
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Int. J. Production Economics

Int. J. Production Economics 115 (2008) 55– 63
0925-52

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/ijpe
Maximizing the reward in the relocation problem with generalized
due dates
B.M.T. Lin a,�, S.T. Liu b

a Department of Information and Finance Management, Institute of Information Management, National Chiao Tung University, Hsinchu 300, Taiwan
b Department of Information Management, National Chi Nan University, Puli 545, Taiwan
a r t i c l e i n f o

Article history:

Received 15 September 2006

Accepted 25 April 2008
Available online 10 May 2008

Keywords:

Relocation problem

Resource-constrained scheduling

Generalized due dates

NP-hardness

Branch-and-bound algorithm
73/$ - see front matter & 2008 Elsevier B.V

016/j.ijpe.2008.04.009

responding author. Tel.: +886 3 5131472.

ail address: bmtlin@mail.nctu.edu.tw (B.M.T
a b s t r a c t

The relocation problem, based on a public housing project in Boston, USA, is a generalized

resource-constrained scheduling problem in which the amount of resources (new housing

units) returned by a completed job (building) is not necessarily the same as the amount of

resources (original housing units) it started out with for processing. In this paper we

consider a variant where several generalized due dates are specified to define the number

of new housing units that should be built in the entire duration of the project. Generalized

due dates are different from conventional due dates in that they are job independent and

common to all jobs. In the present study each generalized due date is given to specify an

expected percentage of completion of the project. Given an initial number of temporary

housing units, the goal is to find a feasible reconstruction sequence that maximizes the

total reward over all generalized due dates. This paper investigates the time complexity of

the problem. Two upper bounds and a dominance property are proposed for the design of

branch-and-bound algorithms. Computational experiments are carried out to assess the

efficiency of the proposed properties. The results show that the proposed properties can

significantly reduce the time required for producing an optimal schedule.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Resource constraints are one of the issues that are the
most commonly addressed in project scheduling and
management (Al-Fawzan and Haouari, 2005; Drezet and
Billaut, 2008; Kobylański and Kuchta, 2007; Mingozzi
et al., 1998; Pesenti and Ukovich, 2003). The study on the
relocation problem arose from a public housing redeve-
lopment project in Boston (PHRG, 1986; Kaplan, 1986). The
goals of the project were to tear down some old buildings
and build new ones in the same area. For this housing
redevelopment scheme, the authorities provided suffi-
cient temporary housing units for the tenants who would
be evacuated from the area being redeveloped. More
specifically, the authorities wanted a construction se-
. All rights reserved.

. Lin).
quence of the new buildings and when and where all the
displaced tenants were to be housed during the redeve-
lopment process. This relocation problem can be looked at
from an optimization point of view, in order to determine
the minimum initial budget guaranteeing a feasible
redevelopment sequence of the buildings. In this paper,
we will consider a variant of the relocation problem that
takes into account check points of the redevelopment.

In most scheduling problems, the due dates are job-
dependent. That is, each due date is associated with a
particular job and each individual job is expected to be
completed before its corresponding due date. Hall (1986)
first introduced the concept of generalized due dates.
When scheduling using generalized due dates, the due
dates are job independent such that a generalized due
date is associated with a certain number of jobs that must
be completed prior to that point in time. The idea of
generalized due dates is commonly adopted in the real
world. For example, a company might have a 2-year

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.04.009
mailto:bmtlin@mail.nctu.edu.tw

ARTICLE IN PRESS

Notation:

J ¼ {1, 2, y, n} set of jobs to be processed
V0 initial resource level
pi processing time of job i

ai amount of resource (housing units) required
for processing job i

bi amount of resource (housing units) returned
at the completion of job i

Dk generalized due date k, k ¼ 1, 2, y, m; note
that Dmþ1 ¼

Pn
i¼1pi

hk expected amount of housing units to be
completed by Dk

Ci completion time of job i

Vt resource level in the common pool at time t

Bk cumulative reward gained at due date Dk, i.e.
Bk ¼

P
CipDk

bi

Z(S)
Pm

k¼1Bk, total reward of particular schedule S

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–6356
contract to produce 100 units of a product with the special
requirement that one batch of 40 units must be delivered
within the first year.

In this paper, we focus on the relocation problem
incorporating generalized due dates. Consider the original
setting of the relocation problem in the housing redeve-
lopment project. The authorities and the construction
company may set several generalized due dates based
upon which they coordinate their transactions, such as
pay by installments, project reviews, and so on. In this
paper, we define a generalized due date as the time by
which an expected percentage of the project is to be
completed. For example, 50% of the newly built capacities
of the project must be completed within the first year, and
the entire project shall be completed at the end of the
second year. At each generalized due date, if the actual
percentage of the completion of the project is less than
that is expected, the authorities may reduce the amount
paid to the construction company as a penalty for the
delay. On the other hand, it increases the amount paid as a
reward for a more rapid progress. Such type of contract is
quite common in the real world (Lock, 1996). For both
theoretical and practical considerations, our study will
investigate this situation.

