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Abstract

This paper presents a unified study of smoothing tensor product piecewise
polynomials as tensor product polynomial splines. This study generalizes
the theory of univariate polynomial splines of Poirier (1973) and Smith
(1979) to the multivariate setting, and the method proposed herein provides
various spline bases that gives great flexibility for selecting models. An
example analyzing an Australia wine industry data shows simple tensor
product spline can capture the trend in the data appropriately to law of
economics whereas multiple linear model fails in capturing the regression
trend (see Maddala (1988)).

1. Introduction
In estimation of the mean response function u for the following nonpara-
metric regression model

2093
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y=wz)+e

the polynomial spline (also called least squares spline or regression spline)
has played a prominent role in nonparametric regression. The polynomial
spline is a piecewise polynomial; each defined over a different subregion of
the domain, constrained to have continuous lower order derivatives or partial
derivatives for the multivariate case as well. Representatives of univariate
polynomial splines are introduced by Poirier (1973), Buse and Lim (1977)
and Smith (1979). Among these, Smith (1979) demonstrated that the set of
univariate polynomial splines (order k) forms a vector space spanned by a
basis including polynomial terms and truncated “+” functions (see also de

Boor (1978) and Wegman and Wright (1983)) as follows:
0 (z—-61)7, (2 -6,)F,¢i=0,1,..,kand i =0,1,...,a (1.1)

where {01 < J2 < ... < d,} represents the mesh of knots and a > 0 is the
number of knots. This representation is clearly a very useful way since it
casts the piecewise polynomial problem into a linear model context. Then
its coefficients may be estimated by least squares method and many of the
F- and t- procedures can be applied to determine whether the coefficients
are zeros. Although other choices can be made for basis formulation, the
representation of (1.1) is also meaningful for polynomial spline functioning
in the role of an approximation tool. From Taylor theory, linear function of
z’s represents a polynomial approximation of u and linear combination of
truncated functions then represents an approximation of the residual caused
from polynomial approximation (see Eubank (1988) for this point). With
this representation, we can test the hypothesis of 4 being a polynomial or
even a simple linear regression function.

In estimating multivariate mean response function yu (z is a vector), linear
combinations of tensor products of truncated spline functions have recently
been considered as candidate set for model selection. With such a candidate
set, Friedman and Silverman (1989), Friedman (1991) and Zhang (1994)
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proposed various algorithms for effectively determining the spline model,
so-called adaptive spline. In their studies, the first order truncated “+” and
“~" spline functions and their tensor products are served as the candidate
set. Reflecting the point indicated by Bretman (1991) that the adaptive
splines will become widely used in application, Hastie, Tibshirani and An-
dreas (1994) applied it to obtain nonparametric versions of discriminant
analysis, and LeBlanc and Tibshirani (1994) used it to develop a nonlinear
generalization of principal component analysis.

Although the tensor product splines is a feasible scheme in statistical ap-
plication, its theory ol being a smoothing piecewise multivariate polynomials
has not been investigated. As Bubank (1988, p371) pointed out, the tensor
product technique requires further research before its use can be a standard
method of curve fitting. With this need, this paper presents unified study
of the tensor product splines. In this study, bases of tensor product splines
with various smoothness conditions are derived. Representatious of tensor
product spline provided in this paper all allow a test for the hypothesis of p
being a multivariate polynomial regression model or even a multiple linear
regression model whereas this test is not allowed to do with the adaptive
spline due to its representation. Moreover, admitting choices of polynomial
order and smoothness conditions makes the tensor product spline flexible for
model selection. Through analyzing a data set of Australia wine industry we
also see that a simple tensor product spline model can successfully capture
the trend in the data, appropriate to law of economics. In this data analysis,
we introduce a robust estimation-based technique for knots determination
and setting of region decomposition. Notably, tensor product splines have
also been used in multivariate function estimation by Stone (1994). Some
multivariate smoothers are available in statistical literature other than the
tensor product splines. For instance, a bivariate polynomial spline by Chen
(1996) that formulated a spline as a linear restricted least squares estimate,
the ATS method by Cleveland, Mallows, and McRae (1993), the locally
weighted regression method by Cleveland and Devlin (1988), and the thin
plate method by Wahba (1979) and Gu and Wahba (1993).



