vector-quantization (VQ) indices of an image as the tra-
ditional SOC scheme5 did, our MSOC scheme processes the pixel data directly.

(a) (b)

Fig. 2. Two flowcharts showing our proposed method. (a) The encoding procedure, and (b) the
decoding procedure.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-054.jpg&w=168&h=210
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-055.jpg&w=87&h=222

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1221

Also, due to the fact that adjacent pixels of an image often have similar gray val-
ues, we modify the match condition used in traditional SOC method,5 and use a
predetermined threshold T to encode the important image. The purpose of these
modifications is that, when a set of numbers is compressed, the MSOC can yield
more compact codes than SOC does, and hence produce a better-quality stego-
image in the embedding stage later. The notation and details of MSOC are stated
below:

Notation

N : The length of the code for MSOC position, i.e. the number of bits used to
record a matched position in the searching path.

T : A threshold indicating the tolerance level in the MSOC matching equations
(5) and (6) (Set T = 1 will make the extracted important image free of error.)

SP : The pixels that appear in the predefined search path.
Pc: The currently-processed pixel (of the important image).
Sc: The set of candidate SPs for Pc [see Eq. (5)], in which the gray values of all

candidates must not differ too much from the gray value of Pc.
Vcut: The threshold to decide which modulus base is to be used in the embedding

phase (Sec. 3.3).

The MSOC Encoding Algorithm

Input: The important image, and two positive integers N and T . (Set T to 1 if
the extracted important image is required to be error-free.)

Output: The MSOC code of the important image.

Step 1: According to raster scan order, take the next not-yet-processed “pixel” Pc

from the important image. Note that Pc is a pixel in MSOC algorithm,
rather than a block.

Step 2: Without the loss of generality, assume that the left adjacent pixel of Pc is
the starting search point. Generate 2N SPs from a predefined search path.
Note that a pixel whose value equals to a value that has already appeared
in some previous SPs (of Pc) of the current search path shall be skipped,
and no SP value will be assigned to a skipped pixel. From the set of SPs,
we will be only interested in the SPs whose values are similar to the value
of Pc (up to a threshold T), i.e.

Sc = {SPj : |value(SPj) − value(Pc)| < T, 0 ≤ j ≤ 2N − 1}. (5)

Step 3: If Sc is not empty, then the original pixel value of Pc is replaced by
MSOC(Pc), which is defined as the element in Sc whose value is most
similar to the value of Pc, i.e.

MSOC(Pc) = arg
j

min
SPj∈Sc

{|value(SPj) − value(Pc)|}, (6)

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1222 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

where the arg(·) operator returns the position-code (a N -bits binary string
since the predefined search path in Step 2 has 2N SPs) of the point SP∗

j

in Sc satisfying |value(SP ∗
j) − value(Pc)| = minSPj∈Sc{|value(SPj) −

value(Pc)|}. However, if Sc is empty, then the original pixel value (OPV)
of Pc is used as the output. As in traditional SOC scheme, we also add an
extra indication bit (the flag) in order to distinguish between an MSOC
and an OPV.

Step 4: Repeat Steps 1 to 3 until all pixels of the important image is processed.

Below we use Fig. 1 again to explain MSOC. Note that every cell in Fig. 1 should
now be explained as a pixel, rather than an image block or a VQ-index. Assume
the threshold T is set to 2, and the value of the pixel (1, 1) is 77. Let Pc = (3, 3)
be the current pixel. By Step 2 of the MSOC algorithm mentioned above, the gray
values in the candidate set Sc of pixel (3, 3) is {75 (00), 76 (10)}. Since the value
76 is the closest (in fact, identical) to the value of the current pixel (3, 3), the value
of (3, 3) will be encoded using the code “(010)2” by Step 3 above. The underlined
bit 0 is the indicator bit, and the following two bits “10” indicate the pixel value
can be found using a previous pixel at position (10)2 in the search-path.

In the other example, assume that the values of the pixels (2, 2), (3, 1), and
(3, 2) are all 78 rather than 75, and the value of the pixel (2, 1) is 79 rather than
76. Then, since none of the values {78, 79, 74} is so close to value(Pc) = 76 that
the difference is less than the threshold T = 2; Step 2 of the MSOC algorithm
implies that the candidate set Sc of the pixel (3, 3) is an empty set. In other words,
no tolerable match of the pixel (3, 3) can be found. Therefore, the pixel (3, 3) is
encoded as “(101001100)2” where 1 is the flag bit, and (01001100)2 = (76)10 is the
original pixel value (OPV) of the pixel (3, 3).

3.2. The pseudo-random permutation of location

Before embedding the produced MSOC code in cover image, to increase the level
of security, we will permute the MSOC code by using a pseudo-random process.
Reference 4 had adopted a mono-alphabetic substitution cipher algorithm11 to ran-
domize their important image before doing their LSB-related embedding process.
However, we do not intend to use the mono-alphabetic substitution cipher algo-
rithm in the current approach, for the reason stated below. Figure 3(b) shows the
result of applying the mono-alphabetic substitution cipher algorithm to the image
shown in Fig. 3(a), and it is obvious that there are still some regular patterns in
Fig. 3(b). In other words, the result is not quite random. Therefore, we design here
another pseudo-random permutation method based on the Mersenne Twister (MT)
pseudo-random number generator.9

Assume that the output code of the MSOC is treated as a binary string, and the
bit locations in the binary string are numbered sequentially from 0 to S–1, where
S is the size of the binary string. Our pseudo-random permutation is to transform
each bit location i of the binary string to a new location f(i).

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1223

The pseudo-random permutation algorithm

Input: A binary stream which is the MSOC output code of an important image.

