
December 2, 2008 17:31 WSPC/117-ijseke 00389

International Journal of Software Engineering
and Knowledge Engineering
Vol. 18, No. 6 (2008) 737–758
c© World Scientific Publishing Company

VERIFICATION OF DATAFLOW SCHEDULING

TSUNG-HSI CHIANG∗ and LAN-RONG DUNG†

Department of Electrical and Control Engineering, National Chiao Tung University,

1001 Ta Hsueh Road, Hsinchu City, Taiwan 300, ROC
∗aries.ece89g@nctu.edu.tw

†lennon@faculty.nctu.edu.tw

Received 4 September 2006
Accepted 23 April 2007

This paper presents the formal verification method for high-level synthesis (HLS) to
detect design errors of dataflow algorithms by using Petri Net (PN) and symbolic-model-
verifier (SMV) techniques. Formal verification in high-level design means architecture
verification, which is different from functional verification in register transfer level (RTL).
Generally, dataflow algorithms need algorithmic transformations to achieve optimal goals
and also need design scheduling to allocate processor resources before mapping on a
silicon. However, algorithmic transformations and design scheduling are error-prone. In
order to detect high-level faults, high-level verification is applied to verify the synthesis
results in HLS. Instead of applying Boolean algebra in traditional verification, this paper
adopts both Petri Net theory and SMV model checker to verify the correctness of the
synthesis results of the high-level dataflow designs. In the proposed hybrid verification
method, a high-level design or DUV (design-under-verification) is first transformed into
a Petri Net model. Then, Petri Net theory is applied to check the correctness of its
algorithmic transformations of HLS, and the SMV model checker is used to verify the
correctness of the design scheduling. We presented two approaches to realize the proposed
verification method and concluded the best one who outperforms the other in terms of
processing speed and resource usage.

Keywords: Formal verification; high-level synthesis; dataflow; Petri net; model checking.

1. Introduction

This paper presents a hybrid verification method to verify high-level synthesis

(HLS) results of dataflow algorithms. Typically, given a dataflow graph (DFG)

or a DSP (digital signal processing) design and a set of design constraints, the

HLS aims to generate tasks schedules with processor resources assignment. The

HLS performs high-level algorithmic transformations including retiming, scaling,

and unfolding techniques on the DFG to meet the architectural constraints and

then allocates processor resources accordingly [1–5]. In general, most solutions to

the scheduling problem can be found by heuristic and Integer Linear Program-

ming (ILP) [6,7]. Heuristic method finds good solutions for large problems quickly

737

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

738 T.-H. Chiang & L.-R. Dung

but suffers from tightly constrained problems where early pruning decisions ex-

clude candidates, leading to superior solutions. On the other hand, the theoretical

framework of ILP based method commonly uses several ILP mapping techniques

with cost functions as model of constrained-based schedule. The cost functions may

combine several performance measurements such as Iteration Period Bound (IPB),

Periodic Delay Bound (PDB) and Processor Bound (PB), which reflect the absolute

limits on computation rate, latency and area of hardware implementation [3, 8, 9].

ILP method exactly solves scheduling but has difficulties with time complexity

and constraint formulation. Heuristic and ILP scheduling methods produce a single

schedule at a time. In order to find an optimal one, scheduling algorithms may

be applied iteratively. The overall error-prone refining process and the complexity

increasing with more constraints added to problem formulations make scheduling

algorithms difficult to solve. Herein, any mistake or incomplete description made

in the scheduling procedures may lead to an illegal solution and defeat following

synthesis results. In our opinion, introducing high-level verification in system design

flow may benefit by speeding up the scheduling procedure by filtering out invalid

scheduling and prevent from scheduling faults. Therefore, this paper intends to

present a formal verification method to unveil the faults produced in HLS.

The proposed verification method is two-fold, and the verifier utilizes both tech-

niques including Petri Net theory and SMV model checker in it. In the first fold,

a high-level dataflow design is converted into a Petri Net model model which can

hold data dependence of dataflow design. Therefore any legal high-level algorith-

mic transformation has to conform to the firing rules of the Petri Net model. In the

second fold, SMV model checker is used to check the correctness of a Finite State

Machine (FSM) for the data-path scheduling. An admissible FSM schedule must

satisfy system specification of the dataflow design. In the proposed verifier, given a

DUV (design-under-verification), two inputs including system description and tasks

schedule are required. The system description is basically a fully-specified flow graph

(FSFG) [10]. The FSFG represents the behavioral of the dataflow algorithm which

is also a design entry of HLS. In order to meet architectural constraints, high-level

algorithmic transformations normally reconstruct the original FSFG design and find

the optimal tasks schedule. To verify the correctness of the algorithmic transfor-

mations, the reconstructed FSFG and its original FSFG design are converted into

Petri Net domain. In PN domain, each Petri Net graph can be represented by a PN

characteristic matrix. Two PN characteristic matrices including the reconstructed

FSFG design and its original FSFG graph must satisfy PN characteristic matrix

equation. By using two proposed traverse algorithms, the verifier tries to find the

candidate reconstructed FSFGs from PN reachability tree. Each candidate recon-

structed FSFG can be seen as a high-level algorithmic transformed design which

correspond to its original FSFG design. All the relationships of the data dependence

between each operation-pair of the reconstructed FSFG graph can be seen as the

system specifications of all the composed operators of the FSFG graph. The sys-

tem specifications are classified into three classes including the non-preemption, job

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 739

completion and precedence properties. Each legal executing sequence of the FSFG

graph must satisfy those system specifications. Another input to the verifier is the

tasks schedule expressed in the format of processor-time chart (or P × T chart).

The P × T chart shows equally the executing sequence of all the tasks of dataflow

algorithms. In order to verify the tasks schedule, P ×T chart is re-represented by a

FSM description. Then, the SMV model checker is used to verify the FSM machine

which must satisfy the system specifications.