Downloaded by [National Chiao Tung University ] at 06:35 28 April 2014

2096 CHEN, CHAN, AND LEE

We will proceed as follows. In Section 2 we introduce the class of ten-
sov product piecewise polynomials and state two equivalent formulations of
these piecewise polynomials that helps the derivation of spline bases. Bases
of tensor product piecewise polynomials and those of tensor product splines
are then stated in Section 3. Section 4 provides a data analysis of the Aus-
tralia wine data. Finally, the proofs of lemmas and theorems are given in

Section 5.

2. Tensor Product Piecewise Polynomials

Suppose that we have explanatory variables z1, ..., z, and meshes of knots
{81 < <dg, )y {87 <o <02 ). Let 63 <4} and 6}, 1 > 85, 1=1,..,p
such that the p-dimensional rectangle {(z1,...,z,) : 6} < z; < 0} 41,0 =
1,...,p} is the domain of the regression function. A tensor product polyno-

mial is defined as
k k
—— C
p = E E Bey...c, Tt B
cp=0 ci =0

and a tensor product piecewise polynomial is of the form

ap a)
S <m s io s @Y
ty=0 ty=0

where p'-*» are tensor product polynomials. A tensor product piecewise
polynomial regression model is a function in (2.1) plus an error variable.
This setting generalizes many linear econometric models to piecewise mod-
els. In one example we will study later, some explanatory variables are
correlated to the error term. Clearly, the space of tensor product piece-
wise polynomials has dimension (k + 1) [[?_,(a; + 1). Herein, we define
the tensor product splines of this type with uniform smoothness condition
in its partial derivatives. Other types of smoothness conditions can also be
imposed on the tensor product piecewise polynomials to form various tensor

product splines.

Definition 2.1. For 0 < 7 < k, a tensor product piecewise polynomial is
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called a smoothness-j tensor product spline if its (ji...j,)-th partial deriva-
tive is continuous, which holds for 0 < j; + ... 4+ 3, < 7.
As seen, a smoothness-k tensor product spline must have coefficients of the
term z$'...z3" that correspond to the polynomial pieces in all cells all equal.
This statement also holds for all (¢i...cp). Then, this spline turns out to
be a multivariate polynomial. In the rest of this paper, we assume that
0 <j<k—1. With this setting, the tensor product spline is smooth as at
least a continuous function (j = 0). The adaptive splines used in Friedman
(1991) are part of this spline space.

The spline bases derived herein are motivated by the following proposi-
tion that provide an ANOVA-like decomposition of tensor product piecewise

polynomials.

Proposition 2.2. A tensor product piecewise polynomial of (2.1) is equiv-

alent to the following two formulations: (a)

P as
A S ey (NS

s=1t,=1

as, as,

* Z Z Z pout”“t"zuoj(xsl > 5!:, » Lsg > 5t:~g)

1<s1 <89 8p s, =115 =1

ap ay

+3 D Pt (wy > 8Ty > 6L
ty=1 ty=1
where all p- are tensor product polynomials.
(b) the piecewise polynomial of (a) with replacing all indices “>” in indicator
function 7( ) by “<".

The dimension of the space of tensor product piecewise polynomials in (2.1)



Downloaded by [National Chiao Tung University ] at 06:35 28 April 2014

2098 CHEN, CHAN, AND LEE

remains to be true for the space in (a) or (b) of the above proposition. It
is meaningful in the above regression function decomposition that the poly-
nomial p%¥ demonstrates the main regression trend whereas the truncated
polynomials demonstrate the block of rectangular region interactions. With-
out forcing smoothness conditions, this decomposition provides a relatively
easy test for assuming a polynomial regression through usual {- or F-test
when the variables x1,..., 2, are independent of the error variable. These

properties still hold for the tensor product splines.

