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L i n - A n  C h e n * ,  W e n y a w  C h a n  a n d  T z o n g - S h i  Lee '  

* Inst i tute of Statistics, National Chiao Tung University. 

Hsinchu, Taiwan. 

School of Public Health, University of Texas-Houston, 

I-Iouston, Texas. 

K e y w o ~ d s :  Eonparametric regression; Piecewise polynornials; Tensor prod- 

uct spline. 

A b s t r a c t  

This paper presents a unified study of smoothing tensor product piecewise 

polynornials as  terlsor product polynomial splines. This s tudy generalizes 

the theory of univariate polynomial splines of Poirier (1973) and Smith  

(1979) to the multivariate setting, and the [nethod proposed herein provides 

various spline bases tha t  gives great flexibility for selecting models. An 

example analyzing a n  Australia wine industry d a t a  shows simple tensor 

product spline can capture the trend in the  d a t a  appropriately to law of 

economics whereas ~rlultiple linear model fails in capturing the regression 

trend (see Maddala (1988)). 

1. I n t r o d u c t i o n  

In estimation of the mean response function p for the followi~ig nonpara- 

metric regression model 

Copyright O 1997 by Marcel Dekker, Inc 
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2094 CHEN, CHAN, AND LEE 

the  polynomial spline (also called least squares spline or regression spline) 

has played a proniinerit role in ~ionpararrieti.ic regression. T h e  polynomial 

spline is a piecewise polyriornial; each deIined owl. a different subregion of 

the  domain,  constrained to have continuous lower o d e 1  derivatives or partial 

derivatives for the multivariate case as well. Representatives of univariate 

polynomial splines are introduced by Poirier (19'73); Buse and Lim (1977) 

arid Smith  (19'79). Arriorig these, Smith (1979) demonstrated tha t  the set of 

univariate polyrioinial splines (order k )  forms a vector space spanned by a 

basis including polynornial terms and truncated .'+" functions (see also de 

Boor (1978) and  Wegnlan and Wright (1983)) as  follows: 

xcO, ( x  - dl)','! ..., (s - ha):, ci = 0 , 1 ,  ..., k and i = 0 .1 ,  ..., a (1.1) 

where (61 < 62 < ... < 6,) represents the rriesh of knots a n d  a > 0 is the 

number of knots. This representation is clearly a very useful way since it 

casts the piecewise polynomial problern into a linear model context. Then  

its coefficients may be estimated by least squares method a n d  many of the 

F- a n d  t- procedures can be applied to deterrnirie whether the coefficients 

a re  zeros. Although other choices can be made for basis formulation, the 

representation of (1.1) is also meaningful for polynomial spline functioning 

in the  role of a n  approxiniation tool. From Taylor theory, linear function of 

xCo's  represents a polyrion~ial approxirr~ation of 11 and linear combination of 

truncated functions then represents a n  approximation of the residual caused 

from polynomial approximation (see Eubank (1988) for this  point). Wi th  

this representation, we can test the hypothesis of p being a polynomial or 

even a simple linear regression furiction. 

In  estimating ~nult ivwiate rnean response function p ( x  is a vector), linear 

combinations o f  tensor products of trulicated spline functions have recently 

been considered as  candidate set for model selection. Wi th  such a candidate 

set ,  Friedman and Silverman (1989), Friednian (1991) a n d  Zhang (1994) 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2095 

proposed various ;ligorithrns for effectively deter~riining the  spline rnodel, 

so-called adapt,ivc spline. In  their studies, the first order truncated "+" and 

"-'' spline furii.tioris and tlicir tensor products are served a s  the candidate 

set. Reflecti~ig the  point intlicated by Breilnan (1991) t h a t  the adaptive 

splines will hrcorilt' widely used irl  applicatiori. Hastie, Tilwhirani a r d  An- 

dreas (1994) ii1)plit'ti it to  ohtain n o r ~ p a ~ w n e t r i c  versions of discriminant 

analysis. anti Lenlaric arid Tiixhirani  (19'34) used it to develop a nonlinear 

generalization of principal cornporient arialysis. 