1.1. Related work

While surveying the related work, the existential verification methods utilize tech-

nologies like BDD (Binary Decision Diagram) [11, 12], SAT (Satisfiability) solver

[13,14], symbolic model checking [15–18] and theorem proving [19]. These technolo-

gies are extremely powerful but must be applied in register transfer level (RTL).

In order to verify the HLS correctness, most literatures focused on developing a

strategy for RTL validation between the synthesized RTL result and its abstract

level description. In [20, 21], the verification task is partitioned into two subtasks,

verifying the validity of register sharing and verifying correct synthesis of the RTL

interconnection and control. Similarly, in [22–25], a high-level design is decomposed

into the control part and the datapath part and modeled by using FSMD (Finite

State Machine with Data Path) [26]. By applying such decomposition methods, a

high-level scheduled design is divided into the control and the datapath. Thus, the

equivalent checking [27] can be applied to check the correctness of datapath, and

the model checking [28] can be used to verify the validity of control by utilizing the

existential verification technologies.

In this paper, the proposed verification method is based on Petri Net and SMV

model checker. Instead of using Boolean algebra, a high-level dataflow design is

modeled by using proposed Petri Net transformation, thus we can utilize the Petri

Net theory to verify the correctness of the HLS result at high level. When compared

with the existential method, the proposed verification is to check the validity of high-

level design at abstract level rather than synthesized RTL level. Therefore, high-

level design faults that violate the non-preemption, job completion and precedence

properties can be found, and reworks may be performed in the early stage of the

design flow.

1.2. Outline

The remainder of this paper is organized as follows. Section 2 describes background

of the high-level transformation techniques in HLS. The proposed high-level veri-

fication flow is presented in Sec. 3. The proposed two-stage verification algorithm

is discussed in Sec. 4. In Sec. 5, we discuss the complexity analysis of the verifica-

tion algorithms. In Sec. 6 some experimental results are given. Section 7 gives the

conclusions of this paper.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

740 T.-H. Chiang & L.-R. Dung

���� ����

��

��

	�

	�

�
�
�

�

�
�

�

�

��
��

���

���

��� ��

��

��� ���

��

��� ���

�� ���

��

Fig. 1. A second order IIR filter in the form of FSFG.

2. Background

2.1. Fully-specified flow graph (FSFG)

Fully-Specified Flow Graph (FSFG) [10] or DFG is a natural paradigm for de-

scribing DSP algorithms. An FSFG GFSFG(V, E, D), where V = {v1, . . . , vn} and

E = {e1, . . . , em}, is a three-tuple directed and edge-weighted graph. Vertex set V

represents atomic operation of functional units. A vertex may have a zero execution

delay, such as the signal duplicator; or may be assumed to take non-zero unit time,

such as adder or multiplier. Directed edge set E describes the direction of flow of

data between functional units. Inter data dependencies between functional units

are denoted by weighted edges. Figure 1, for instance, shows a second order IIR

filter in the form of FSFG.

The performance bound of the FSFG can be measured by the IPB (Iteration

Period Bound), which is determined by loops of the graph [8,10,29]. The Iteration

Period (IP) for a loop is defined as the total computational latency in the loop

divided by the total number of delays. The IPB is the maximum value of IPs and

represents the lower bound of MASP (Minimum Achieved Sample Period). In order

to achieve MASP, designer may apply high-level transformations on their design in

HLS, such as unfolding and retiming. We will discuss these techniques in following

subsections.

2.2. Retiming and unfolding

Usually, the optimal IPB does not guarantee the optimal rate. Retiming is a process

that may help make MASP equal to IPB. With the delay transfer or nodal transfer,

it is possible to make MASP optimized. Unfortunately, the retiming technique might

not guarantee the optimal MASP. Figure 2(a), for example, the MASP cannot be

achieved by retiming since node v1 requires d1 = 20 time units to execute. To

achieve the optimal rate, [8] presents the unfolding technique. Instead of describing

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 741

��

��
��

������

�����������

��
�

��
�
����

��
�

��
�
���

��
�

��
�
����

��
�
����

��
� ��

�
��
�

��
�
��� ��

�
����

	 	 	
	

��
�

������������������

���������������������������

����������
�
����

�
����

�

��������������

�������������������
�
����

�
����

�
� ��

�
����

�
����

�

��
�
����

�
����

�

��������������

Fig. 2. Unfolding result. (a) An example of FSFG that cannot achieve IPB. (b) A rate-optimal
FSFG using unfolding.

one iteration of the computation in the form of a recursive loop, unfolding by a

factor f implies f consecutive iterations. If the original FSFG has N tasks, the

f -unfolded FSFG has f × N tasks, and the IPB is f times larger than that of the

original FSFG. Figure 2(b) illustrates the result of 2-unfolded FSFG in Fig. 2(a). In

Fig. 2(b), the total number of delays, however, remains unchanged and precedence

constraints are also not violated. The unfolding tchnique can obtain the rate-optimal

static schedules.

2.3. Scheduling of FSFG

Before mapping an FSFG design into a hardware, the execution start time of each

task must be determined. A static schedule of a cycle FSFG is a repeated pattern

of an execution of the corresponding loop. And a static schedule must obey the

precedence relations of the directed acyclic graph (DAG) portion of a FSFG design

that is obtained by removing all edges with delays from that FSFG. A sequencing

graph is a DAG Gs(V, E), where vertex set V = {vi | i = 1, 2, . . . , n} is in one-to-one

correspondence with the set of the FSFG design, and edge set E = {(vi, vj) | i, j =

1, 2, . . . , n; i 6= j} is representing their dependencies. Different scheduling algorithms

have been proposed in [5,8,30] addressing different constrained problems to find the

desired schedule. The desired schedule have to satisfy the precedence constraints

specified by the sequencing graph. A schedule S to the FSFG design is represented

in space-time (P×T) domain. The abscissa denotes time axis, [1, le(S)], where le(S)

is the length of the schedule. The ordinate denotes the processor space, [1, nres],

where nres is the total number of processors that implement each task. During the

period of the ith iteration, the schedule determines the start times of all nodes in

FSFG. Let opi
j be a task which correspond to each vertex vj ∈ V of a given FSFG in

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

742 T.-H. Chiang & L.-R. Dung

the ith iteration. A schedule of the given FSFG, GFSFG = (V, E, D), is a function

ϕ : V → Z
+, which arranges each task node opi

j to begin its execution at the time

step ϕ(opi
j), where Z

+ = {1, 2, . . .} is the positive integer.