This paper is organized into seven sections. In Section
2, we present a formal definition of the relocation problem
with generalized due dates. This is followed by a literature
review on the relocation problem and generalized due
dates in Section 3. In Section 4, we present a proof of NP-
hardness for the problem considered. Section 5 is
dedicated to the design of two upper bounds and one
dominance rule for developing a branch-and-bound
algorithm. The computational experiments and numerical
results are given in Section 6. Finally, we draw our
conclusions in Section 7.
2. Problem formulation

In this section, we present a formal description of the
problem under study. Relevant literature on the subject
will also be addressed. Please note that throughout this
paper, job and building, and number of housing units and
amount of resource will be used interchangeably.

Formally, at time zero there is a common pool of V0

units of single-type resource (housing units in the
relocation problem), and a set of jobs (buildings in the
relocation project) J ¼ {1, 2,y, n} is to be processed on a
single machine. Job iAJ has three integer parameters:
processing time pi, amount of resource required ai, and
amount of resource returned bi. At any time t, job i can
only be considered for processing if the resource level Vt in
the common pool is no less than ai, i.e. VtXai. When job i

starts processing, it acquires and immediately consumes ai

units of resource and thus reduces the resource level in
the resource pool by ai. Upon its completion, job i

immediately returns bi units of resource back to the
resource pool. No preemption is allowed, and at any
moment the machine can process at most one job. In the
housing redevelopment project, ai and bi, respectively,
correspond to the numbers of housing units of building i

before and after the redevelopment. The processing of job
set J is associated with m generalized due dates (abbre-
viated as gdd hereafter) D1pD2p?pDm such that each
Dk is an integer belonging to the interval [pmin, P], where
pmin ¼ min{pi|iAJ}and P ¼ SiAJpi. Each Dk is associated
with a threshold or a number of new housing units, hk,
which are expected to be completed by Dk. Given a
feasible construction sequence, we denote Bk as the total
number of new housing units completed by due date Dk. If
Bk is smaller than hk, then the contractor will be penalized
by a cost linearly dependent on hk–Bk. On the other hand,
if the construction progresses well and more units have
been completed than expected, then a reward that is
linearly dependent on Bk–hk will be earned. We assume
the unit penalty and unit reward to be the same. When the
difference Bk–hk is negative, the reward is then interpreted
as a penalty. Given a certain amount of initial resource,
there could be many feasible schedules of a given job set.
The goal of the problem is to find a feasible schedule such
that the sum of rewards over generalized due dates,Pm

k¼1ðBk � hkÞ is maximized. Because
Pm

k¼1hk is fixed once
the input is given, the problem is equivalent to the
maximization of

Pm
k¼1Bk. For notational convenience, we

use the standard three-field notation (Graham et al., 1979)
1|rp, gdd|SBk to specify the problem of interest. The first
field indicates that the problem environment is a single
machine. The second field specifies special restrictions on
the problems and on the jobs. It shows that the gdd
version is considered in the relocation problem (rp). The
third field indicates that the objective is the optimization
of the cumulated reward gained over all generalized due
dates.

Note that when m gdds are specified we do not include
the one where the project is completely finished because
the total processing length P is fixed once the input is
given. Following the convention in the literature on
scheduling, we use indices enclosed within brackets to

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–63 57
denote the positions in a particular schedule. For example,
a[i] is the resource requirement of the i-th job in a
particular schedule, and V[i] is the amount of resource
available when the i-th job in a schedule is finished.

To better understand the definition of the problem, we
consider the set of 5 jobs shown in Table 1. Let us assume
that V0 ¼ 2 and two gdds D1 ¼ 12 and D2 ¼ 24 are given.
Schedule S1 ¼ (3, 4, 2, 5, 1) shown in Fig. 1 is feasible and
has an objective value of 26. Schedule S2 ¼ (3, 5, 2, 4, 1) is
also feasible and its objective value is 31, which is better
than that of S1. Consider another schedule S3 ¼ (4, 5, 2, 3,
1) whose solution value is 35. However, S3 is not feasible
because job 4 is not allowed to start its processing with
V0 ¼ 2. Therefore, schedule S3 will not be considered as a
candidate of the optimal solution. From the above three
example schedules, we can see that it is not easy to find
the optimal schedule while taking the feasibility issue into
account.
3. Literature review

Kaplan (1986) first formulated, through an analytical
study, the relocation problem of determining a construc-
tion sequence of buildings subject to an initial budget
allocated by the authority. The theoretical significance of
Table 1
A set of 5 jobs

Job pi ai bi

1 3 4 1

2 7 10 9

3 9 2 8

4 9 5 10

5 8 4 6

Fig. 1. Example for problem definition.
the relocation problem lies in its mathematical equiva-
lence, established by Kaplan and Amir (1988), to Johnson’s
two-machine flow shop problem (Johnson, 1954). For
more elaboration of the relation between the relocation
problem and two-machine flowshop scheduling, the
reader is referred to Cheng and Lin (2008). From a
practical point of view, it also relates to the memory
management in database systems (Amir and Kaplan,
1988) and a scheduling problem with financial constraints
(Xie, 1997). From the aspect of scheduling theory, we may
say that the relocation problem is a generalized version of
conventional resource-constrained scheduling problems
(Blazewicz et al., 1986, 1989).