Parameter settings: Randomly choose a 32-bit integer greater than 0. This is the
so-called “seed” for the MT pseudo-random number gener-
ator. With this seed, a series of pseudo-random real num-
bers Rj (j = 0, 1, 2, K, 219937 − 1), which are uniformly dis-
tributed on [0, 1]-interval, can be generated by the Mersenne
Twister (MT) pseudo-random number generator.9

Output: The randomized form of the MSOC output code.

Step 0: Initially, set i = −1.
Step 1: Increase i by 1. The ith bit of the MSOC binary string will be permuted

to a new location f(i), as computed by Steps 2–4 below.
Step 2: Get next not-yet-taken fraction-number Rj from the MT series.
Step 3: The new location f(i) is computed by

f(i) = int(Rj × (S − 1)) (7)

where the int(·) operator means getting the integer part of a real number.
Step 4: If the new location f(i) is a repetition, return to Step 2 to get the

next Rj .
Step 5: Repeat Steps 1 to 4 until the entire binary strings are processed (i = S−1).

By the above pseudo-random permutation algorithm, the output code of the
MSOC procedure mentioned in Sec. 3.1 is permuted into a pseudo-random code to
enhance the security property of our scheme. The seed used in the MT algorithm
can be regarded as a secret key; and only the authorized extractor who owns the
same secret key can obtain the same sequence of pseudo-random real numbers to
recovery the MSOC code in the decoding phase.

Of course, the above pseudo-random permutation algorithm can also be used
to permute pixels of any image. Just replace the term “bit location” by “pixel
location”, and treat the whole input image as a sequence of S pixels. When we use
this “pixel” version to randomize the Pepper image in Fig. 3(a), the result is in
Fig. 3(c). Compare Figs. 3(b) and 3(c), it is quite clear that our pseudo-random
permutation algorithm has better randomness. In this example, the seed of the
MT algorithm is set to 4357, and S = 512 × 512 = 262,144, because Fig. 3(a)
has 512 × 512 pixels. When the seed is 4357, the MT generator creates a series of
fraction numbers whose first five numbers R0–R4 are {0.817330, 0.999061, 0.510354,
0.131533, 0.035416}. Hence, by Step 3 of the above pseudo-random permutation
algorithm, the new locations f(0) − f(4) are {214,257, 261,896, 133,785, 34,480,
9284}. It means that the location 0 is transformed to the new location 214,257,
location 1 is transformed to the new location 261,896, and so forth.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1224 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

(a) Pepper

(b) (c)

Fig. 3. The results of randomization of the image in (a). Here, the mono-alphabetic substitution
cipher algorithm11 (b) is used and (c) using our process described in Sec. 3.2.

3.3. The modulus embedding phase on partitioned pixels

After the aforementioned pseudo-random permutation phase, the randomized code,
which is a binary string, is ready to be embedded in a cover image. To obtain high
hiding-capacity and yet still keep good image quality of the stego-image, we need
to estimate the hiding capacity pixel-by-pixel in the cover image. We will use a
phenomenon found in human visual system (HVS), namely, hiding more data in
the area where the gray values change much.

As defined in Sec. 2.2, the symbol yij denotes the gray value of the pixel at
position (i, j) in the cover image. Apparently, 0 ≤ yij ≤ 255, and the cover image

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-092.jpg&w=168&h=168
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-093.jpg&w=168&h=168
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-094.jpg&w=168&h=168

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1225

is {yij : 0 ≤ i ≤ h − 1, and 0 ≤ j ≤ w − 1} if the size of the cover image is
h-by-w. Analogously, let ŷij denote the gray value of the pixel at position (i, j) in the
stego-image. Then, for each position (i, j), to create pixel (i, j) of the stego-image,
the variance varij is defined according to the values of the three already-obtained
adjacent “stego” pixels (i, j − 1), (i − 1, j − 1), and (i − 1, j), with lead pixel
(i, j) when the image is transformed from cover to stego. Without the loss of
generality, we may just define

var ij =

∞ if i = 0 or j = 0;

(ŷij−1 − ȳ)2 + (ŷi−1j−1 − ȳ)2 + (ŷi−1j − ȳ)2

3
otherwise,

(8)

where ȳ denotes the mean of ŷij−1, ŷi−1j−1, and ŷi−1j . Note that, for simplicity,
the varij value of the pixels which are either in the first row or in the first column
of the cover image are set to infinity. After calculating the varij of each pixel in
the cover image, the pixels of the cover image are classified into two groups: one is
the edge group GE which contains those pixels whose varij values are larger than a
predetermined threshold Vcut, and the other group is the smooth group GS which
contains pixels whose varij values are not more than Vcut. Apparently, according
to Human Visual System, we can hide more bits in the pixels in edge group than in
the smooth group. Therefore, a modulus function with a large modulus base ME

will be applied to embed data in GE , and another modulus function with a small
modulus base MS is utilized to embed data in GS .

The embedding procedure using variance-based modulus function is as follows.
According to the raster scan-order, we sequentially take a pixel (i, j) from the cover
image, and call its pixel value yij(0 ≤ yij ≤ 255). Then, if the varij value of this
pixel is greater than Vcut, we set the modulus base MO to ME ; else set MO to MS .
Now, sequentially grab next �log2 Mo� not-yet-embedded bits from the randomized
code to form a short length data x (0 ≤ x < MO). Then we embed x in pixel (i, j)
by replacing its gray value from yij to the resulting pixel value ŷij . The embedding
equation is

ŷij = x + MO × rounding
(

yij − x

MO

)
(9)

where the rounding(·) operator means rounding its content to the nearest integer.
Of course, we need to check whether ŷij falls in the valid range 0 ≤ ŷij ≤ 255. If it
is out of the range, then ŷij should be adjusted by

ŷij =

{
ŷij + MO if ŷij < 0;

ŷij − MO if ŷij > 255.
(10)

By sequentially processing each pixel (i, j) of the cover image using the above
proposed embedding procedure introduced here, the randomized code produced
from Sec. 3.2 can be embedded in the pixels of the cover image.