Although the terisos product  splines is a feasible scheme in statistical ap- 

plication, its theory of being a srnootl~ing piecewise multivariate polynonlials 

has not  been i~ivestigated. As Eubank (1988, p371) pointed out ,  the tensor 

product technique requires further r,esearch before its use can be a standard 

method of curve fitting. Wi th  this need, this paper presents unified study 

of the tensor product splirles. In this study,  bases of tensor product spli~les 

with various smoothness conclitior~s are derived. Representatious of tensor 

product spline provicled in this  paper all allow a test  for the hypothesis of / I  

being a multivariat,e l m l y ~ i o ~ ~ ~ i a l  regression model or even a rnultiple linear 

regression model whereas this test is not allotved to do with the adaptive 

spline due to its  presentation. Moreover, admit t ing  choices of polynomial 

order and srriooth~less coriditions makes the tensor product spline flexible for 

rnodel selection. Tl i ro i~gh analyzing a data  se t  of  Australia wine industry we 

also see that  a simple tensor pl,oduct spline rnodel can successfully capture 

the trend in the data,  appropriate to  law of economics. In this d a t a  analysis. 

we introduce a rdbust estimation-based technique for knots deterrriination 

and setting of region rleco~t~posit ion.  Notably, tensor product splines have 

also been used in rnultivariate function estimation by Stone (1994). Some 

multivariate srnoothers are available in statistical literature other than  the 

tensor product splines. For instance, a bivariate polynonlial spline by Chen  

(1996) tha t  forniulatcd a spline as a lineal. restricted least squares estimate, 

the ATS nlethotl by Cleveland, Mallows, and McRae (1993), the locally 

weighted regression rnethocl by Cleveland arid Devlin (1988), arid the thin 

plate method by Wahba (1979) and  G u  and Wahba (1993). 
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2096 CHEN, CHAN, AND LEE 

We will proceed as follows. 111 Sectiori 2 we introduce the class o f  ten- 

sor product piecewise polyno~nials  and s t a t e  two equivalent forniulations of 

these piecewise polynomials tha t  helps the derivation of spline bases. Eases 

of tensor product piecewise polyriornials and those of tensor product  splines 

are then stated in Section 3. Section 4 provides a d a t a  analysis of the Aus- 

tralia wine data .  Finally, the proofs of lemmas arid theorems are given in 

Section 5. 

2. T e n s o r  P r o d u c t  P i e c e w i s e  P o l y n o m i a l s  

Suppose tha t  we have explanatory variables X I ,  . . . )  x, and meshes of knots 

{ h i  < ... < d:, }, ..., {dr  < ... < b;,}. Let bt, < Bi and  66,+1 > 66,, i = 1, ...: p 

such tha t  the p-di~nensional rectangle { ( x l ,  ..., x,) : 6; < x, < db,,, , i = 

1. . . . , p )  is the dorriain of the regression function. A tensor product  polvno- 

mial is defined as 
k k 

and a tensor product piecewise polynomial is of the  form 

where p t l - . . t y  are tensor product polynoniials. A tensor product  piecewise 

polynorr~ial regression model is a function in (2.1)  plus a n  error variable. 

This set t ing generalizes many linear econometric models to  piecewise mod- 

els. In one exarnple we will s tudy later, some explanatory variables are 

correlated t o  the el,ror term. Clearly, the space of tensor product  piece- 

wise polynomials has dimension (k  + l ) P n ~ = , ( a ,  + 1 ) .  Herein, we define 

the tensor product splines of this type with uniform smoothness condition 

in its part ial  derivatives. Other types of smoothness conditions can also be 

imposed on the tensor product piecewise polynomials to form various tensor 

product  splines. 

D e f i n i t i o n  2.1. For 0 <_ j 5 k, a tensor product piecewise polynomial is 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2097 

called a srnootliness-j tensor 111~1duct spline i f  its ( j ,  ...j,)- th  partial deriva- 

tive is continuous, which holds for 0 5 ,jl + ... + j ,  5 j. 

As seerl: a s~noothness-k tensor product spline must have coefficients of  the 

tern1 a:' ... z? t ha t  correspond to the polynomial pieces in all cells all equal. 

This statement also holds for all (c ,... c,). Then,  this spline turns out  to  

be a multivariate polynomial. 111 the rest of this paper,  we assume tha t  

0 < .I 5 k - I .  Wi th  this setting, the tensor product  spline is smooth as  a t  

least a corltinuous function ( . j  = 0). The  adaptive splines used in Friedman 

(1991) are par t  of this spline space. 

The  spline bases derived herein are  mot ivated by the following proposi- 

tion tha t  provide a n  XNOVA-like decomposition of tensor product piecewise 

polynorriials. 