3. Tensor Product Polynomial Splines
Denote “+” function by z4 = max{0,z} and “=" function by z_ =

z — .. For convenience, we state the set of truncated functions:

D

[I=s (3.1)

i=1
Cy S C - . —_
Ha:i (xg =6 )0 ts=1,..,asand s =1,...,p,
1#£s8
c . 3 Cg - .5 Cg . i .
H i (zs, — ‘St;1 Jo (s, = 0,2 )b, = 1, a5, and b, =1, ag,,
1#£S51,59

for 1 < s, <59 < p,

D
, ¢S \C _
[[@s=6)e =1, . a.
s=1
The above are “+" functions or “~" functions depending on setting “x" as

“Toor “=7 respectively. We then state the theory providing bases for the

tensor product plecewise polynomials.

Theorem 3.1. The functions in (3.1) with x = 4+ or x = — and where
¢, Cs, Cs, and cg, = 0,1, ...,k are both bases of the space of tensor product

piecewise polynomials.

Each basis has elements of number exactly (k + 1)? []7_,(a; + 1). We then

i=1

know that a tensor product polynomial spline of any smoothness conditions
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defined on partial derivatives is a linear function of the elements in basis

[ H

either the one with “+

153

function or the one with *~" function. We now
state the main results of representations for the uniform smoothness-j tensor

product splines.

Theorem 3.2. The functions in (3.1) with * = 4+ or x = — and where
c¢i =0,1,..,k and ¢, ¢4, and ¢, = 7+ 1, ...,k are both bases of the space

of smoothness-j tensor product polynomial splines.

The dimension of smoothness-j tensor product splines is (k — )P [17_; (a; +
1). The smoothest tensor product polynomial spline is the one with j = k-1
which can be written as a linear combination of the following functions either

" n "

with “x = +7 or "« = ="

?
[Tot TTat e =620t T] wbtes - 68 ilwe - 022

=1 i#s 187,82
v
e =60k
s=1
The tensor product spline considered by Friedman (1991) and Zhang (1994)

is, with * = + and —, formulated as linear combination of the following

truncated functions in addition with constant 1:

1(1"5_5: )!1'9:1‘,""7)1 (32)

s

(IS| - 5:,“ )*(IS-) - (5!5:2)‘71 S 51 < 87 S D,

(s =67, )s

p
=1

s
The above functions with x fixed as + or — form a linearly independent
set with elements of a number []7_, (a; + 1). This set contains continuous
piecewise polynomials of order k = 1, it is also a generator of smoothness-0
tensor product spline of order 1. However, the candidate set adopted by
Friedman (1991) and Zhang (1994) includes functions of (3.2) with both +

and — functions which is large as twice the number [[?_,(a; + 1). Breiman
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(1991) pointed out this fact of redundant candidate set. Moreover, no obvi-
ous way Is available to generalize the basis functions of (3.2) to the basis of
smoothness-7 tensor product spline of arbitrary ovder k. The tensor prod-
uct splines then provide greater flexibility for model selection. On the other
hand, a tensor product spline model is able for us to test the hypothesis
either a multivariate polynomial regression function

k k P

Ho il 2p) = Y 0> Bere, |25

cp=0 ¢ =0 i=1

or a multiple linear regression
p
Ho:p(z, ., zp) = E Biz;
i=1

through the usual - or F-test procedres when z1,...,r, are independent
variables whereas these tests are not obviously able applying to the adaptive
splines.

In application, a problem occured quite often in structural change model
is that the regression function switch in a multivariate rectangular region,
a subset of the domain of some explanatory variables. The following us-

(33

ing truncated “4+" and “~" functions formulates a simple switch regression

model:
b7}
y=Fo+ Y Biri+ Y vlw— 00 (s~ 65)F +e (3.4)
i=1 1eS
where 6% ,m = 1,2 are switch points and S is a switch index set.
The switch regression appears in (3.4) is a tensor product spline forcing

equality of polynomial coefficients those lie outside the region
{{(zy..x,): 0 <z, <dsforic Sandz; € Rforig S}

Model (3.4) will be used in next section analyzing a data set of wine industry.

4. Example of Fitting Spline Through Robust Estimation
Consider a data with two dependent variables of wine industry from year
55-56 to 74-75 (1955-1956 to 1974-1975) in Australia (see Maddala (1988)).
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For abbreviation, when we say year n that means {from year n to year n+ 1.