Assuming dj is the execution delay for each task node opi
j , the length le(S)

of a schedule S is the latest finish time of all the operations scheduled, that is

le(S) = max{ϕ(opi
j) + dj − 1|∀opi

j ∈ V }. For each task node opi
j ∈ V , a schedule of

the given FSFG is as follow:

• Start time: tij = ϕ(opi
j), ϕ : V → Z

+ = {1, 2, . . .}

• Execution delay: dj ∈ Z = {0, 1, 2, . . .}

• Finish time: εj = ϕ(opi
j) + dj − 1

• Task assignment:

pei
j = τ(opi

j), τ : V → {1, 2, . . . , nres}

• Length of the schedule:

le(S) = max{ϕ(opi
j) + dj − 1|∀opi

j ∈ V }

• The earliest task-finished step:

tetf = min{ϕ(opi
j) + dj − 1|∀opi

j ∈ V }

An example schedule of the second order IIR filter, for instance, is shown in

Fig. 3.

���
�

���
�

���	

�

��

��

� � �

���
�

����
�

���
�

���
�

���
�

��
�

�

��

�� ��

�� �����

�� ��

�

Fig. 3. An example schedule of the second order IIR filter of Fig. 1.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 743

������

���	

�� �����

�� �

���������

Fig. 4. Precedence property of operation nodes.

2.4. Admissible conditions for scheduling

In HLS, designers may apply high-level transformation techniques on their origi-

nal FSFG design and obtain the desired optimal or suboptimal schedule from its

restructured FSFG. For all operation nodes in a FSFG design, the schedule deter-

mines the start time of each task. The executing order of all tasks in the schedule

must satisfy the system specification, such as job completion, precedence and non-

preemptive conditions. In the following sections, we will address these conditions.

The false cause and the false detection for the schedule using CTL (computational

tree logic) formulas are also discussed.

2.4.1. Job completion condition

Let f be the unfolding factor of the design. An admissible schedule must ensure

that each operation node in vertex set V of the FSFG is scheduled exactly once.

Thus, during the period of the ith-iteration of S, it must ensure that each operation

node in vertex set V of the FSFG must be scheduled exactly f times during the

length of S, that is:

tij > 0, tij = ϕ(opi
j), 1 ≤ i ≤ f, ∀opi

j ∈ V . (1)

Job completion fault occurs when one or more operation nodes are not scheduled

in S. For example, the start time of operation node is opi
j is tij = 0. Let p be the

atomic proposition that opi
j executes at the cth step of schedule S. The CTL formula

of job completion property is represented by

EF (p) & (p → EF (¬p)) . (2)

2.4.2. Precedence condition

Let DAG graph Gs(V, E) be the scheduled sequencing graph of the given schedule S,

where node set V represents operation nodes, and edge set E describes dependencies

between the nodes. For each edge e(opi
j , op

i
k) ∈ E, the precedence property ensures

that operation opi
j should be completed before operation opi

k can start, that is:

tik ≥ tij + di
j . (3)

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

744 T.-H. Chiang & L.-R. Dung

������

���	

��

��������	���� �������	��ε9

��	��������	�������

������

��	���	

������������		���	������������

�������

�������

Fig. 5. Task 9 is preempted by operation task 11.

In Fig. 4, for instance, operator v1 is a successor of operator v4, thus, the exe-

cution order of these two operation nodes must ensure that op4 → op1. Schedule S

violates precedence property if these two operation nodes execute in reverse order.

Let p and q be the atomic propositions that two operators opj and opk execute at

some steps of schedule S respectively. And operator opj is precedent to opk. The

CTL logic of precedence property is represented by

AG((p)&(¬q) → AF ((¬p)&(q))) . (4)

2.4.3. Non-preemption condition

An admissible schedule must ensure that a computation is not preempted by an-

other that is scheduled on the same processor at the same time. On the other hand,

if the deterministic busy time of a single task opi
j in the ith iteration is di

j , then for

each time unit during its busy period, the same processor pei
j must execute that

task, such that:

PEr(u) = pei
j , pei

j = τ(opi
j), tij ≤ u < tij + di

j , (5)

where PEr(u) is the assignment function for resource r, 0 < u ≤ le(S). In Fig. 5,

for instance, the executing delay of task 9 is d9. During executing interval d9,

task 9 is preempted by operation task 11. An admissible schedule must avoid such

preemptive execution. Let p be the atomic proposition that task opi
j executes during

the period tij ≤ u < tij + di
j using PEr and q be the atomic proposition that each

of the other task opi
k uses the same resource PEr during the period u. The CTL

logic of non-preemptive property is represented by

AG((p) & (¬q)) . (6)

3. Proposed Verification Flow for HLS

3.1. Verification flow

Figure 6 shows the flowchart to illustrate our verification method. The inputs to

the flow include a given schedule and the original FSFG graph. Before performing

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 745

������������������ ����	�

��

�����
�����	��������������

���	�����	�������

�������������������
	����������	�
��

���������������������������������������	������������

��������������������������������	�������

������	�
������
�����
 �������	�����������!"�

	����

#��������������������������

 ������������
�����������

��$�����������
%
��&

����������	�������
���	�����������	������

�����������������

��
�������������
��������'���(

)�������
��$���������������$����*

)�������
��$�����������������$����*

 �����������'�	������������������

��+�����������$��*

��,����������������
������������������������(

���

���

��

��

���
���

,���������

	�������

Fig. 6. Flowchart for the proposed high-level verification method.