P r o p o s i t i o n  2 .2 .  A tensor product piecewise polynornial of (2.1) is equiv- 

alent to the following two fo~mulations:  (a) 

wliere all p - .  are tensor product polyno~nials .  

(b)  the piecewise polynornial of  ( a )  with replacing all indices ">" in indicator 

function I( ) by "<". 

T h e  dimension of the space o f  tensor product  piecewise polynomials in (2.1) 
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2098 CHEN,  C H A N ,  A N D  LEE 

remains to be tl,ue for the space iri ( a )  or (b)  of the above proposition. I t  

is rnealiingful in the above regression function decorriposition tha t  the  poly- 

nomial p'. .' demonstl,ates the maill regression trend whereas the truncated 

polynornials derrioristrate the block of rectangular region interactions. With-  

out  forcing smoothness conditions, this decornpositio~l provides a relatively 

easy test for assuming a polyr~ornial r.egr,ession through usual t -  or F- tes t  

when the variables z l ,  ...: z, are i1:dependent of the error variable. These 

properties still hold for the tensol product splines. 

3 .  T e n s o r  Product P o l y n o m i a l  S p l i n e s  

Denote "+" function by z +  = rnax(0, x )  and "-'' function by X- = 

z - z,. For convenience, we state the set of truncated functions: 

n x : ' ( x s  - 6:s)fa, t ,  = 1 ,  . ,  a, and s = 1, . . ,  p ,  
i f  s 

P 

n(zs - 6;):'. t ,  = I ,  ..., a,. 
s = l  

The  above a re  "+" functions or functions depending on se t t ing  "*" a s  

" + I :  01' "-" respectively. We then s ta te  the theory providing bases for the 

tensor product  piecewise polyr~o~riials. 

T h e o r e m  3.1. T h e  fur~ctions i l l  (3.1) with * = + or * = - and  where 

c,,c,,c,, and c,, = 0 , 1 ,  ...: k are both bases of the space of tensor product  

piecewise polynornials. 

Each basis has  elements of number exactly (k + l )Pn ;= , (n ,  + 1). We then 

know tha t  a tensor product  po1yr:omial spline of any smoothness conditions 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2099 

defined on partial derivatives is a linear function of the elements in basis 

either the one with "i" function or the one with "-" function. We now 

s ta te  the main results of representations for the uniforrri snioothness-,I tensor 

product splines. 

Theorem 3.2. T h e  functions in ( 3 . 1 )  with * = + or * = - and where 

C, = 0 , l :  ..., k ,  and c,, c,, and cs, = ,i + 1 ,  ..., k  are  both bases of the space 

of smoothness-j tensol, product polynomial spljnes. 

The ditnension of s~noothness-. j  terisor p ~ o d u c t  splines is (k - . l ) p  nY=, (ai + 
1 ) .  The snioothest tensor product polynomial spline is the one with .j = k - 1  

which car1 be written a s  a linear combination of the  following functions either 
with : I *  = i': or . c *  = - 1 : .  

T h e  tensor product spline considered by Friedman ( 1 9 9 1 )  and Zhang ( 1 9 9 4 )  

is, with * = f and -, formulated as linear corribinatian of the  following 

truncated functions in addition with co~is tant  1 :  

T h e  above functions with * fixed as i or - form a linearly independent 

set with elements of a nurnber nPzI (a, + 1). This set contains continuous 

piecewise polynomials of order k = 1, it is also a generator of smoothness-0 

tensor product spline of order 1. However, t he  candidate set  adopted by 

Fr iedmm ( 1 9 9 1 )  and Zharig ( 1 9 9 4 )  includes functions of (3.2) with both + 
and - functions which is large as twice the  numbel* nZ)=,(n, -i- 1). Breiman 
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2100 CHEN, CHAN, A N D  LEE 

(1991) poitlted out this fact of redundant candidate set. Moreover, no ohvi- 

ous way is available t o  generalize the basis functions of (3.2) to  the basis of  

srnoothriess-,I tensor product  spline of arbitrary order k .  The tensor prod- 

uct splines then provide greater flexibility for niodel selection. On  the other 

hand, a tensor product spline niodel is able for us t o  test the hypothesis 

either a r n u l t i v ~ i a t e  polynomial regression function 

or a multiple linear regression 

P 

1 = 1  

through the usual t -  or F- tes t  procedres when zl, ..., x p  are independent 

variables whereas these tests  are not obviously able applying to the adaptive 

splines. 