Notably, in the above, about whether ME or MS should be used, the deci-
sion rule is according to the variance rather than the pixel value itself. Below we

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1226 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

(a) (b)

Fig. 4. The stego-images obtained by embedding a 256 × 512 important image Jet [Fig. 6(a)] in
a 512 × 512 Lena (Fig. 5). (a) The stego-image obtained by the pixel-based method13 (PSNR =
31.05 dB); (b) the stego-image by using our variance-based method (PSNR = 34.76 dB).

explain why. Figure 4 is the stego-image obtained when our embedding process is
replaced by the embedding method introduced in Ref. 13, which are quite similar
to ours, except that they used pixel value directly (rather than using variance) in
the decision rule. To obtain Fig. 4(a), the 256× 512 important image “Jet” shown
in Fig. 6(a) is embedded in Fig. 5(a). The threshold V (see Sec. 2.2) is set to 160,
and two modulus bases are set to MU = 32 and ML = 16, the same as suggested in
Ref. 13. In other words, when the gray value of a cover image pixel is larger than
160, five bits of the hidden data are embedded in this pixel. On the other hand,
when the gray value is not more than 160, then only four bits of the hidden data are
embedded in this pixel. Obviously, there are some pockmarks on the shoulder and
face of Lena in Fig. 4. Artificial distortion appears on the shoulder and forehead
of Lena where pixel values vary smoothly and yet the gray values are often larger
than 160. Hence, the pixel value might not be a suitable criterion to estimate the
hiding capacity of a pixel in the cover image.

3.4. The extraction procedure for the decoding

The extraction steps for revealing the important image are as follows.

(a) For a given stego-image, we first use Eq. (8) to compute the varij value of each
pixel (i, j) of the stego-image, and then the modulus base MO of each pixel
can be determined by comparing varij with the threshold Vcut.

(b) Extract the randomized MSOC code (a binary stream) from the stego-image.
This is achieved by sequentially processing each pixel of the stego-image, with

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-113.jpg&w=174&h=174
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-114.jpg&w=174&h=174

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1227

the raster scan order, and the extraction equation

x = ŷij (mod MO) (11)

to obtain the hidden data x from pixel (i, j). Of course, convert each x (0 ≤ x <

MO) to its binary equivalent before processing the next pixel of the stego-image.
(c) Obtain the same series of pseudo-random fraction numbers, which are used in

the pseudo-random permutation phase (Sec. 3.2), by running the MT pseudo-
random number generator9 with the same seed. Then, do inverse permutation
to obtain the nonrandomized MSOC code stream.

(d) Fetch a bit sequentially from the (remaining) MSOC code stream; it is an
indicator bit in our MSOC scheme.

(e) If the indicator bit obtained in step (d) is 0, fetch N bits from the remaining
MSOC code stream. Then, according to these N bits and our MSOC pre-
determined search path, locate the corresponding search position in the par-
tially reconstructed important image. Use the pixel value at the pointed pixel
position to paint the gray value of the current pixel position in the reconstructed
image.

(f) If the flag bit obtained in step (d) is 1, fetch eight bits from the remaining
MSOC code stream, and directly assign these eight bits to the pixel value of
the current position in the reconstructed image.

(g) Repeat steps (d) through (f) until all of the data in the MSOC code stream are
processed.

(h) The generated image is the revealed important image.

4. Experimental Results

All images in the experiments are eight-bit gray-scaled. In each experiment, one of
the important images is embedded in the cover image. As suggested in Ref. 5, we
set N = 2, i.e. we also use two-bit string to record each MSOC position. As for the
value of our threshold Vcut and the values of the two modulus bases ME and MS ,
they are all dynamic according to the total size of MSOC code. (Notably, the total
size of MSOC code is affected by the threshold value T in turn.)

In the MSOC encoding algorithm, set T to 1 if the extracted important image
is required to be error-free. On the other hand, use a larger value of T if the cover
image is not much bigger than the important image; for example, when both images
are of 512 × 512.

In the first experiment we hide an important image in a cover image of the
same size. Figure 5 shows an example of the hiding result in this experiment, where
Fig. 5(a) is the cover image “Lena” of size 512×512, and Fig. 5(b) is the important
image “Jet” of size 512 × 512. The obtained stego-images using thresholds T = 7
and 9 are as shown in Figs. 5(c) and 5(d), respectively. The corresponding lossy
version of the important images extracted from Figs. 5(c) and 5(d) are shown
in Figs. 5(e) and 5(f), respectively. Finally, the settings of the experimental

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1228 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The first experiment. (a) The cover image “Lena” with 512×512 pixels; (b) the important
image “Jet” with 512× 512 pixels; (c) and (d) the stego-images obtained by embedding Fig. 5(b)
in Fig. 5(a) with threshold values T = 7 and 9, respectively; (e) and (f) the extracted important
images from Figs. 5(c) and 5(d), respectively.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-131.jpg&w=144&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-132.jpg&w=144&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-133.jpg&w=144&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-134.jpg&w=144&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-135.jpg&w=144&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-136.jpg&w=144&h=144

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1229

Table 1. The parameters used in our experiments to embed an important image of size 512×512.
The PSNR values (marked as “stego”) are between the stego-image and cover image, and the
PSNR values (marked as “extracted”) are between the extracted important image and original
important image.