Unlike most scheduling problems, the original version
of the relocation problem mainly centers on the feasibility
issue instead of on temporal considerations. However, it is
interesting to note that the relocation problem is
mathematically equivalent to the classical two-machine
flow shop scheduling problem of minimizing the make-
span, i.e. the maximum completion time. In Kaplan’s
study (1986), multiple working crews are assumed, i.e.
more than one building can be simultaneously developed
if the available resource is sufficient, and if the objective is
to design a redevelopment schedule that has the mini-
mum makespan. He proposed a myopic algorithm to
construct approximate solutions. Amir and Kaplan (1988)
showed that this problem is NP-hard by a polynomial
reduction from the Partition problem. For other relevant
studies on the relocation problem, the reader is referred to
Amir and Kaplan (1988), Kaplan and Berman (1988),
Kononov and Lin (2006, 2008), Lin and Tseng (1992, 1993)
and Lin and Cheng (1999). Among these, the work by Lin
and Tseng (1992) is the most relevant to our study. In it
they sought to maximize the number of new rooms that
can be completed before a common due date. This
problem can be treated as a special case of the 1|rp,
gdd|SBk problem considered in this paper.

When gdds are considered in a scheduling problem,
due dates are job independent and related to the entire
project. Each gdd can be regarded as a checkpoint or
milestone. Scheduling problems involving gdds were first
proposed by Hall (1986), who identified two polynomially
solvable cases and some NP-hard problems on a single
machine. He suggested several applications, such as utility
planning problems, survey design and scheduling pro-
blems, in various manufacturing environments. Sriskan-
darajah (1990) described an application from the public
service sector: assume that a number of buses of a public
bus company are under repair. The repair time for a bus is
a function of its mileage and depreciation. All jobs have
their own identities. Due dates are not bus dependent, but
a given number of buses must be served by a certain date.
Hall et al. (1991) described a particular application in the
petrochemical industry, where a number of interchange-
able heat exchangers must be maintained. Hall et al.
(1991) provided an excellent survey on the computational
complexities of the scheduling problems with gdds under
various environments, such as single machine, parallel
machines and shops. The job-dependent due date version
is usually as hard as the gdd version. In some cases, there
are several efficient algorithms to solve job-dependent

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–6358
due date cases in polynomial time, but the gdd versions of
these cases are NP-hard (e.g., the single-machine case of
minimizing maximum lateness with precedence relations;
see Sriskandarajah, 1990). After the publication of Hall et
al. (1991), only a limited number of research works on
scheduling problems with gdds have been reported.
Recently, Mosheiov and Oron (2004) derived two lower
bounds for solving maximum tardiness and total tardiness
problems and compared the values of these bounds with
the SPT heuristic on parallel identical machines.

4. Complexity results

Clarifying the position of a studied problem in the
complexity hierarchy is essential to the choice of meth-
odologies for coping with the problem. Therefore, in this
section, we present some results concerning the complex-
ity status of the 1|rp, gdd|SBk problem. Our study is based
on a polynomial reduction from 3-Partition, which is
strongly NP-hard (Garey and Johnson, 1979).

3-Partition: Given a non-negative integer M and a
set of non-negative integers A ¼ {x1, x2, y, x3t} with
M/4oxioM/2 for each xi and

P3t
i¼1xi ¼ tM, is there a

partition A1, A2, y, At for set A such that
P

xi2Ak
xi ¼ M for

each subset Ak, 1pkpt?

Theorem 1. : The 1|rp, gdd|SBk problem is strongly NP-

hard.

Proof. The decision version of the 1|rp, gdd|SBk problem
is clearly in NP. We now present a polynomial reduction
from 3-Partition. Given an instance of 3-Partition, we
create an instance of 4t jobs as follows:

Let o be a number such that o4tM2. Define
Small jobs: pi ¼ xi, ai ¼ M+xi, bi ¼ 2xi for i ¼ 1, 2,y, 3t;
Large jobs: p3t+i ¼ io, a3t+i ¼ M, b3t+i ¼ 3M for i ¼ 1, 2,

y, t;
Generalized due dates: Dk ¼

Pk
l¼1ðloþMÞ ¼

kðkþ 1Þo=2þ kM, k ¼ 1, 2, y, t;
Initial resource level: V0 ¼ M.
The above two instances show that there is a partition

as specified for set A if and only if there is a feasible
schedule for the 1|rp, gdd|SBk problem whose total reward
is no less than 5t(t+1)M/2.

IF: Let A1, A2, y, and At be a partition of set A as
specified in 3-Partition. We construct a schedule 3t+1, J1,
3t+2, J2, y, 4t, Jt for the 1|rp, gdd|SBk problem, where Jk,
1pkpt, denotes the set of jobs defined by the elements in
Ak. The configuration is shown in Fig. 2. First, it is easy to
Fig. 2
know that this schedule is feasible. Second, the comple-
tion time of the last job in Jk, 1pkpt, is k(k+1)o/2+kM,
which is equal to Dk and the number of new rooms
completed at this point is 5kM. Therefore, the total reward
of the schedule gained over all gdds is 5M+10M+?
5tM ¼ 5t(t+1)M/2.