In application, a psobleni occured quite often in s t ~ u c t u r a l  change model 

is t ha t  the regression futiction switch in n multivariate rectangular region, 

a subset of the domain of some explanatory variables. T h e  following us- 

ing truncated "+'' and ''-" fu~ictiotis forrnulates a sirt~ple switch regression 

model: 
P 

p = [j, + ,$,xi + -,,(:ci - 6;):(:r:i - 6;): + r (3.4) 
i= l  ieS 

where 6;,,: nl = 1,2 are switch points arid S is a switch index set. 

The  switch regression appears  i l l  (3.4) is a tensor product spline forcing 

equality of polynorriial coefficients those lie outside the region 

{ ( X I  ... x p )  : bf < xi < 6; fur i E S and x, E R for i @ S )  

Model (3.4) will be used in next sectiori analyzing a da t a  set  of wine industry. 

4. Example of F i t t i n g  S p l i n e  Through Robust E s t i m a t i o n  

Consider a da t a  with two dependent variables of wine industry from year 

55-56 to 74-75 (1955-1956 t o  1974-1975) in Australia (see Ivladdala (1988)). 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2101 

where all varialties are  in logs. A lirlcal. ~nnciei with more than one dependerit 

variahlc is called the lineal. sirtiillt~iineo~rs equatioris rrloclel in econometrics 

(see for example: T l ~ e i l  (1971)) .  111 this n~oclel, y l  and y l  are tlepcncient 

vai.iahles ~q i~ ,e sen t i r ig  the corisu~r~ption arid price of wine. respectivelv. Also, 

z , ,  i = 1 ,  2 and 3, are iriileperlderit vari,~hlcs represeritirig the price of  beer, 

disposabie iiiconie, and advestisirig expenditure. From law of econoinics, we 

ant.icipat,r: values of pararnetel .~ ;? ~nakirig the segsessiori furictiori LL nonin- 

creasing in variable yz and nonclecreasing in variables zl, tl and -73. There is 

a n  available ins t r~lmenta l  variable z4 :  the index of storage costs. hloreover, 

the  dependent variables yl and y2 are wasonably formulated as a b i ~ a r i a t ~ e  

linear regression model in ter~rls  of independent variables zi, i = 1: .... 4. For 

linear sirrluitaneous equations rnodel, a usal way in estirriatirlg regression pa- 

rameters 3 is firstly estimating pasarrleters of the bivariate regression rnodel 

arid then replace ya by its predictor b2 in the linear model p and  secondly 

cornputir~g estimates of [I f ro~n  this new iinear model with g subsituted by 

6. This is so-called two stage est in~ation.  The need for this problem is to  

select a suitable regression fuiictior~ that  car1 appropriately reflects the re- 

lationship between these econo~nic variables. We then want to  show that  a 

simple tensor product spline fits this rlcetl. 

A linear mean resporise p 3s 

has bwrl selected to  fit the wgt.ession rlrociei ( 4 . 1 )  by Matldala (1988). where, 

by law of ecotlatriics, we a~it icipate < 0 for p,, and  > 0 for the other 

parameters. Maddala (1988) ap1)lied a classical estimation technique (two 

stage least squares estimation) to estimate the parameters. This is a least 
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2102 CHEN, CHAN, AND LEE 

squares analogue to the sim~iltarieous equation model. However, besides 

/jd all the other paran1ete1.s are estiniatctl in the wrong signs. This result 

provides us a suspicion tha t  using wliole d a t a  set to  fit a linear rnoclel is not 

app~,opriate.  

For obtaining a tensor product  splilie to fit this da t a  set, we rely on robust 

estirnatiorl rriethotl to  detect the knots and the main trend of the regression 

function. Let the est imate of g2i be 

with values ii,. i = 0, 1: ...: il solving 

(see Koenker and d lOrey (1987) for computation). This defines the first 

stage estimation of dependent variable y 2 .  For the rest of this section, all 

second stage estimations are based on the following model 

We unify the first stage estimation for comparisons standing on a common 

ground. 

The fo1lowing table lists the i l -no rm estimates. 

The  signs of parameters corresponding to regressors y 2 ,  z; ,  z2 and z3 are all 

in the right signs. However, the !,-norm is more or less estimating a phase 

of  regression function. To see this, the plot of the residuals computed from 

the !;-norm estimates in the following figure shows the suspicion tha t  there 

exists structural change of regression function for the observations more or 

less in years 66 to 71. 