The unknown demand model in wine industvy is
yr = plys, 21,22, 23, 3) + ¢ (4.1)

where all variables are in logs. A linear model with more than one dependent
variable is called the linear simultaneous equations model in econometrics
(see for example, Theil (1971)). In this model, y1 and yo are dependent
variables representing the consumption and price of wine, respectively. Also,
z;,i = 1,2 and 3, are independent variables representing the price of beer,
disposable income, and advertising expenditure. From law of economics, we
anticipate values of parameters 3 making the rvegression function p nonin-
creasing in variable y; and nondecreasing in variables 21, z2 and z3. There is
an available instrumental variable z,, the index of storage costs. Moreover,
the dependent variables i1 and y» are reasonably formulated as a bivariate
linear regression model in terms of independent variables z;,1 = 1,...,4. For
linear simultaneous equations model, a usal way in estimating regression pa-
rameters J is firstly estimating parameters of the bivariate regression model
and then replace yo by its predictor g in the linear model g and secondly
computing estimates of 8 from this new linear model with y subsituted by
7. This is so-called two stage estimation. The need for this problem is to
select a suitable regression function that caun appropriately veflects the re-
lationship between these economic variables. We then want to show that a
simple tensor product spline fits this need.

A linear mean response p as
th = Bo + Spwyr + et + Buza + Pezs + € (4.2)

has been selected to fit the regression model (4.1) by Maddala (1988), where,
by law of econcmics, we anticipate < 0 for fp, and > 0 for the other
parameters. Maddala (1988) applied a classical estimation technique (two

stage least squares estimation)} to estimate the parameters. This is a least
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squares analogue to the simultaneous equation model. However, besides
B all the other parameters are estimated in the wrong signs. This result
provides us a suspicion that using whole data set to fit a linear model is not
appropriate.

For obtaining a tensor product spline to fit this data set, we rely on robust
estimation method to detect the knots and the main trend of the regression

function. Let the estimate of y9; be

Y2 = Tg + W21 + Koz + Faza; + Tazas

with values 7,1 = 0,1, ..., 4 solving
n
MmNy, i=0,1,.,4 § fy2: — (o + mrz1it, ooy +74240)] (4.3)
i=1

(see Koenker and d'Orey (1987) for computation). This defines the first
stage estimation of dependent variable y,. For the rest of this section, all

second stage estimations are based on the following model
Vi = p(v2i, 21, 224, 230, 8) + €. (4.4)

We unify the first stage estimation for comparisons standing on a common
ground.

The following table lists the £;-norm estimates.
The signs of parameters corresponding to regressors y2, 21, 22 and z3 are all
in the right signs. However, the ;-norm is more or less estimating a phase
of regression function. To see this, the plot of the residuals computed from
the ;-norm estimates in the following figure shows the suspicion that there
exists structural change of regression function for the observations more or
less in years 66 to 71.

Since each regressor variable has observations for years 66 to 71 falling
in an interval, it is then reasonable to select regression function from the

following model class,
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Table 1. Two stage £;-norm estimates

‘ param. - ‘ 60 I ‘31”1/ ‘apb ﬁd , ,‘32
Ty -25387 - 610 1.368 2.64° I .830

(3]
(@5}
£
()

* param.=parameter

0.6

B

Residual

-0.2 0.0 02 04

55 60 65 70
Year

1 = B0 + Bowya + Bpozr + Bazy + Bezz + 11y — a1) + (¥2 — a2)- (4.5)
+y2(zr —b1) e (zr—b) o +ys(z2 —c1) s (za —c2) - +valz3 —dr) 4 (23 —da) - +e.
In this spline model, the linear function By + B,,y1 + ... + 23 demonstrates
the main trend regression and the truncated functions provide showing the
interactions of explanatory variables in the multi-rectangular region.

For estimating knot points, we want to determine the years for which their
corresponding observations of regressors falling in the multi-rectangular re-
gion, the domain of the truncated functions. This is equivalent to determine
those vears for which their corresponding observations of variable y; com-
pletely follow the main trend regression function.