ONLY_IF: Let S be a feasible schedule with a total
reward no less than 5t(t+1)M/2. Because the large jobs are
the same except for the fact that jobs with larger indices
have longer processing times, we may assume without
loss of generality that in schedule S the large jobs are
scheduled in the increasing order of their indices. Because
small jobs have negative contributions (bi–aio0), sche-
duling any small job first will result in an insufficiency of
resource for the processing of its successor. Therefore,
large job 3t+1 must be scheduled at the first position so as
to ensure feasibility. The remainder of our proof is to show
that the inequality

Pk
l¼1Blp5 kM will hold.

Let J1 be the set of small jobs scheduled between jobs
3t+1 and 3t+2. We consider the following two cases.

Case 1:
P

i2J1
xi4M

Because M/4oxioM/2 for each xi, |J1|X3 must hold. If
|J1|X4, then the amount of resource available at the
completion of jobs in J1 is

3M þ
X

i2J1

ðxi �MÞ ¼ 3M þ
X

i2J1

xi � jJ1jM

o3M þ
jJ1jM

2
� jJ1jM

ðbecause xioM=2Þ

¼ 3M �
jJ1jM

2
p3M � 2M ðbecausejJ1jX4Þ

¼ M.

In other words, the resource level is less than M, which
cannot support the ongoing processing of job 3t+2. This
results in a case of infeasibility. Therefore, |J1| must be
equal to 3. Since

P
i2J1

xi4M, the last job in J1 starts before
and ends after due date D1 ¼ o+M. That is, only job 3t+1
and the first two jobs can be completed before D1.
Therefore, the number of completed housing units B1 is
less than 5 M.

Case 2:
P

i2J1
xipM

If
P

i2J1
xi ¼ M, then the last job in J1 finishes at exactly

D1, and thus B1 ¼ 3M þ
P

i2J1
2xi ¼ 5M. On the other hand,

if
P

i2J1
xioM, then the last job in J1 will be completed

before D1 and the large job 3t+2 following the jobs of J1

will commence before D1. Because p3t+2 ¼ 2o4o+M ¼ D1,
the large job 3t+2 cannot be completed by the first due

ARTICLE IN PRESS

Table 2
Job set J0 derived from the example in Table 1

Job pi ai bi

1 3 2 10

2 7 4 9

3 8 4 8

4 9 5 6

5 9 10 1

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–63 59
date. At D1 only the jobs in J1[{3t+1} can be finished. The
number of completed new rooms B1 therefore is
3M þ

P
i2J1

2xio5M.
Excluding the infeasibility cases, we can have that

B1p5M. Following this line of analysis, we consider the set
of smaller jobs, J2, scheduled between the large jobs 3t+2
and 3t+3. Considering only the feasible cases, we have the
following inequality:

B1 þ B2 ¼ ð3M þ
X

i2J1
2xÞ þ ð3M þ

X
i2J1

2xiÞp10M.

Repeating the same process, we have that in schedule S

Xk

l¼1

Blp5 kM; l ¼ 1;2; . . . ; t � 1,

Xt

l¼1

Bl ¼ 5tM.

The fact that the total reward of schedule S is no less
than 5M þ 10M þ � � � þ 5tM implies

Xk

l¼1

Bl ¼ 5kM; k ¼ 1;2; . . . ; t.

That is, the number of new housing units of the jobs in
Jk is exactly 2M, or

P
i2Jk

2xi ¼ 2M. Let Ak denote the subset
whose elements define the jobs in Jk. Then,

P
xi2Ak

xi ¼ M

for any subset Ak, 1pkpt. Therefore, a partition of set A is
derived and the proof is complete. &

The established computational complexity reveals that
it is very unlikely to devise polynomial time algorithms
for producing optimal schedules. It is worth noting that
the 1|rp, gdd|SBk problem remains difficult to solve even if
all jobs have the same processing time and only one
generalized due date is given (Lin and Tseng, 1992). When
there is only one common gdd, the problem looks similar
to the knapsack problem in the sense that the optimiza-
tion criterion is to maximize the total reward subject to
the capacity constraint, or the common due date. How-
ever, there is something else worth noting. In the
knapsack problem, we do not need to order the selected
or discarded items. However, this is not the case in the
1|rp, gdd|SBk problem. The order of the early jobs as well
as the late jobs is crucial because we have to ensure the
feasibility of the sequence of all jobs. Therefore, a pseudo-
polynomial time dynamic programming cannot be di-
rectly formulated. It should also be noted that whether
the common due date problem is weakly NP-hard or
strongly NP-hard remains open.