two-stage verification method, the preprocessing on each input is applied sepa-

rately. First, the given schedule is the DUV (design under verification) that needs

to be verified. In system-level design flow, designers may use unfolding algorithm

to pursue perfect FSFG achieving MASP on their original FSFG design. Usually,

the FSFG of the DSP algorithm describes one iteration of the computation. By

applying unfolding algorithm on the FSFG is to unfold the original FSFG by a fac-

tor f which implies f consecutive iterations of the design. In contrast, we perform

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

746 T.-H. Chiang & L.-R. Dung

unfolding checking in our verification flow to detect the unfolding factor f from a

given schedule. Another input to the flow is the original FSFG graph. It is trans-

formed into a PN model by using proposed transformation. We will discuss the

transformation from FSFG graph to PN model in Sec. 3.3.1.

The delay elements of the original FSFG design can be seen as the initial marking

state of its transformed PN model. In PN domain, each marking state reached from

the initial marking is a retimed version of its original design. Some of these markings,

called the candidate markings, may be the correct restructured FSFGs for the given

DUV. They can be found by using initial tasks obtained from the given schedule.

After preprocessing, two-stage verification method is applied continuously.

At the first stage of the flow, we build the reachability tree rooted by initial

marking. Let m be one of the markings in the tree. We use vector κ, which includes

all initial tasks of the given schedule, to be the firing vector of PN. Marking m

is said to be a candidate marking if and only if its result marking m′, which is

obtained by taking m and κ into PN matrix equation (9), is valid. A valid marking,

m′, also means that each element in m′ is a non-negative integer. Two Breadth-First

traverse algorithms are applied to find all candidate markings from the reachability

tree at this stage. If there is no candidate marking found, the erroneous message is

reported, since there does not exist any candidate marking leading all initial tasks

valid. On the other hand, if there exists candidate marking, the flow continues

verifying the schedule by using model checker.

At the second stage, we verify the DUV schedule by using SMV model checker.

The inputs to the model checker include the behavioral description of FSM and

the set of CTL formulas. FSM is directly obtained from a given schedule. CTL

formulas which contain job-completion, precedence and non-preemptive properties,

are generated according to the retimed FSFG corresponding to each candidate

marking. If the FSM model satisfies all the CTL formulas, we say that the candidate

marking is satisfied. The given schedule is said to be correct if and only if all

the candidate markings are satisfied. If one or more than one of the candidate

markings violates its CTL formulas, the erroneous message is reported and the

counterexample of the schedule is given by the model checker. On the other hand,

if all candidate markings satisfy all the CTL formulas, we say that the given schedule

is valid.

3.2. Relation between marking sets

Since the nodes of reachability tree are exponential growth with the height of the

tree, the policy to shorten the searching space is to find candidate markings to

reduce the searching space at the first stage. And then, it verifies the schedule by

checking the correctness of the candidate retimed FSFG at the second stage.

Assuming there are n operations in a given FSFG and n transitions in the

corresponding PN model. Let f be the unfolding factor of a given schedule. At the

first stage, the algorithm tries to find the candidate marking set from the reachable

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 747

���������	�
����

�����
�	��������

�����������������

Fig. 7. The relation between reachable, candidate and solution marking sets.

marking set in reachability tree and fires each transition once each time. The height

of each node in the reachability tree is the distance from the root node to itself.

Since, during one iteration period of the schedule S, le(S), each scheduled task

must be fired once, the height can also be seen as the number of transitions that

have been fired from the root node. Thus, for an n-tasks schedule, the upper height-

bound of the reachability tree is bounded by Hup = f × n. At the second stage, it

continually finds the solution marking set from the candidate marking set. The set

relation between three marking sets is shown in Fig. 7, that is S3 ⊆ S2 ⊆ S1. The

purpose of the first stage is trying to reduce the searching space from reachable

marking set S1 to candidate marking set S2, while the second stage is trying to

find solution marking set S3 from candidate marking set S2.

3.3. Petri net modeling

A Petri Net GPN (P, T, W, M) is a four-tuple [31], where P = {p1, . . . , pn} and

T = {t1, . . . , tm} are finite sets of places and transitions, W is the weighted flow

relation, and M : P → Z is a marking function. If there are k tokens in place

pi, it is represented M(pi) = k for place pi. If W (u, v) > 0, then there is an arc

from u to v with weight W (u, v). For a node u in P ∪ T , •u (the pre-set of u) is

specified by: •u = {v ∈ P ∪ T |W (v, u) > 0} and u• (the post-set of u) is specified

by: u• = {v ∈ P ∪ T |W (u, v) > 0}. A PN can execute by firing enabled transitions.

A transition t is enabled at marking M (denoted by M [t〉) if ∀p ∈ •t : M(p) >

W (p, t). Once a transition t is enabled at a marking M , it may fire and then reach

a new marking M ′ (denoted by M [t〉M ′). The occurrence of t leads to a new marking

M ′, defined for each place p by

M ′(p) = M(p) − W (p, t) + W (t, p) . (7)

Usually, matrix representation gives a complete characterization of Petri Net.

The characteristic matrix of PN is defined by incidence matrix A (also called the

characteristic matrix), which is a |P | × |T |-matrix with entities

Aij = W (tj , pi) − W (pi, tj) . (8)

Marking m0 is an |P | × 1 column vector with entities m0(i) = M(pi), ∀pi ∈ P .