Cover Important Parameters and (ME = 16, MS = 8)

Image Image PSNR T = 7 T = 8 T = 9 T = 10 T = 11

Lena Jet Threshold (Vcut) 14 16 20 24 32

(512 × 512) PSNR (stego) 37.12 37.56 38.05 38.31 38.70

PSNR (extracted) 41.77 40.55 39.50 38.77 37.87

Tiffany Threshold (Vcut) 29 42 55 70 98

(512 × 512) PSNR (stego) 38.62 38.96 39.40 39.63 39.83

PSNR (extracted) 41.43 40.15 39.36 38.66 37.66

parameters, and the PSNR values of the stego-images and the extracted versions of
the important image, are summarized in Table 1. From Table 1, we can see that the
qualities of the stego-images are acceptable (the PSNRs between the stego-images
and the original cover image are all greater than 36.0 dB). It is also hard to distin-
guish between Fig. 5(b) and those in Figs. 5(e) and 5(f) using naked eyes, and the
PSNRs between the extracted lossy versions and the original version of the impor-
tant image are all greater than 37.0 dB. Note that the extraction is lossy because
we try to embed a 512 × 512 image in another 512 × 512 image of the same size,
which is just impossible for us to set T = 1.

In the second experiment we hide an important image whose size is half of the
cover image. Figure 6 shows some examples of the hiding result in this experiment.
The settings of the experimental parameters, and the PSNRs of the stego-images
and the extracted important images, are listed in Table 2. From the PSNRs in
Table 2, we can see that the qualities of the stego-images are good, for the PSNRs
between the stego-images and the original cover image are all between 40.0 dB and
46.8dB. The qualities of the extracted important images are also high, for the
PSNRs between the extracted important images and the original important image
are between lossless (∞) and 44.4 dB. Notably, the recovered important image is
error-free when we use the most strict value T = 1. As a remark, when T = 3, the
ME and MS computed by Step (3) of Sec 5.1 are (ME = 8, MS = 4) for image
Jet, different from the (ME = 4, MS = 2) for image Tiffany; this should be of no
surprise because the total number of bits in the produced MSOC codes are different
for these two images.

To know the performance of our scheme, the PSNRs of the stego-image obtained
in our scheme are compared in Table 3 with those elegant methods reported in lit-
erature. Note that in Ref. 6, the important image is first compressed using the VQ
technique, and then the VQ indices and the encoded codebook are embedded in a
cover image by the LSB substitution method. Therefore, in the comparison with
Ref. 6, we also use the VQ technique to compress the important image before

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1230 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

(a) (b)

(c) (d)

(e) (f)

Fig. 6. The second experiment about hiding the middle-size (256× 512 pixels) important image.
(a) The important image “Jet”; (b) the important image “Tiffany”; (c) and (d) the stego-images
obtained by embedding Figs. 6(a) and 6(b) in Fig. 5(a) with threshold values T = 1 and 3,
respectively; (e) and (f) the extracted important images from Figs. 5(c) and 5(d), respectively.
Note that (e) is identical to Fig. 6(a) without any loss.

hiding, and then encode the VQ index file using the MSOC algorithm with
the threshold T = 1 before using the pseudo-random permutation or the
modulus embedding procedure. Of course, both the MSOC output code and
the encoded codebook are randomized and embedded in the cover image. In
Table 3, the symbol α means that the experiment used this special VQ approach.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-157.jpg&w=174&h=86
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-158.jpg&w=174&h=86
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-159.jpg&w=174&h=174
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-160.jpg&w=174&h=174
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-161.jpg&w=174&h=86
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-162.jpg&w=174&h=86

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1231

Table 2. The parameters used in our experiments to embed the important image of size 256×512.
The PSNR values (marked as “stego”) are between the stego-image and cover image, and the
PSNR values (marked as “extracted”) are between the extracted important image and original
important image.

Cover Important Parameters and The Tolerance Parameter T

Image Image PSNR T = 1 T = 2 T = 3 T = 4 T = 5

Lena Jet ME/MS ME = 16, ME = 8, MS = 4 ME = 4, MS = 2

(256 × 512) MS = 8

Threshold (Vcut) 90 12 130 0.6 0.8

PSNR (stego) 39.80 43.68 45.75 46.61 46.83

PSNR (extracted) Error-free 52.83 49.12 46.22 44.40

Tiffany ME/MS ME = 16, ME = 8, ME = 4, MS = 2

(256 × 512) MS = 8 MS = 4

Threshold (Vcut) 16 11 0.2 1 1.5

PSNR (stego) 37.54 43.57 46.43 46.94 47.18

PSNR (extracted) Error-free 52.18 48.40 45.68 43.80

Notably, Refs. 1, 12–14, 16 did not process any important image of size as big as
the 512× 512 cover image, so we only list in Table 3 the experimental data copied
from Refs. 3 and 6 when the important image is 512 × 512.

In order to make a fair comparison, we show the results of our two versions
in Table 3. One version is without MSOC compression, the other version is with
MSOC compression. The MSOC version has a PSNR much better than the PSNRs
of all other listed methods; and this should be of no surprise because MSOC reduces
the size of the important image. Below we focus on the without-MSOC version.

Since Ref. 1 outperformed the remaining reported methods listed in Table 3, we
compare our without-MSOC version with Ref. 1, as follows. When the bpp (bits
per pixel, here interpreted as the number of bits in the important image over the
number of pixels in the cover image) is an integer, then the PSNR of the stego-image
in our without-MSOC version is less than, but very close to, that of Ref. 1. The
phenomenon can be seen in Table 3. For instance, when we embed the 256 × 256
Tiffany (or 256×512 Tiffany) in a 512×512 Lena, the bpp 256×256×8/512×512 = 2
(or 256 × 512 × 8/512 × 512 = 4) is an integer; then the stego-image’s PSNR is
46.33dB (or 34.74dB) in our method, and 46.37dB (or 34.84dB) in Ref. 1. [The
difference is only 0.04dB (0.1 dB).]