5. Branch-and-bound algorithm

Branch-and-bound is one of the most commonly used
implicit enumerative methods for making optimal deci-
sions. To design a branch-and-bound algorithm, we
usually construct an enumeration tree to represent the
solution space and then exploit structural properties to
reduce the efforts required for probing through the
solution space. In this section, we develop a novel
branch-and-bound algorithm to deal with the problem
under study. Specifically, we design two upper bounds
and a dominance rule in order to prune unnecessary
branches in the enumeration tree. The details of the
proposed branch-and-bound algorithm are discussed in
the following.

In an enumeration tree, each node represents a
decision point whether or not a specific job is to be
scheduled at the first unoccupied position. In the worst
case, there will be O(n!) leafs in the tree. The search
strategy we use is the depth-first search, which does not
demand sophisticated program control and data struc-
tures. Before the branch-and-bound algorithm com-
mences, an objective value can be derived by using a
heuristic method or simply by branching to the bottom
node of the left-most path of the enumeration tree. The
objective value is used as the incumbent value, which will
be repeatedly updated if better solution values are
encountered in the exploration process. In our algorithm,
we do not use any heuristic to derive a lower bound.
Instead we set the incumbent value to be 0.

For a partial schedule, if its upper bound is less than or
equal to the incumbent value, all solutions below this
partial schedule can be eliminated because it is impos-
sible to find a better solution in the sub-tree rooted at this
partial schedule. First, we develop upper bounds so as to
help prune the search tree.

If it exists, let S be a feasible schedule. In the following,
we create another job set J0 out of the jobs in set J. We
remove the association of ai, bi and pi of each job i. So, we
have three sets of values {a1, a2, y, an}, {b1, b2, y, bn} and
{p1, p2, y, pn}. Let a(i) denote the i-th smallest element of
{a1, a2, y,an}, b(i) the i-th largest element of {b1, b2, y, bn}
and p(i) the i-th smallest element of {p1, p2, y, pn}. Job i0 of
set J0 is defined by a(i), b(i) and p(i). Table 2 shows job set J0

derived from the set J shown in Table 1.
It is clear that set J0 exhibits an ideal structure for us to

derive a useful result as given in the following lemma.

Lemma 1. : For any feasible schedule S of set J and the initial

resource level V0, there is a feasible schedule S0 of set J0 such

that Z(S0)^Z(S).

Proof. . In the proof we conduct a three-step transforma-
tion from S to another schedule S0 of J0 without decreasing
its objective value.
(a)
 If in the feasible solution S there are two consecutive
jobs i and j such that job i precedes job j and pi4pj,
then we interchange the values of pi and pj such that
job i has a new processing time pj and job j has a new
processing time pi. Please note that all other para-
meters of the jobs are not changed. It is clear that after

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–6360
the interchange the new schedule is still feasible and
the completion time of any job is not increased.
Because there might be more jobs being completed
before some due dates after the interchange, the
objective value cannot decrease. Repeating this pro-
cess, we can finally have a new schedule in which the
jobs are sequenced in the non-decreasing order of
processing times without decreasing the total reward.
(b)
 With the schedule as derived above, we start the
second-step transformation. For the schedule from (a),
we interchange the values of ai and aj if job i precedes
job j and ai4aj. Please note that all other parameters
of the jobs are not altered. After the interchange, the
new schedule is feasible because the resource level
prior to starting job i is no less than ai. Moreover, the
completion time of any job is not increased and the
objective value will not decrease. Repeating this
process, we can finally come up with a new schedule
in which the jobs are sequenced in the non-decreasing
order of resource requirement without decreasing the
total reward.
(c)
 With the schedule derived from (b), we interchange
the values of bi and bj if job i precedes job j and biobj.
All other parameters of all jobs remained unaltered.
After the interchange, the new schedule is still feasible
and the completion time of any job remains the same.
Because there might be more reward earned prior to
some due dates after the interchange, the objective
value cannot decrease. Repeating this process will
result in a new schedule in which the jobs are
sequenced in a non-decreasing order of the amount
of resource returned without decreasing the total
reward. Moreover, the jobs in the final schedule
constitute the instance set J0.
The lemma directly suggests that there is some schedule

of set J0 which can provide an upper bound on the optimal

solution value of set J. Furthermore, from the three-step

transformation used in the proof, we know that the

sequence of jobs of J0 arranged in the increasing order of

their indices is one of interest. Consequently, we can find

an upper bound on the optimal solution value of set J by

first deriving set J0 and then constructing the sequence S0

as in the proof of Lemma 1. The computing time required

for deriving this bound is O(n log n) for the sorting stage.

However, it can be reduced to O(n) for a partial schedule if

the parameters are sorted with a preprocessing procedure

after the original data set is given.

In the following, we relax the resource requirement to
establish the second upper bound. If none of the jobs need
any resource for their processing, then the decision is
constrained only by the processing time and the amount
of resource returned by each job. Following this relaxa-
tion, the problem with one gdd becomes the knapsack
problem on condition that pi and bi, respectively, corre-
spond to the size and the value of an item, whereas the
due date corresponds to the capacity of the knapsack. It is
evident that our problem is more general and more
sophisticated than the knapsack problem because there
are many gdds and the reward is calculated on an
accumulative base.