With observations removed in year period (as indicated in Table 2), we

compute least squares estimate based on model (4.4) with p linear as it in
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Table 2. Appropriateness and SSR for year period removing

reﬁiiﬁed SSR approp.” reﬁiixid SSR approp.
66-71 143 yes 61-71 .106 no
65-71 114 yes 60-71 074 no
64-71 15 yes 60-72 .049 no
63-71 114 ves 60-73 176 yes
62-71 .094 no 60-74 162 no

* approp.=appropriateness

(4.2), where the year period removing is determined based on the absolute
residuals through the £,-norm estimation shown in Figure 1. The reason
that we still fit a linear model is to find the subsets of data that can be
explained by the main trend regression (linear function). The results of
SSR and status of appropriateness in sign are listed in Table 2.

Again, although linear model is not suitable in explaning the whole data
set, however, some subsets of the data are valid to do that way. There
are 5 ways of years remaoving so that the least squares technique can obtain
estimates appropriate in sign. We select the domain of explanatory variables
for year period 63 to 71 as the second trend regression region since its period
is shorter and its corresponding SSR is the smallest. This determine the
estimates of knots. The knot candidates shown from the observations of
regressors is stated in the following table.

Plugging these knot values into regression function in (4.3), we will de-
termine a sub-model that can appropriately explain the whole set of data
{truncated functions are imposed into the model at this step). We compute
the least squares estimates based on the whole data set for all candidate
models, specified by parameters v; associated with truncated functions, and
give the SSR and appropriateness of each model in Table 4 (SSR are not

listed for inappropriate cases).
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Table 3. Knot candidates

2105

ai Qs bl bg 8] Co dl (E
1.60 490 3.33 361 712 735 460 5.0
Table 4. Comparisons of submodels
truncated ears in 1 .
function sec"yond trend appropriate. SSR
Nomne None No *
A 65 — 74 No *
72 65 — 72 No *
3 64 - 71 NO *
Y4 63 — 71 No *
Y1, V2 65 — 72 No *
71,73 65 — 71 yes 175
Y1, Va4 65 — 71 No *
Y2, Y3 65 - 71 Yes 180
Y2, V4 65 - 171 Yes 153
Y3, V4 64 - 71 Yes .255
Y1, Y2, 73 65 — 71 Yes 167
Y1, Y2, V4 65 - 71 Yes 151
Y15 Y3y Y4 65 - 71 Yes 172
Y2, Y3, V4 65 - 71 Yes 152
V1,72, Y3, Va 65 — 71 Yes 151

The submodel with truncated functions associated with parameters v, and

va s with SSR closer to its smallest value and we set it as the estimate

of tensor product spline. The reason is that, although the one with trun-

cated functions associated with parameters 41, v, and ~, has smaller SSR,

however, adding one truncated function only reduce SSR with .001. The

selected spline model is

v1 = Bo + Bpwya + Bevz1 + Baza + Bezs

+y1(zy — 3.53)4(21 = 3.61)_ + Y2(z3 ~ 4.60)4 (23 ~5.0)_ +¢
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Table 5. ¢;-norm estimates
parameter Bo Bow  Bps B De " V2

estimate —23.03 37 45 322 17 —242.4 547

and the least squares estimates of these parameters are listed in the following
table

The parameter estimate (8, ..., B.) in table 5 varies from those of £;-norm
since the second one measures the main trend regression function and the

third one measures only a part or a period of years observations.

5. Appendix
Proof of Proposition 2.2. Let myy = min {p,q}. For 0< ¢ < 37 _ja;—

1, denote piecewise polynomial

fo=1fy+ F2 (5.1)

where
p min{g,a,}

s =Pg +Z Z pet 0 (zs > 65)

q

0.ty ..ty,..0
2 S i s, > 55w, > 82)

ISs1<28p ¢ +t,, =2

1<, Say,

4 Z Z 0..t,‘,.t,.24.tsmpq..0
Pty 4o tton,

1 S ts; < ag,
(275, (sts ) ‘_ :--‘-,'mpq)
and
ar+...+a,
2 i ; .
fi= > Py NI <@ <L, i=1,..D),

ti+..+tpy=qg+1
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where p, are tensor product polynomials. We further let