However, when the bpp is not an integer, then our stego-image’s PSNR (the
without-MSOC version) is higher than that of Ref. 1. To show this, we embed
the important image Jet of various sizes into the 512 × 512 cover image Lena
[Fig. 5(a)], without using MSOC. The experimental results are shown in Fig. 7(a).
One such example is to embed a 320×320 Jet into the 512×512 Lena, which means
the bpp is 320 × 320 × 8/(512 × 512) = 3.125; and it is found that our 39.32dB
stego-image is better than the 35.90dB stego-image of Ref. 1. Figure 7(b) is the

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1232 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

Table 3. A comparison between some published methods and our scheme.

Cover Size of the Important PSNR of PSNR of Stego-Image
Image Scheme Image Extracted

Lena [3] 256 × 256 Tiffany Error-free 44.90*(44.90*)

(Baboon)
[3] 256 × 256 Jet Error-free 44.53* (44.54*)

[4] 256 × 256 Tiffany Error-free 46.37* (46.38*)

[9] 256 × 256 Jet Error-free 38.85*

[12] 256 × 256 Jet Error-free 44.08* (44.03*)

ours without MSOC 256 × 256 Tiffany Error-free 46.33 (46.32)

ours without MSOC 256 × 256 Jet Error-free 46.33 (46.31)

ours 256 × 256 Tiffany Error-free 47.52 (47.58)

ours 256 × 256 Jet Error-free 47.76 (47.78)

[3] 256 × 512 Tiffany Error-free 32.90* (32.95*)

[3] 256 × 512 Jet Error-free 32.71* (32.79*)

[4] 256 × 512 Tiffany Error-free 34.84* (34.79*)

[11] 256 × 512 Tiffany Error-free 34.80*

[11] 256 × 512 Jet Error-free 34.76*

[12] 256 × 512 Jet Error-free 31.05* (31.09*)

ours without MSOC 256 × 512 Tiffany Error-free 34.74 (34.73)

ours without MSOC 256 × 512 Jet Error-free 34.76 (34.73)

ours 256 × 512 Tiffany Error-free 37.54 (37.81)

ours 256 × 512 Jet Error-free 39.80 (39.79)

[6] 512 × 512 Jet 30.01* 32.50*

[7] 512 × 512 Tiffany 32.02* 44.42*

oursα without MSOC 512 × 512 Tiffany 32 .02α 51 .68 α (51.69α)

oursα without MSOC 512 × 512 Jet 31 .43α 51 .69 α (51.69α)

ours 512 × 512 Tiffany 32 .02α 53 .37 α (53.37α)

ours 512 × 512 Jet 40 .55 37.69 (37.81)

(“*” means “quoted from the reported papers”, and “α” means “the input of the MSOC is the

VQ index file of the important image, rather than the important image itself”)

average of 30 tests (30 tests for each bpp value), in which each test uses one the
30 important images {Lena, Jet, Tiffany, Baboon, Barbara, Boat, Bridge, Couple,
Elaine, Family, Gold, House, Milk, Painting, Pepper, Scene, Tank, Toys, Woman,
Zelda, Girl, Cameraman, Beach, Car, Iran, Logo, Map, Mickey, Satellite image,
X-ray image} of a specified size. In general, as shown in Fig. 7, if the bpp is not
an integer, then our stego-images’ PSNR are better than the stego-images’ PSNR
of Ref. 1. This is because Ref. 1 was originally designed to use t-bits LSB in a
finer manner, and their t were integers; as a result, when the number of bits in the
important image was, for example, 3.125 times larger than the number of pixels in
the cover image, then they could not use t = 3 bits LSB; instead, they needed to

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1233

Stego-image: Lena

20

25

30

35

40

45

50

2 2.22 2.39 2.57 2.75 3 3.13 3.32 3.53 3.74 3.96 4

Bits per pixel (bpp)

PS
N

R
 (

dB
)

Ours

Ref. 1

(a)

Stego-image: Lena

20

25

30

35

40

45

50

2 2.22 2.39 2.57 2.75 3 3.13 3.32 3.53 3.74 3.96 4

Bits per pixels (bpp)

A
ve

ra
ge

 P
SN

R
 (

dB
)

(A
ve

ra
ge

 o
f

30
 te

st
s

at
ea

ch
 b

pp
 v

al
ue

)

Ours

Ref. 1

(b)

Fig. 7. The comparison of stego-image’s quality between Ref. 1 and our no-MSOC version, when
the cover (stego) image is Lena. (a) Jet is used as the important image; (b) the average of testing
30 important images (so, 30 tests for each bpp value).

use t = 4. Therefore, their distortion curve has a sudden jump (while our PSNR
curve has no such jump).

In conclusion, as shown in Fig. 7, when the number of “bits” in the important
image is an integer multiple of the number of “pixels” in the cover image, i.e. when
the bpp is an integer, then use Ref. 1, for their PSNR is better than ours (they lead
us by an amount between 0.04 dB and 0.1 dB in Table 3). However, when the bpp
is not an integer, then use ours.

As for the experiment done by Wu and Tsai,15 they used a Word-format file,
rather than an image, as the hidden important data. To compare with Ref. 15, we

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1234 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

try to embed a Word-format file with 50,960 bytes in an extra experiment. If the
cover image is the 512 × 512 Lena, the PSNR of the stego-image Lena obtained
by Ref. 15 is 41.79dB. On the other hand, our stego-image’s PSNR is 47.65dB
even if we do not use the MSOC compression (the PSNR would have been better
than 47.65dB if MSOC had been used). Analogously, when trying to embed a
Word-format file of 25,940 bytes, their PSNR is 48.43dB and ours is 51.89dB when
MSOC is not used. In summary, our method can also compete with Ref. 15.