Let S be a feasible schedule, if it exists. In the following,
we relax two constraints and find another schedule S0 for
job set J. First, we redefine the ‘‘completion’’ status of a
job. Generally speaking, we call a job ‘‘completed’’ if it has
been continuously processed from its starting time to its
completion. If a job is allowed to be partially processed
and contributes a fraction of its original reward, then it is
a preemptive version. In the case where preemption is
allowed, the objective function is denoted by Z0(.). Then,
Z0(S0) is no less than Z(S) because integer solutions are also
solutions to the relaxed problem. Second, the resource
requirement for each job is relaxed in such a way that
each job can be processed at any time without considering
the resource requirement. Under the above two condi-
tions, we reorder the jobs in the non-increasing order of
bi/pi and find another schedule S0. It is clear that schedule
S0 is feasible because none of the jobs require any resource
and Z0(S0) is an upper bound of the schedule S. Similarly,
this bound can be derived in O(n) time.

To further remove unnecessary branching in the search
tree, we introduce the following dominance rule.

Dominance: For jobs i and j, if pippj, aipaj and biXbj,
then there exists some optimal schedule in which job i

precedes job j.
The significance of this rule is that it is static over the

whole exploration session in the enumeration tree.
Therefore, the dominance relation can be easily examined
for branching from each partial schedule.
6. Computational study

In this section, we present the computational experi-
ments designed and performed to examine the efficiency
of the proposed upper bounds and dominance rule in the
branch-and-bound algorithm. The experiments were con-
ducted on a personal computer with a Pentium-IV 1.7 GHz
CPU and 1 GB RAM. The operating system is Linux Red Hat
8. The programs were written in C++. In all of the
generated cases, processing time pi, amount of required
resource ai, and amount of returned resource bi were
uniformly drawn from [1, 100]. To generate an appropriate
initial resource level V0, the following approach was
adopted. We first determined the minimum amount of
initial resource required to ensure the existence of a
feasible schedule. This can be achieved by applying the
Kaplan and Amir’s algorithm. Then, the initial resource
level in our experiment was set to be 120% of the
determined value. This was done to ensure an allowance
of 20% more than the minimum resource requirement.

To generate due dates or deadlines for computational
experiments, Hall and Posner (2001) suggested a scheme
that incrementally determines the due dates or deadlines
job by job. In the present study, the number of distinct
gdds is small, and the gdds are job-independent and
usually are evenly distributed over the planning horizon.
Therefore, the scheme developed by Hall and Posner
(2001) was not applied. The number of generalized due

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–63 61
dates m in our experiment was 2, 3, 4 or 5. We did not
adopt a larger m because in a real project it is unusual to
define a great number of checkpoints. For example, in an
information system project, the payment can be exercised
in three stages: (1) contract is signed; (2) physical facility
is constructed and hardware is installed; and (3) informa-
tion system is implemented and launched. In the
computational experiments, the time point of each gdd
was generated by dividing the time horizon of makespan P

into m+1 equal parts. For example, if m ¼ 2 and P ¼ 36,
then D1 ¼ 12, D2 ¼ 24, and the final due date is 36. We
tested problems with sizes of n ¼ 5, 10, 15 and 20 when
m ¼ 2 or 3, and n ¼ 5, 10, 15, 20 and 25 when m ¼ 4 or 5.

For each combination of m and n, 10 independent
instances were generated. In the running session, a time
limit of 30 min was imposed for each instance. That is, if
the algorithm could not successfully report an optimal
solution within 30 min it would abort with a failure. Three
implementation options of the algorithms were com-
pared: UB, only the upper bound was applied; DR, only the
dominance rule was applied; and UB_DR, both the upper
bound and the dominance rule were jointly incorporated.
It should be noted that UB is the minimum of the two
upper bounds defined in the previous section. Regarding
the performance statistics, we kept track of the following
information: (1) number of job sets that were successfully
solved; (2) average number of nodes explored for the test
sets that were successfully solved; and (3) average
execution time elapsed for the test sets that were
successfully solved. The results are summarized and
shown in Table 3. In each cell of the columns, there are
Table 3
Computational results of the branch-and-bound algorithm

N UB DR

#_Opt #_Nodes Time #_Opt

m ¼ 2

5 10 26 0.0 10

10 10 2884 0.0 10

15 10 2.8E+06 27.7 10

20 0 – – 0

m ¼ 3

5 10 14 0.0 10

10 10 683 0.0 10

15 10 477,126 7.6 10

20 1 6.9E+07 1545.0 0

m ¼ 4

5 10 16 0.0 10

10 10 1658 0.0 10

15 10 533,018 21.6 8

20 5 1.5E+07 584.0 0

25 3 1.2E+07 621.3 0

m ¼ 5

5 10 16 0.0 10

10 10 1370 0.0 10

15 10 257,926 10.5 9

20 4 1.9E+07 661.3 0

25 0 – – 0
three sub-columns which summarize the number of
solved job sets (referred to as #_Opt), average number of
generated nodes (#_Nodes), and average elapsed time (s.)
(Time), respectively.