We say that m0 is a valid marking if and only if m0(pi) > 0, ∀pi ∈ P . Let xj =

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

748 T.-H. Chiang & L.-R. Dung

{tj} = (. . . , 0, 1, 0, . . .) be a |T | × 1 column vector, which is zero everywhere except

in the jth element. Transition tj can be represented by the column vector xj . We

say that tj is enabled at a marking m0 (denoted by m0[tj〉) if m0 > A · xj for

every element of m0 is a non-negative integer. And the result m′ of firing enabled

transition tj in a marking m0 is represented by

m′ = m0 + A · xj . (9)

3.3.1. Transformation from FSFG to PN model

The FSFG is attractive to algorithm developers because it directly models the equa-

tions of DSP algorithm. Yet, it does not sufficiently unveil the dynamical behavior

and the implementation limits in terms of the degree of parallelism and the mem-

ory requirement. Thus, we use Petri Net to model DSP algorithms. It allows us to

discover the characteristic of the target architecture and to observe the dynamical

behavior of the algorithm also. The FSFG GFSFG(V, E, D) of a DSP algorithm can

be modeled as PN GPN (P, T, W, M0) by applying the following rules:

(1) Functional element set V is transformed into the transition set T , whose ele-

ments have computational power.

(2) The edge set E is transformed into the place set P denoting the system states.

(3) Since each place in PN has only one output, the pseudo transition of each fork

edge will be added as source duplicators.

(4) The delay element set D in FSFG domain correspond to the number of tokens

in place in PN domain. In static analysis, tokens can be represented as delay

elements of FSFG, thus moving tokens between places in PN model can be

seen as retiming delay elements between edges in FSFG. In dynamical analysis,

moving tokens between places in PN model represents the executions of vertex

elements in FSFG.

Figure 8, for instance, illustrates the transformation from vertex set V and edge

set E to transition set T and place set P . The vertex set V = {v1, v2} and the edge

���������	

���������
�����

��
�	�	�
����
�����

��������
�����

���������
�����

�������	

��
������	�
������

��

��

�

��

�!

��

�� ��
��

��

�
�!

��

��

���� ���	�
��

Fig. 8. Transformation from FSFG to Petri Net.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 749

�

�� �

��

����

���

	�

���

	�

���

	�

�
������������������

������������������

�
�������

�������

����

�������

	����

��������

�������������������

�

�

�

Fig. 9. FSFG with delay elements and Petri Net with tokens.

set E = {e1, e2, e3, e4, e5} in FSFG domain are transformed into the transition

set T = {tr1, tr2} and the place set P = {p1, p2, p3, p4, p5} with respect to PN

domain. Another example is given in Fig. 9, a FSFG graph with delay elements

is transformed into a Petri Net. The vertex set V = {a, b, c} and the edge set

E = {e1, e2, e3} of FSFG are transformed into the transition set T = {tr1, tr2, tr3}

and the place set P = {p1, p2, p3} of PN model. The delay elements in FSFG

domain is denoted by the number of tokens, such that M0(p1) = 0, M0(p2) = 1 and

M0(p3) = 2.

In FSFG domain, a computing result of a functional element is one or more other

functional elements’ inputs. Data source in the prior functional element causes a

data fork point. A fork point in FSFG can be modeled as a pseudo-transition

in PN model. The pseudo-transition duplicates copies of data source as many of

the output nodes in FSFG graph. The equivalence graph of fork point in FSFG

domain and pseudo-transition in PN domain is shown in Fig. 10. Another example

illustrating the PN model of the second order IIR filter of Fig. 1 by applying the

above transformation rules is shown in Fig. 11.

3.4. The candidate marking

Candidate marking set is defined as a subset of reachable marking set of a Petri

Net. The candidate markings are probably the correct initial markings that lead to

the firing sequence of a given schedule being valid. Let S be a schedule of a FSFG.

The earliest task-finished set est set of S are the tasks which are finished at the

earliest task-finished step test in S, such that

est set = {opi|εi = test, ∀opi ∈ V } . (10)

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

750 T.-H. Chiang & L.-R. Dung

���������	

������	
�
�������

���
�	�	�

�������	

���
�������	�
������
�� ��

������	
�

�� ��

�� ��

��

� ����������
�	�	�

� �

�� ��

� �

���� ����	�
��

Fig. 10. Fork point in FSFG domain and pseudo-transition in PN domain.

���

��

���

��

���

���

��� ��	

�

����

����

�	

��
���

�

��� ���

����

� ��

��

���

���

�� ��	

Fig. 11. PN models of the second order IIR filter.

4. Verification Algorithms

4.1. First stage: Two approaches for candidate search

At first stage, two approaches including the early-terminated and the optimal meth-

ods are proposed. We will discuss this in the following sections.

4.1.1. The early-terminated approach

The first approach is the early-terminated traverse method. Before introducing

early-terminated traverse algorithm, we first consider Lemma 1.

Lemma 1. Let Ttree be a reachability tree which is bounded by upper height-bound

Hup and m1 be any one of the candidate markings in Ttree. For any other candidate

marking m2 in the successor path of marking m1, m2 is in the solution marking set

S3 if and only if m1 is in S3.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 751

��

��

��

�

�� ��

�

�

�� �� �	 �

�

���

��

Fig. 12. The traverse order of early-terminated approach.

Proof. Let etf set be the earliest task-finished set of a given schedule and transi-

tion sequence σ1 be a firing sequence that leads m1 ∈ S2 from root marking mr of

Ttree to be a candidate marking, that is mr

σ1→m1. Assuming there exists another

candidate marking m2 ∈ S3, m2 6= m1, with firing sequence σ2 that leads m2 from

root marking mr of Ttree to be a candidate marking, that is mr

σ2→m2, and is in the

successor path of marking m1.