About the (net) embedding rate of our scheme, the MSOC reduced the 256 ×
256 Jet (and 256 × 256 Tiffany) from 256 × 256 = 65,536 bytes to 51,817 bytes
(and 53,467 bytes) with threshold T = 1 before embedding. Similarly, the MSOC
reduced the 256 × 512 Jet and 256 × 512 Tiffany from 256 × 512 = 131,072 bytes
to 100,989 bytes (and 109,054 bytes) with threshold T = 1 before embedding. So,
the (pure) embedding rate for the 512 × 512 cover image Lena mentioned in the
experiments and Table 3 is 51,817× 8/(512 × 512) = 1.58 bits per pixel (bpp) for
the compressed code of 256 × 256 Jet (and 53,467 × 8/(512 × 512) = 1.63bpp for
256×256 Tiffany), and 100,989×8/(512×512) = 3.08 bpp for the compressed code
of 256 × 512 Jet (and 109,054× 8/(512× 512) = 3.33bpp for 256 × 512 Tiffany).

In summary, to hide Jet’s MSOC code, according to Table 3, we obtained
47.76dB stego-image Lena when the (net) hiding rate is 1.58 bits per pixel; and
obtained 39.80dB stego-image Lena when the (net) hiding rate is 3.08 bits per
pixel. Analogously, to hide the source data of image Jet directly without using
compression, we obtained 46.33dB stego-image Lena when the hiding rate is
256 × 256 × 8/(512 × 512) = 2 bits per pixel; and obtained 34.76dB stego-image
Lena when the hiding rate is 256× 512 × 8/(512 × 512) = 4 bits per pixel.

To ensure that the proposed method can work well for most of the images,
we test 30 important images {Lena, Jet, Tiffany, Baboon, Barbara, Boat, Bridge,
Couple, Elaine, Family, Gold, House, Milk, Painting, Pepper, Scene, Tank, Toys,
Woman, Zelda, Girl, Cameraman, Beach, Car, Iran, Logo, Map, Mickey, Satellite
image, X-ray image}. Each image has three kinds of size: 256 × 256, 256 × 512,
and 512 × 512. So there are in fact 30 × 3 = 90 images. Each time one of these 90
important images is hidden in the 512× 512 cover image Lena shown in Fig. 5(a).
The results are shown in Table 4, from where we can see that, to hide a 256 × 512
important image using the threshold T = 3, the PSNR of the extracted image is
about 48.89dB and the PSNR of the stego-image is about 43.97dB. So both the
qualities of the extracted and stego-image are acceptable. Analogously, when we
use T = 8 to hide one of the 30 important images whose sizes are all as large as
the 512 × 512 cover image, the PSNR of the extracted image is about 39.88dB in
average, and the PSNR of the stego-image is about 37.24dB in average. Therefore,
the proposed method can still work for most of the large images.

We also try another 30 tests; and the cover image in each test is one of the thirty
512 × 512 images {Lena, Jet, Tiffany, Baboon,. . . , Mickey, Satellite image, X-ray
image} mentioned above. Table 5 summarizes these 30 tests. From Table 5, we can

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1235

Table 4. The results of testing 30 important images.

Size of each 30 Extracted Images 30 Stego-Images

Important PSNR SNR PSNR PSNR
Image Versions (Range) (Average) (Range) (Average)

No MSOC Error-free Error-free 46.31–46.35 46.335
256 × 256

T = 1 in MSOC Error-free Error-free 46.08–51.40 47.480

256 × 512 T = 3 in MSOC 47.75–52.29 48.886 38.16–47.84 43.968

512 × 512 T = 8 in MSOC 38.64–43.66 39.881 30.60–40.56 37.242

Table 5. The results of testing 30 cover images.

Cover Size of the Important PSNR PSNR
Images Scheme Image (extracted) (stego)

30 tests ours without MSOC 256 × 256 Tiffany Error-free 46.28–46.34
using ours without MSOC 256 × 256 Jet Error-free 46.27–46.35
30 ours 256 × 256 Tiffany Error-free 47.51–47.61
cover ours 256 × 256 Jet Error-free 47.62–47.81
images

ours without MSOC 256 × 512 Tiffany Error-free 34.71–34.78
ours without MSOC 256 × 512 Jet Error-free 34.70–34.79
ours 256 × 512 Tiffany Error-free 37.50–37.86
ours 256 × 512 Jet Error-free 39.76–39.83

oursαwithout MSOC 512 × 512 Tiffany 32 .02α 51 .65α–51 .72 α

oursαwithout MSOC 512 × 512 Jet 31 .43α 51 .66α–51 .72 α

oursα 512 × 512 Tiffany 32 .02α 53 .32α–53 .44 α

oursα 512 × 512 Jet 31 .43α 53 .45α–53 .58 α

ours 512 × 512 Tiffany 40 .15 38.74–39.21
ours 512 × 512 Jet 40 .55 37.36–37.83

“α” means “the input of the MSOC is the VQ index file of the important image, rather
than the important image itself”.

see that the proposed method is stable (has a narrow range) for using different
images as the cover image.

As for the processing time, the average encoding/decoding time of our method
are shown in Tables 6 and 7. From Tables 6 and 7, we can see that the larger the size
of the important image, the higher is the encoding/decoding time. Note that, all
programs in the current paper were implemented by using the Borland C++ Builder

Table 6. The encoding time of the separate procedure in our method
(unit: second).

Size of Important Image MSOC Permutation Embedding Total

256 × 256 0.203 0.406 0.078 0.687

256 × 512 0.375 0.483 0.085 0.943

512 × 512 0.723 0.667 0.093 1.483

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1236 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

Table 7. The decoding time of our
method (unit: second).