With reference to Table 3, the results first dictate that
the upper bounds achieve a better performance, especially
in terms of the number of visited nodes, than the
dominance rule. For example, the ratio of the numbers
of generated nodes of UB and DR for the case of m ¼ 2 and
n ¼ 15 is 1:50, but the ratio between the two running
times is only about 1:13. This reflects the fact that for a
single node DR takes less time than UB. The second
important observation is that when UB and DR were
jointly deployed they provide strong synergy effects.
Incorporating different properties for solving hard opti-
mization problems usually deteriorates an algorithm’s
performance. The reason behind such a negative effect is
that the sets of nodes cut off by two different properties
might greatly overlap such that the gains from the
reduction of generated nodes are less than the loss from
the increase of running time required by the second
property. However, the incorporation of UB and DR in our
branch-and-bound algorithm does not suffer from this
usual negative effect. The computational results in Table 3
reveal that the joint implementation of UB_DR can solve
problems much faster than those of UB and DR separately.
Let us look at the particular case of n ¼ 15 and m ¼ 3. The
average time needed by UB_DR is merely 0.1 s, while those
by UB and DR are 7.6 and 283 s, respectively. The
superiority of UB_DR can also be demonstrated by the
fact that the number of nodes explored by UB_DR is only
UB_DR

#_Nodes Time #_Opt #_Nodes Time

43 0.0 10 9 0.00

41,354 0.0 10 530 0.00

1.4E+08 353.6 10 146,036 1.10

– – 8 1.9E+07 399.13

43 0.0 10 8 0.00

15,003 0.0 10 161 0.00

1.6E+08 283.0 10 15,633 0.10

– – 9 1.6E+06 45.44

44 0.0 10 10 0.0

23,671 0.0 10 299 0.0

5.1E+07 280 10 19,765 0.4

– – 9 6.3E+06 236.1

– – 9 3.2E+06 141.9

36 0.0 10 7 0.0

40,302 0.0 10 430 0.0

8.6E+07 426.4 10 124,739 4.6

– – 10 1.1E+06 80.2

– – 3 3.8E+07 362.3

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–6362
about 3.3% of that explored by UB, and less than 0.1% of
those explored by DR. It is interesting to note that the
synergy effect becomes more significant when the
number of jobs increases. For the case of n ¼ 20 (a larger
number of jobs) and m ¼ 2, UB_DR still solved 8 out of the
ten instances, while UB and DR could not successfully
solve any set of data. Such a phenomenon can also be
observed from the results of large-scale instances. An-
other interesting observation is related to the number of
gdds. With regard to the number of nodes or the amount
of running time, it appears that the numerical results of
the cases with more gdds are better than those with less
gdds. However, this trend disappears between m ¼ 4 and
m ¼ 5 for the instances of n ¼ 20 or 25. This phenomenon
could be attributed to the average number of allocated
jobs in between every two consecutive gdds. When the
average number of jobs allocated in interval [Di�1, Di] is
large (say n ¼ 15 and m ¼ 2), the computing time required
by determining the optimal solution(s) to a problem
similar to the Knapsack problem is relatively longer. On
the other hand, when the average number of jobs
allocated in interval [Di�1, Di] becomes too small (say
n ¼ 15 and m ¼ 5), there would be a combinatorial
number of schedules that have similar solution values.
Such situations may diminish the power of bounding
functions.

Before closing this section, we like to address another
observation on the two lower bounds. Although there is
no strict theoretical relation between UB1 and UB2, in our
experiments on 240 extra instances we found UB1 to be
greater than or equal to UB2.
7. Concluding remarks and future research

In this paper, we studied the 1|rp, gdd|SBk problem,
which incorporates the concept of generalized due dates
in the relocation problem. This problem demonstrates
both theoretical and practical significance. For the 1|rp,
gdd|SBk problem, we have shown its strong NP-hardness
by a polynomial-time reduction from 3-Partition. To
derive optimal solutions, we developed two upper bounds
and one dominance rule as the main ingredients of
branch-and-bound algorithms. We designed and con-
ducted computational experiments to study the efficiency
of the proposed properties. The numerical results show
that the proposed properties can significantly reduce the
time (also, the number of nodes generated in the
enumeration tree) required for producing optimal solu-
tions. In addition, the synergy effects introduced by the
joint deployment of these properties are very informative.

Even though the proposed properties can prune
unnecessary explorations during the solution-finding
process to a certain degree, the problem scale that our
algorithm can solve to optimality is still limited. There-
fore, there is considerable room for developing more
efficient properties so that optimal solutions of larger
problems can be derived in an acceptable time. One
possible approach for coping with the 1|rp, gdd|SBk

problem could be the development of Lagrangian relaxa-
tion.
As mentioned earlier, the 1|rp, gdd|SBk problem
remains NP-hard even if all jobs require the same
processing time and only one gdd is given. However,
there is no clue to the existence of a pseudo-polynomial
time dynamic program. Therefore, whether the 1|rp,
pi ¼ p, Di ¼ D|SBk problem is weakly NP-hard remains
open. For further study, considering generalized relocation
problems, say with new machine environments or new
performance measures, could be a worthy direction
because the relocation problem is a new type of
resource-constrained scheduling problem. The introduc-
tion of gdds also opens up a new area of scheduling
research, that is, to investigate classical scheduling
problems with the consideration of gdds.
Acknowledgements

The authors are grateful to the anonymous referees
who have provided constructive comments on an earlier
version of this paper. The first author was partially
supported by a Taiwan–Russia joint grant under contract
numbers NSC95-2416-H-009-013 and RP05H01 (05-06-
90606-HHCa).