As defined in Definition 1, it must be satisfied that etf set ⊆ σ1 and etf set ⊆

σ2 where the elements of σ1 and σ2 are all in {nop} ∪ {etf set}. As described in

the assumption, m2 is in the successor path of marking m1, it is still satisfied that

σ2 = σ1 ∪ {nop}. This implies m2 is in solution marking set S3 if and only if m1 is

in S3.

The early-terminated approach tries to minimize the size of candidate set S2

from reachable set S1. When an enqueued unvisited marking is a candidate, the

early-terminated algorithm ignores the candidate marking and marks it as a visited

node. Then, it proceeds to other unvisited nodes in queue Q until all the mark-

ings have been visited. In Fig. 12, as an example, the traverse order of the early-

terminated approach is m, m1, m2, m3, . . . , m10. The pseudo-code of the earliest-

terminated traverse method is shown in Fig. 13. In lines 12 to 14, it ignores the

candidate marking and proceeds to other unvisited nodes.

4.1.2. The optimal approach

The second approach to verify a schedule is the optimal approach which is improved

from the early-terminated approach. In order to reduce reachable marking set S1,

it tries to merge the redundant nodes when it proceeds to Breadth-First traverse.

Let m be an unvisited node to be processed. If m is a candidate marking, it

ignores this node by using Lemma 1 and proceeds to other unvisited nodes in the

queue. If m is not a candidate marking, it finds enabled set of transitions and creates

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

752 T.-H. Chiang & L.-R. Dung

1: procedure bfs build tree early terminated(m0)
2: Initialize Queue structure Q

3: Allocate new node nn . initialize root node
4: nn.visited← false

5: nn.marking← m0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true

12: if n.candidate = true then

13: continue to the next node . Lemma 1
14: end if

15: if n.height 6 H then

16: ebl set← find enabled trans(n.marking)

17: for all transition tr ∈ ebl set do

18: m← n.marking

19: κ← make firing vector from(tr)
20: m′ ← m + [A] · κ . Eq.9
21: Allocate new node nn

22: nn.marking← m′

23: nn.visited← false

24: nn.height← n.height + 1
25: nn.candidate← is candidate(nn)
26: create branch(n,nn)
27: Q.enqueue(nn)
28: end for

29: end if

30: end for

31: end procedure

Fig. 13. The early-terminated approach.

new node on each enabled transition. For each new node produced with marking

m′, if there exists another node in the reachability tree, and has the same marking

associated with it, then the node with marking m′ is a duplicate node. Since,

the marking m′ has appeared in the tree, this new node produced is redundant.

Then, it merges this redundant node to the existential node and creates transition

link from marking m to the existential node. As an example in Fig. 14, when it

proceeds marking m5, it finds that the newly created node with marking m7 is a

duplicate node. It merges these nodes and creates transition from m5 to m7. Then,

the algorithm continually proceeds to other unvisited nodes in the queue.

The pseudo-code of the optimal approach is shown in Fig. 15. In lines 12 to 14, if

the node n is a candidate marking, then it ignores this node by using Lemma 1 and

proceeds to the other nodes in queue Q. In lines 26 to 32, function find dual node

checks whether the new created node nn is a duplicate. If there exists a duplicate

node, it either returns the dual node to dual node or returns null. It continually

proceeds to other unvisited nodes until all nodes are visited.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 753

��

��

�� ��

��

��

�

�	� �	��

�

�	�
�	��

�	�

��

�

�	��	��

� ���� �

�

�	� �	��

�	��

�

	���

Fig. 14. Merge the redundant nodes in optimal approach.

1: procedure bfs build tree optimal(m0)
2: Initialize Queue structure Q

3: Allocate new node nn . initialize root node
4: nn.visited← false

5: nn.marking← m0

6: nn.height← 0
7: nn.candidate← is candidate(nn)
8: Q.enqueue(nn)
9:

10: for all unvisited node n ∈ Q do

11: n.visit← true

12: if n.candidate = true then

13: continue to the next node . Lemma 1
14: end if

15: if n.height 6 H then . max. height H

16: ebl set← find enabled trans(n.marking)
17: for all transition tr ∈ ebl set do

18: m← n.marking

19: κ← make firing vector from(tr)
20: m′ ← m + [A] · κ . Eq.9
21: Allocate new node nn

22: nn.marking← m′

23: nn.visited← false

24: nn.height← n.height + 1
25: nn.candidate← is candidate(nn)
26: dual node← find dual node(nn)
27: if dual node 6= null then

28: create branch(n, dual node)
29: else

30: create branch(n,nn)
31: Q.enqueue(nn)
32: end if

33: end for

34: end if

35: end for

36: end procedure

Fig. 15. The optimal traverse approach.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

754 T.-H. Chiang & L.-R. Dung

4.2. Second stage: The model-checking approach

At the second stage, we verify the given DUV schedule on all candidate markings

aided by using SMV model checker. The inputs to the model checker are a FSM

and a set of system specification that needs to be verified. FSM of the DUV is

automatically generated by the verification flow. Each candidate marking obtained

from the first stage can be seen as a restructured FSFG. System specification, CTL

formulas, to the DUV is generated from each restructured FSFG.