Size of Important Image Decoding

256 × 256 0.599

256 × 512 0.734

512 × 512 1.197

6.0, and ran on a notebook with Intel Pentium Processor M-740 (1.73GHz) and
512MB RAM under the operation system of Microsoft Windows XP Professional.

5. Discussions

5.1. Parameter setting

Because the extracted image is the compression result of the important image with
the threshold T , the quality of the extracted image is determined by the threshold
T . (The larger the threshold T , the higher is the compression ratio; i.e. the larger
the threshold T , the lower is the quality of the extracted “important image”.)

On the other hand, once the MSOC code (the compression result) is generated,
the MSOC code is fixed (so the quality of the important image recovered in the
future is also fixed). To hide this fixed MSOC file, we determine the suitable Vcut

value so that we can avoid causing too much distortion to the cover image (as long
as the “whole” MSOC code file can be hidden in the cover image completely). So,
the Vcut value determines the quality of the “stego-image”. In general, the larger
the Vcut value, the better is the quality of the stego-image. However, the Vcut value
cannot be too large; otherwise, there will not be enough space in the cover image
to hide the whole MSOC code file.

Therefore, about parameters setting, we proceed as follows

(1) We first determine a value of T according to the size of the important image.
(For example, Table 1 uses a larger T (between 7–11) because its important
image size 512×512 is larger than the important image size 256×512 in Table 2,
which uses a smaller T (between 1–5).

(2) Then get the MSOC code corresponding to this T .
(3) Since we want to hide the MSOC code in the cover image, the bits per pixel

(bpp) used to measure the (net) embedding rate is

bpp =
The total number of bits in the MSOC code

The total pixels of the cover image
. (12)

Then, let MS = 2�bpp� and ME = 2�bpp�, where �·� and �·� are the ceiling
and floor functions to get two closest integers of bpp.

(4) Then, to avoid damaging the cover image too much, we start from a large value
of Vcut.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1237

(5) If the MSOC code cannot be embedded completely in the cover image using this
Vcut value, then try to hide again using a smaller Vcut value. Repeat reducing
the Vcut value if necessary.

As a final remark of this Sec. 5.1, note that in our method, since the
input to the embedding algorithm (Sec 3.3), is in fact the MSOC code, and
the MSOC code can be embedded in cover image and extracted from cover
image without any error; therefore, BER = 0 always holds (BER stands for bit-
error-rate). The fact that BER is always 0 has nothing to do with parameter
setting.

5.2. Using pseudo-random process to increase security level

As in other image-hiding techniques, our stego-images are utilized to reduce the
attention of hackers. However, because the parameters Vcut, MS , and ME are not
necessarily constant, we transmit the values of these parameters along with the
stego-image to the receiver. If a hacker happens to monitor the transmission of a
stego-image, and if he also knows the number of bits (N) used to record MSOC,
then the MSOC code of the important image might be extracted completely, and the
important image is then exposed. (For example, if the hacker has got a MSOC code
(101110110000101111001)2, he can decode the code according to the MSOC algo-
rithm described in Sec. 3.1 to obtain that the three pixels are [OPV(118), MSOC(0),
OPV(121)], and then know the three pixel values are [118, 118, 121].) Therefore,
the pseudo-random process is needed to prevent the important image from being
revealed. The protection is through randomizing the MSOC code before embedding.
To randomize a binary string of length S, there are C(S, K) = S!

(S−K)!K! possible
combinations where K is the number of 1 in the binary string. The possibility of
guessing the right solution is only 1

C(S,K) . In the above example, the possibility is
1

C(21,12) = 1
293,930 . In our experiment, which embeds 256 × 256 Jet into 512 × 512

Lena with threshold T = 3, the size of the MSOC code is 285,762, and K is 106,090,
so the possibility is 1/C(285,762, 106,090). Obviously, there is a very small chance
for the hacker to guess the right combination to obtain the important image. Hence,
the pseudo-random process is utilized to prevent the important image from being
divulged. Note that the seed of the pseudo-random number generator9 can be a
private key known to the sender and the receiver. The hacker can hardly know the
important image without the private key, even if he monitors the whole process
of transmission, and picks the right stego-images from a bunch of coy images sent
along with these stego-images.

6. Summary

In this paper, a steganography scheme is proposed. The scheme contains three
parts: (1) MSOC encoding; (2) pseudo-random permutation; and (3) an embedding
process using variance-based modulus function. The MSOC method makes the

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1238 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

important image more compact and hence more suitable for the embedding pro-
cedure later. A user-specified non-negative integer threshold T is introduced to
control the length of the MSOC code, which in turn affects later the quality of the
extracted important image. If the size of the important image is not small, then
we might need to use a larger value of T to handle the case. However, if the size
of the important image is small, then the readers may just use T = 1 so that the
extracted important image is error-free. Therefore, the use of T provides more flex-
ibility for practical applications. To increase the security level, a pseudo-random
permutation algorithm has been utilized by applying the MT pseudo-random num-
ber generator.9 In the embedding part, we use a variance-based criterion to estimate
the hiding capacity of a pixel in the cover image. The criterion is based on human
visual system (HVS): more bits can be hidden in a pixel of busy area. From the
experimental results, it can be seen that the variance-based estimation is more
suitable than its counterpart in Ref. 13 which uses the pixel value to estimate the
hiding capacity of a pixel.

Experimental results show that the quality of both the stego-images and
extracted important images are competitive to those obtained in many existing
steganograpy methods reported recently. From Table 3, it can be seen that the pro-
posed method can create low-profile stego-images to protect the important image
(because stego-images are with competitive qualities), and yet preserve the fidelity
of the important image. The cover images are not necessarily bigger than the impor-
tant images in our approach. In the future, we might try other related topics, such
as digital watermarking7,8 or corresponding applications.