References

Al-Fawzan, M.A., Haouari, M., 2005. A bi-objective model for robust
resource-constrained project scheduling. International Journal of
Production Economics 96, 175–187.

Amir, A., Kaplan, E.H., 1988. Relocation problems are hard. International
Journal of Computer Mathematics 25, 101–110.

Blazewicz, J., Cellary, W., Slowinski, R., Weglarz, J., 1986. In: Hammer, P.L.,
Baltzer, J.C. (Eds.), Annals of Operations Research: Scheduling under
Resource Constraints—Deterministic Models. Scientific Publishing
Company, Basel, Switzerland.

Blazewicz, J., Lenstra, J.K., Rinnoy Kan, A.H.G., 1989. Scheduling subject to
resource constraints: Classification and complexity. Discrete Applied
Mathematics 5, 11–24.

Cheng, T.C.E., Lin, B.M.T., 2008. Johnson’s rule, composite jobs and
the relocation problem. European Journal of Operational Research
(in press).

Drezet, L.-E., Billaut, J.-C., 2008. A project scheduling problem with
labour constraints and time-dependent activities requirements.
International Journal of Production Economics 112, 217–225.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freedman, San Francisco, CA.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979.
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics 5, 287–326.

Hall, N.G., 1986. Scheduling problems with generalized due dates. IIE
Transactions 18, 220–222.

Hall, N.G., Posner, M.E., 2001. Generating experimental data for
computational testing with machine scheduling applications. Opera-
tions Research (49), 854–865.

Hall, N.G., Sethi, S.P., Sriskandarajah, C., 1991. On the complexity of
generalized due date scheduling problems. European Journal of
Operational Research 51, 100–109.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules
with setup times included. Naval Research Logistics Quarterly 1,
61–67.

Kaplan, E.H., 1986. Relocation models for public housing redevelopment
programs. Planning and Design 13, 5–19.

Kaplan, E.H., Amir, A., 1988. A fast feasibility test for relocation problems.
European Journal of Operational Research 35, 201–205.

Kaplan, E.H., Berman, O., 1988. Orient Heights housing projects.
Interfaces 18, 14–22.

Kobylański, P., Kuchta, D., 2007. A note on the paper by M. A. Al-Fawzan
and M. Haouari about a bi-objective problem for robust resource-
constrained project scheduling. International Journal of Production
Economics 107, 496–501.

ARTICLE IN PRESS

B.M.T. Lin, S.T. Liu / Int. J. Production Economics 115 (2008) 55–63 63
Kononov, A.V., Lin, B.M.T., 2006. On the relocation problems with
multiple identical working crews. Discrete Optimization 3, 366–381.

Kononov, A.V., Lin, B.M.T., 2008. Minimizing the weighted completion
time in the relocation problem (in submission).

Lin, B.M.T., Cheng, T.C.E., 1999. Minimizing the weighted number of tardy
jobs and maximum tardiness in relocation problem with due date
constraints. European Journal of Operational Research 116, 183–193.

Lin, B.M.T., Tseng, S.S., 1992. On the relocation problems of maximizing
new capacities under a common due-date. International Journal of
Systems Science 23, 1433–1448.

Lin, B.M.T., Tseng, S.S., 1993. Generating the best K sequences in the relocation
problems. European Journal of Operational Research 69, 131–137.

Lock, D., 1996. Project Management, sixth ed. Gower Publishing,
Hampshire, UK.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact
algorithm for the resource-constrained project scheduling problem
based on a new mathematical formulation. Management Science 44,
714–729.

Mosheiov, G., Oron, D., 2004. A note on the SPT heuristics for solving
scheduling problems with generalized due dates. Computers &
Operations Research 31, 645–655.

Pesenti, R., Ukovich, W., 2003. Economic lot scheduling on multiple
production lines with resource constraints. International Journal of
Production Economics 81, 469–481.

PHRG, 1986. New Lives for Old Buildings: Revitalizing Public Housing
Project. Public Housing Group, Department of Urban Studies and
Planning, MIT, Cambridge, MA.

Sriskandarajah, C., 1990. A note on the generalized due dates scheduling
problems. Naval Research Logistics 37, 587–597.

Xie, J.-X., 1997. Polynomial algorithms for single machine scheduling
problems with financial constraints. Operations Research Letters 21,
39–42.

	Maximizing the reward in the relocation problem with generalized due dates
	Introduction
	Problem formulation
	Literature review
	Complexity results
	Branch-and-bound algorithm
	Computational study
	Concluding remarks and future research
	Acknowledgements
	References