Since each reg1,essor variable has observations for years 66 to  71 falling 

in an interval, it is then reasonable to  select regression function fiom the 

followicg model class, 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2103 

Year 

Y I  = 30 -- Ppzu3? - f i p b t l  - R ~ Z Z  T ~ e i 3  + ~ 1 ( ~ 2  - a11T(u2  - 0 2 ) -  ( 4  5) 

+Y?(~I - ~ I ) + ( z I  - ~ ? ) - + Y ~ ( z ~ - c : ) + ( z ?  - c ? ) - + Y ~ ( z ~  - d l ) + ( ~ 3  -&I-- + E  

In tills spirne model, t he  l lnea~ functlon Po + / j p u y l  + T 3 e ~ 3  demonstlates 

the  m l i n  tlenci leglesslon and the t luncated funct~oiis p~o \ l ( Je  showing the 

tntei a i  trorls of exp lana to~y  vai idbles in the  t~iultl-1 e ~ t a r i g d a r  legion 

Fol es t i rnat~ng knot points, we want  to d e t e t m ~ n e  the yeals fol whlch the11 

C O I I  ~ s p o n d ~ n g  obselvatloris of ~eglessols falling In the rnultl-lectangulax te- 

gion, rile dotria~ri of the tluncdtetl funct~ons Thls is equlvalerit t o  clete~mirie 

ttiosp veal s fot which the11 L O ]  1 rspontl~rig observat~oiis of \a! rabie yl  corn- 

pletely follow the  m a n  tlend leg1 esslon funct~on 

Wi th  o h s e ~ v a t ~ o n s  1 ernovecl 111 yea1 peilod (as lridtcated In Table 2) ,  we 

cornpute least squales estimate bdsed on model (4 4 )  ~ 7 1 t h  y h e a l  as ~t In 
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2104 CHEN, CHAN, AND LEE 

Table 2. Appropridteness and SSR for year period removing 

(4.2))  where the year period removing is determined based on the absolute 

residuals through the e,-nor111 estimation shown in Figure I .  T h e  reason 

that  we still fit a linear model is to find the  subsets of da ta  tha t  can be 

explained by the main trend regression (linear function). The results of 

SSR arid s ta tus  of appropriateness in sign are  listed in Table 2. 

Again, although lineal model is not suitable in explaning the whole da ta  

set: however, some subsets of the da ta  are valid to do that  way. There 

are 5 ways of years removing so that  the least squares technique can obtain 

estimates appropriate in sign. We select the  domain of explanatory variables 

for year period 65 to 71 as the second trend regression region since its period 

is shorter and  its corresponding SSR is the  smallest. This determine the 

estimates of knots. The  knot candidates shown from the observations of 

regressors is stated in the foilowing table. 

Plugging these knot values into regression function in (4.5),  we will de- 

termine a sub-model that  can appropriately explain the  whole set of da ta  

(truncat,ecl functions are imposed into the model a t  this step).  We compute 

the least squares estimates based on the whole da ta  set for all candidate 

models, specified by paralrieters y, associated with truncated functions, and  

give the SSR and appropriateness of each model in Table 4 (SSR are  not 

listed for inappropriate cases) 

years 
removed 

66-71 
65-71 
64-71 
63- 7 1 
62-71 

SSR 

.I45 
,114 
,115 
,114 
,094 

approp. * 

Yes 
Yes 
Yes 
Yes 
no 

years 
removed 

61-71 
60-71 
60-72 
60-73 
60-74 

SSR 

. lo6  

.074 

.049 
,176 
.I62 

approp. 

110 

no 
11 o 

Yes 
no 
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TENSOR PRODUCT POLYNOMIAL SPLINES 2105 

T a b l e  3. Knot candidates 

truncated 
appropriate. 

No 
No 
KO 
N 0 

N o 
N o 
yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

yews i 11 

function 
None 

SSR 1 
second trend 

Norle 

The  suh~node l  with truncateti fui~ct,ions associated with parameters ~2 and  

7 4  is with SSR closer to its s r r ~ l l e s t  value and we set it as the est imate 

of tensor product spline. T h e  reason is tha t ,  although the one with trun- 

cated functions associated with pal,arrieters 71, y2 and 7 , ~  has snialler SSR, 

however, adding one truncated furictiori only reduce SSR with .001. The 

selected spline model is 
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2106 CHEN, CHAN, AND LEE 

Table 5. .!?,-norm estimates 
parameter Po 0p.w b'pb p d  P e  71 7 2  

and the least squares estimates of these parameters are listed in the following 

table. 