Schedule S can be converted into a Moore machine. A Moore machine is defined

as a 6-tuple M(W, Σ, ∆, δ, λ, w0), where W , Σ and ∆ are the finite set of state,

input signal and output signal respectively. Transition function δ : W × Σ → W

is a mapping function from state and an input to the next state. Output function

λ : W → ∆ is a mapping function from each state to the output signal. w0 is an

initial state. Figure 16 is a DUV schedule of a third-order IIR filter. The length of

�����������

��	

��������	�
���

��������	�
���
������������� 	�
���

������������� 	�
���

������������� 	�
���

������������� 	�
���

������������� 	�
���
������������� 	�
���

������������� 	�
���

������������� 	�
���

������������� 	�
���

�����������
�	�
���
�������������	�
���

�������������	�
���

�

��

������������	��

������������	������

������������������	����������

������������������	��

��������	������

����

�����������	��

�����������	������

����������������	��

��������	�

����

���������������	��

���������������	������

����������������	��
��������	�

����

���������������	��

���������������	������
����������������	��

����������������	��

��������	�

����

����� ���� ����������

!� !� !�

!�

!�

!��

!�
!�

!�

!�

!�

!��

�

�

�

�

�

�

��

�

��

��

��

��

��

"�����#�
�����

����

$%&%'���(#�

Fig. 16. The behavioral description of FSM for the third-order IIR filter.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 755

schedule S is le(S) = 6, and it can be seen as a FSM with le(S) + 1 states, where

s0 is the initial state. Each state of the FSM is actually represented as a control

step in S. For each task opj
i in S, there is an enabled signal op i j on it to indicate

whether opj
i is enabled in each control step of S. For example, task op1

6 is scheduled

at step 1 to step 2, and let op i j be its enabled signal. The behavioral description

of FSM for task op6
1 is described at the bottom of Fig. 16.

5. The Complexity Analysis

Assuming there are n operations in a given FSFG, let f be the unfolding factor of a

given schedule. Thus, the upper-height of the reachability tree of the corresponding

PN model is bounded by Hup = f × n.

At the first stage, there are two approaches to perform the Breadth-First traverse

procedure. Considering exhaustive search, each node of the reachability tree has n

enabled transitions in worse case. Then, the total number of nodes is:

1 + n + n2 + · · · + nf ·n = (nf ·n+1 − 1)/(n − 1) . (11)

In the first approach, i.e. the early-terminated approach, the algorithm stops

traversing a node while it is a candidate. Let p, p ≤ (f · n), be the deepest level

that Breadth-First traverse procedure can reach. Thus, the complexity of the first

approach is O(Np), p ≤ f · n.

In the second approach, i.e. the optimal approach, the algorithm merges dupli-

cate markings in order to reduce the reachable marking set of the reachability tree.

Let x ∈ Z = {1, 2, . . .} be the merging radio in the reachability tree. The complexity

of these two approaches is O((N/x)p), p ≤ f · n.

Thus, the relation of the complexity between two approaches is:

O(Np) > O((N/x)p) . (12)

At the second stage, the verification flow performs SMV model checking to verify

a given schedule by checking the precedence, job completion and non-preemptive

properties on given DUV. Let Ω be the size of the FSM converted from DUV, Ψ

be the size of the CTL formulas, le(S) be the steps of DUV schedule and c be the

number of candidate markings. The complexity of the model checker in the second

stage is about O(Ω × Ψ × le(S) × c), in worse case.

6. Experimental Results

We have implemented these two approaches in our study. Each of these approaches

is applied to several dataflow algorithms. Figure 17 shows the statistics of these

designs.

In Fig. 17, design iir2d-sch1 to iir3d-sch2 [10] are the second and third Infinite

Impulse Response filters. Design p243 [10] is a design with unfolding factor 6, the

lengths of schedule p243-sch1 and p243-sch2 are both 96 steps. Design ewf-sch1

and ewf-sch2 are low power schedules for the Elliptic Wave Filter in [2].

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

756 T.-H. Chiang & L.-R. Dung

������� �	�
���� ������
����������

�����������
������

��������

������

����������

����

��
 �!��"

��
 �!��

#

#

"$

"$

�"$���""�

�"$���""�

%

$

"

"

��
 �!��& # "$ �"$���""� $ "

��
 �!��$ # "$ �"$���""� $ "

��
&�!��"

��
&�!��

"

"

 "

 "

� "���"%�

� "���"%�

'(

%

"

"

� $&!��"

� $&!��

)

)

*

*

�*���)�

�*���)�

'%

'%

%

%

�+�!��"

�+�!��

&$

&$

$*

$*

�$*���&$�

�$*���&$�

$(

$(

"

"

Fig. 17. The statistics of test designs.

���������	
����� ��
	��

�
	�
�����

�����
�����

�
	�
�����

�����
�����

�����
��������

�
�������� ����� �!� ��"� �!#

�
�������� � ��! �!� ��"� �!#

�
�������� � ���� �� �#! "�� ���

�
������� �#�"��� �$"� ���$ ��!

�
�������� %&' %&' � #!#

�
��������

"�� �

��#��

�� ������

"��� �

���$�

�

�� ������

"�## �

!!���

�

�()�����

"�!#

�

�()�����

"��

�

%*��*)�
����
�����

%*��*)�
����
�����

�""$

%&'

"�!� �

�

�

�

�

%&' %&' %&'

�""$

#�$

�$ �#

"�#

"�#�

�

�

�

��

�##

��$

�

�

�

�

Fig. 18. The experimental results.

Figure 18 shows the experimental results of using two approaches. There are

two columns on each approach including execution time in seconds and the re-

source usage in unit number of allocated nodes of the reachability tree. According

to experimental results, early-terminated approach suffers from the state explosion

problem while it traverses the reachability tree in iir3d-sch1 and iir3d-sch2. On

average, optimal approach takes more benefit than early-terminated approach. Ac-

cording to experimental results, the optimal approach outperforms the others in

terms of time and resource usage in average.

7. Conclusion

This paper aims to exploit formal verification techniques for high-level synthesis.

In the top-down design flow, design errors should be removed as early as possible;

otherwise, errors detected at the later stages will result a costly, time-consuming re-

design cycles. Although formal verification for logic synthesis has been studied very

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

Verification of Dataflow Scheduling 757

extensively, little work has been done for high-level synthesis. The paper presents

a verification flow that can efficiently detect the design errors from the results of

high-level synthesis. As shown in the experimental results, we can apply the optimal

approach for the first phase to efficiently verify complex design cases.