20 Lot : o
jP= S eI <z <8 i1, p)
ti 4. Ht=q+1

20

4 — Bg) where

Consider the decomposition f(?'O =B,+(f

p
B, = ng«-li+1~°1(zs > 550+ 1 <ay)

s=1

0.5, . s,..0 si
+ Z Z 2 2 ](zs‘>6t3i,1:1,2)
S <naSp |ty =g+ 1
1 .<_ zs;' S as1

LD > PR T (P

IS o SR L Lt g, =gt L
1<, <a,

i=1,.., My,

We will show that for each tensor product piecewise polynomial f and 0 <
q < 3% L a; — 1 there exists a function f; of (5.1) such that f = f;. Let
g = 0. Obviously,

a1 +...+a,

f=p%0 g Z PRI <3 <8 ,i=1,...p)
ti4..t+t,=1

with p? clp pt‘.‘.t‘, _pO...O. Denote by pgmo — pOH.O‘ Then [ = fo.
Suppose that f = f, (= fJ + f7). Can check that f2° — B, and f2- £
are all tensor product piecewise polynomials defined on the region

ar+...+ay

Utl+.q+t},:q+2{<$1> ...,Ip) : (5;‘ <z < (S:‘_{_l, 1 =1, ...,p}.

t1..-tp
q+1

is the polynomial of B, defined on region {(z1,...,zp) : 0}, < zi,i=1,...,p}.
For (ty,...,t,) be such that 37, t; > ¢ + 2, let p;‘;it” be such that f2,, =

fZ - B, We can also see that f] + Byy1 = 1. Then we have

tp

We now define p;'_,','l't". Denote polynomial pi' " by p for which p§

Downloaded by [National Chiao Tung University ] at 06:35 28 April 2014
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f=f+B,+ [, - B,
— fl L £2
“fq+1""fq+1

= fq+1~
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The proof is done by setting ¢ = > 1, a; = 1.

Proof of Theorem 3.1. We will prove only part (a) while the proof of
(b) is similar. Denote by my; = [1'_, v; and § = 1, ..., y, for any finite set
{y1, .-, yp}. Define a set of polynomial functions and truncated polynomial
functions ¥ by
r
wﬂsnrrc.( = 77'61 -t H ; — (51 C (31 > 0) [(Si = O)}, (52)
i=1

0 < S kasi - 0)1: ~~-~,ai)i = 1)"‘1p'

The elements in (5.2) is also with number (k + 1)? []7_,(a; + 1) and each
element of them can be formulated as a linear combmation of functions
n (1.2). So the proof of this theorem is finished if we can show that the
functions v of (5.2) are linearly independent. We then finish the proof by

showing that any zero linear combination of functions in (5.2) will have zero

coefficients. For t; = —, +,71 =1, ..., p, let the partial derivative by
0 ¢ 821 ) ‘x R )
W0 08) = T Vs e (B4 gty 0T = Ly Py
roz,” o

1
here “+” and “—" represent the “right” and “left” derivative, respectively.
We also define linear function A .0 on ¢ by

P 0, . _
Aested(¥) = D o D (DT TG L 53), (5.3)

th=—+ Li=—.+

where £ is the binary function defined by (1) =1if¢t=+and 0if t = ~
If we let

o ¢
h’n(l‘"l) = Z (—1)2‘#"‘ E(t')wﬂl#mc; (6;:‘),,,,1‘"“__765%’,)
by =—,+
1=1,...,p
1#Fm
has continuous c,,th derivative at ;0 , then
, gem acm
)\ns?,wc?<w) = a ,cn hm(xnl)ix —d* 0 /lyn(l‘m)Izm:&s—O =0.
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With careful inspection, it can be seen that

g _
M) = {

if &0 — S —
tifs)=s;¢l =c,i=1,..,p
o 0 otherwise

This shows that the set {¥xs, xc.(Z)} is linearly independent and then the
set of functions in (1.2) is a basis of the space of order k tensor product

piecewise polynomials.

Proof of Theorem 3.2. We only prove the case with + function. The
functions in (3.1) with * = + and ¢;, ¢, ¢5, and ¢;, = j+ 1, ..., k is a subset
of the basis of the space of tensor product piecewise polynomials. Denote
this set by D;. We know that D; is a linearly independent set. It is also
obvious that each element in D; is continuous for its j-th partial derivative.
We then need only to show that these functions in D; forms a generator
of smoothness-j tensor product polynomial splines. The proof follows the

proof of the linear independence of the set of (3.1) in Theorem 3.1.
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