The  parameter estimate (go: . . . , be )  in table 5 varies from those of el-norm 

since the second one measures the main trend regression function and the 

third one measures only a part or a period of years observations. 

5. Appendix 

Proof of Proposition 2.2. Let nz,, = rnin {p, q ) .  For 0 5 q 2 x;=, a, - 

1, denote piecewise polynomial 

where 

and 
a1 +.. +a,  

f pi' t p ~ ( 6 : , < x i 5 6 ~ , + 1 , i = l  ,..., p ) ,  
tl +..+t,=q+l 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
35

 2
8 

A
pr

il 
20

14
 



TENSOR PRODUCT POLYNOMIAL SPLINES 

where p(,. are te1:sor product polynomials. We further let 

Consider the decomposition f;O = B, + (JtO - B,) where 

We will show that  for each tensor product piecewise polynomial f and 0 < 
q 2 a, - 1 there exists a function f, of (5.1) such tha t  f = f,. Let  

q = 0. Obviously, 

with p:' "b ptl.  . t v  - pO...O. DeIiote by p g . . . O  = Then f = f o .  

Suppose tha t  f = f, (= fi + +(;). Carl check tha t  fiO - B, and  fi - f;O 
are a11 tensor product piecewise polynonlials defined on the  region 

t l  . . .  t ,  t t ,  ... t p  t l  ... t ,  
We now define p q + ,  . Denote polynomial ,D,"" by p,+, for which p, 

is the  polynomial of B, defined on region { (x l l  ..., z p )  : 6:, < zi, i = I ,  ..., p } .  

For ( t  1 ,  ..., t p j  be such that  C:=, 1,  2 q + 2, let p:+';" be such tha t  &, = 

fi - B4. We can also see tha t  fd + B,+l = ti+,. Then we have 
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2108 CHEN, CHAN, AND LEE 

T h e  proof is done by setting q = X f = ,  ni - 1. 

P r o o f  o f  T h e o r e m  3.1. We will prove only pa r t  ( a )  while the proof of 

( b )  is similar. Denote by n-y, = nPzl yi and y = y l ,  ..., y, for any finite set 

{yl ,  ..., y,). Define a set of polynorriial functioris and truncated polynomial 

T h e  elerrierlts in (5.2) is also with nurnber (k + l )P n r = l ( a i  ; 1)  and each 

element of them can be formulated as  a linear combination of functions 

in (1.2). So the proof of this theorem is finished i f  we can show that  the 

functions qb of (3.2) are linearly irldeperlderlt. We then finish the  proof by 

showing tha t  any zero linear combination of funct io~ls  in (5.2) will have zero 

coefficients. For t ,  = -, +, i = 1, ..., p,  let the part ial  derivative by 

here "+" and "-'' represent the "sight" and "left" derivative, respectively. 

We also define linear function X,,p,,,p on by 

where I is the binary function defined by I ( t )  = 1 if t = + a n d  0 if t = -. 

If we let 

has continuous c,,th derivative a t  dso,, then 
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TENSOR PRODUCT POLYNOMIAL SPLINES 

With careful irlspection, it can be seen that 

1 i f s P = s i , c Q = s , i = l  , . . . ,  p 
L s : , w ~ ( ~ )  = 0 otherwise 

This shows that the set {&,,,,,,(f)) is linearly independent and then the 

set of functions in (1 2)  is a basis of the space of order k tensor product 

piecewise polynomials. 

P r o o f  of  T h e o r e m  3.2.  We only prove the case with + function. The 

functions in (3.1) with r = + ant1 ci ,  c,, c,, and c,, = j + 1, ..., k is a subset 

of the basis of the space of tensor product piecewise polynornials. Denote 

this set by D,. We know that  Dj is a linearly independent set. I t  is also 

obvious that  each element in D2 is conti~iuous for its j- th partial derivative. 

We then need only to  show that  these functions in Dj forms a generator 

of smoothness-j tensor product polynomial splines. The  proof follows the 

proof of the linear irldependence of the set of (3.1) in Theorem 3.1. 
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