Acknowledgments

This work was supported by the National Science Council, ROC, under Grant

No. NSC 94-2220-E-009-039.

References

1. V. K. Madisetti and B. A. Curtis, A quantitative methodology for rapid prototyping
and high-level synthesis of signal processing algorithms, IEEE Trans. Signal Process-
ing 42(11) (1994) 3188–3208.

2. L.-R. Dung and H.-C. Yang, On multiple-voltage high-level synthesis using algorithmic
transformations, IEICE Trans. Fundamentals (2004).

3. K. Ito, L. E. Lucke, and K. K. Parhi, Ilp-based cost-optimal dsp synthesis with module
selection and data format conversion, IEEE Trans. Very Large Integration Systems
6(4) (1998) 582–594.

4. K. K. Parhi, High-level algorithm and architecture transformations for dsp synthesis,
J. VLSI Signal Processing 9 (1995) 121–143.

5. L.-F. Chao and E. H.-M. Sha, Scheduling data-flow graphs via retiming and unfolding,
IEEE Trans. Parallel and Distributed Systems 8(12) (1997) 1259–1267.

6. X. Liu, M. C. Papaefthymiou, and E. G. Friedman, Retiming and clock scheduling
for digital circuit optimization, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems 21(2) (2002) 184–203.

7. G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Optimum and heuristic synthe-
sis of multiple word-length architectures, IEEE Trans. Very Large Scale Integration
Systems 13(1) (2005) 39–57.

8. K. Parhi and D. Messerschmitt, Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding, IEEE Trans. Computers 40(2) (1991) 178–195.

9. K. Parhi, Algorithm transformations for concurrent processors, in Proc. IEEE 77(12)
(1989) 1879–1895.

10. V. K. Madisetti, VLSI Digital Signal Processors (IEEE Press, 1995).
11. R. E. Bryant, Symbolic Boolean manipulation with ordered binary-decision diagrams,

ACM Computing Surveys 24(3) (1992) 293–318.
12. K. S. Brace, R. L. Rudell, and R. E. Bryant, Efficient implementation of a BDD

package, in ACM/IEEE Design Automation Conf., 1990, pp. 40–45.
13. K. L. McMillan, Applying SAT methods in unbounded symbolic model checking, in

Proc. 14th Conf. on Computer Aided Verification, 2002, pp. 250–264.
14. G. Parthasarathy, K.-T. Cheng, and C.-Y. Huang, An analysis of ATPG and SAT

algorithms for formal verification, in Proc. Int. High Level Design Validation and
Test Workshop, 2001, pp. 177–182.

15. J. Burch, E. Clarke, and D. Long, Symbolic model checking with partitioned transition
relations, in Int. Conf. Very Large Scale Integration, 1991, pp. 49–58.

16. J. Burch, E. Clarke, D. Long, K. MacMillan, and D. Dill, Symbolic model checking
for sequential circuit verification, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems 13(4) (1994) 401–424.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

8.
18

:7
37

-7
58

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n
04

/2
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

December 2, 2008 17:31 WSPC/117-ijseke 00389

758 T.-H. Chiang & L.-R. Dung

17. H.-J. Kang and I.-C. Park, SAT-based unbounded symbolic model checking, in Proc.
40th Conf. on Design Automation, 2003, pp. 840–843.

18. G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang, Safety property verifi-
cation using sequential SAT and bounded model checking, IEEE Design and Test of
Computers 21(2) (2004).

19. J. Kljaich, B. T. Smith, and A. S. Wojcik, Formal verification of fault tolerance using
theorem-proving techniques, IEEE Trans. Computers 38(3) (1989) 366–376.

20. P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama, Verification of
RTL generated from scheduled behavior in a high-level synthesis flow, in Proc. 1998
IEEE/ACM Int. Conf. Computer-Aided Design, 1998, pp. 517–524.

21. D. Sarkar, Register transfer operation analysis during data path verification, in Proc.
2002 Conf. Asia South Pacific Design Automation/VLSI Design, 2002, p. 172.

22. C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade, A formal verifica-
tion method of scheduling in high-level synthesis, in Proc. 7th Int. Symp. on Quality
Electronic Design, 2006, pp. 71–78.

23. D. Borrione, J. Dushina, and L. Pierre, A compositional model for the functional
verification of high-level synthesis results, IEEE Trans. VLSI Systems (2000) 526–
530.

24. N. Mansouri and R. Vemuri, Automated correctness condition generation for formal
verification of synthesized RTL designs, J. Formal Methods in System Design 16(1)
(2000).

25. C. Bolchini, R. Montandon, F. Salice, and D. Sciuto, Design of VHDL-based totally
self-checking finite-state machine and data-path descriptions, IEEE Trans. Very Large
Scale Integration (V LSI) Systems 8(1) (2000) 98–103.

26. D. D. Gajski and L. Ramachandran, Introduction to high-level synthesis, IEEE Design
and Test 11(4) (1994) 44–54.

27. C. Kern and M. Greenstreet, Formal verification in hardware design: A survey, ACM
Trans. Design Automation of E. Systems 4 (1999) 123–193.

28. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking (MIT Press, 1999).
29. T. Barnwell, C. Hodges, and M. Randolph, Optimum implementation of single time

index signal flow graphs on synceronous multiprocessor machines, IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP ’82), Vol. 7, May 1982, pp. 679–
682.

30. C. Hwang, J. Lee, and Y. Hsu, A formal approach to the scheduling problem in
high level synthesis, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems 10 (1991) 464–475.

31. W. Reisig and G. Rozenberg, Lectures on Petri Nets I: Basic Models (Springer-Verlag,
1998).In

t.
J.

 S
of

t.
E

ng
. K

no
w

l.
E

ng
. 2

00
8.

18
:7

37
-7

58
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n

04
/2

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