Acknowledgments

This work was supported by National Science Council, Republic of China, under
grant NSC962221-E-009-039. The authors would like to thank the editor and the
three reviewers for their valuable suggestions.

References

1. C. K. Chan and L. M. Cheng, Hiding data in images by simple LSB substitution,
Patt. Recogn. 37(3) (2004) 469–474.

2. C. C. Chang, M. H. Lin and Y. C. Hu, A fast and secure image hiding scheme based
on LSB substitution, Int. J. Patt. Recogn. Artif. Intell. 16(4) (2002) 399–416.

3. K. L. Chung, C. H. Shen and L. C. Chang, A novel SVD- and VQ-based image hiding
scheme, Patt. Recogn. Lett. 22 (2001) 1051–1058.

4. R. M. Davis, The data encryption standard in perspective, Computer Security and
the Data Encryption Standard, National Bureau of Standards Special Publication
(February, 1978).

5. C. H. Hsieh and J. C. Tsai, Lossless compression of VQ index with search-order
coding, IEEE Trans. Imag. Process. 5(11) (1996) 1579–1582.

6. Y. C. Hu and M. H. Lin, Secure image hiding scheme based upon vector quantization,
Int. J. Patt. Recogn. Artif. Intell. 18(6) (2004) 1111–1130.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

Hiding Images Using Modified Search-Order Coding and Modulus Function 1239

7. Y. C. Hu and M. H. Lin, Fast watermark detection scheme from camera-captured
images on mobile phones, Int. J. Patt. Recogn. Artif. Intell. 20(4) (2006) 543–564.

8. D. C. Lou, J. M. Shieh and H. K. Tso, A robust buyer-seller watermarking scheme
based on DWT, Int. J. Patt. Recogn. Artif. Intell. 20(1) (2006) 79–90.

9. M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator, ACM Trans. Model. Comput.
Simul. 8(1) (1998) 3–30.

10. F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn, Information hiding — a survey,
Proc. IEEE 87(7) (1999) 1062–1078.

11. M. Y. Rhee, Cryptography and Secure Communication (McGraw-Hill Book Co, Sin-
gapore, 1994).

12. C. C. Thien and J. C. Lin, A simple and high-hiding capacity method for hiding
digit-by-digit data in images based on modulus function, Patt. Recogn. 36(12) (2003)
2875–2881.

13. S. J. Wang, Steganography of capacity required using modulo operator for embedding
secret image, Appl. Math. Comput. 164 (2005) 99–116.

14. R. Z. Wang, C. F. Lin and J. C. Lin, Image hiding by optimal LSB substitution and
genetic algorithm, Patt. Recogn. 34(3) (2001) 671–683.

15. D. C. Wu and W. H. Tsai, A steganographic method for images by pixel-value differ-
encing, Patt. Recogn. Lett. 24 (2003) 1613–1626.

16. H. C. Wu, N. I. Wu, C. S. Tsai and M. S. Hwang, Image steganographic scheme based
on pixel-value differencing and LSB replacement methods, IEE Proc. Vis. Imag. Sign.
Process. 152(5) (2005) 611–615.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

September 5, 2008 13:8 WSPC/115-IJPRAI SPI-J068 00674

1240 Y.-J. Chang, R.-Z. Wang & J.-C. Lin

Yu-Jie Chang re-
ceived the B.S. degree
in computer science
and information engi-
neering in 1999 from
National Central Uni-
versity, Taiwan. In 2001,
he received his M.S.
degree in computer and
information science

from National Chiao Tung University. He is
now a Ph.D. candidate in the Computer Sci-
ence Department of National Chiao Tung
University.

His research interests include digital
watermarking, image processing, and pattern
recognition

Ja-Chen Lin received
his B.S. degree in com-
puter science in 1977
and M.S. degree in
applied mathematics in
1979, both from Nation-
al Chiao Tung Univer-
sity (NCTU), Taiwan.
In 1988, he received his
Ph.D. degree in mathe-

matics from Purdue University, USA. Dur-
ing 1981 1982, he was an instructor at
NCTU. From 1984 to 1988, he was a gradu-
ate instructor at Purdue University. He joined
the Department of Computer and Informa-
tion Science at NCTU in August 1988, and
became a professor there.

Dr. Lin is a member of the Phi-Tau-Phi
Scholastic Honor Society.

His research interests include pattern
recognition and image processing.

Ran-Zan Wang re-
ceived the B.S. degree
in computer engineering
and science in 1994 and
M.S. degree in electrical
engineering and com-
puter science in 1996,
both from Yuan-Ze Uni-
versity, Taiwan, R.O.C.
In 2001, he received his

Ph.D. degree in computer and information
science from National Chiao Tung University,
Taiwan. He is currently an Associate Pro-
fessor in the Department of Computer Engi-
neering and Science at Yuan Ze University,
Taiwan.

Dr. Wang is a member of the Phi-Tau-
Phi Scholastic Honor Society.

His recent research interests include
media security, image processing, and pattern
recognition.

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-277.jpg&w=70&h=93
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218001408006740&iName=master.img-278.jpg&w=71&h=93

This article has been cited by:

1. Shang-Kuan Chen. 2011. A module-based LSB substitution method with lossless
secret data compression. Computer Standards & Interfaces 33:4, 367-371. [CrossRef]

2. Lee Shu-Teng Chen, Ja-Chen Lin. 2010. Steganography scheme based on side match
vector quantization. Optical Engineering 49:3, 037008. [CrossRef]

In
t.

J.
 P

at
t.

R
ec

og
n.

 A
rt

if
. I

nt
el

l.
20

08
.2

2:
12

15
-1

24
0.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1016/j.csi.2010.11.002
http://dx.doi.org/10.1117/1.3366654

