Tetrahedron Letters 49 (2008) 5013-5016

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Highly selective fluorescent sensing of Cu²⁺ ion by an arylisoxazole modified calix[4]arene

Kai-Chi Chang, Li-Yang Luo, Eric Wei-Guang Diau, Wen-Sheng Chung*

Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 30050, Taiwan, ROC

ARTICLE INFO

Article history: Received 25 February 2008 Revised 10 June 2008 Accepted 13 June 2008 Available online 18 June 2008

ABSTRACT

A novel fluorescent chemosensor **1** with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu^{2+} ion over all other metal ions examined. When Cu^{2+} ion was bound to **1**, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of $1 \cdot Cu^{2+}$ was determined to be $(1.58 \pm 0.03) \times 10^4 \text{ M}^{-1}$.

© 2008 Elsevier Ltd. All rights reserved.

The development of specific fluorescent chemosensors for the efficient detection of metal ion analytes is one of the most important areas in supramolecular chemistry due to their fundamental role in biological, environmental, and chemical processes.¹ In particular, chemosensors for the detection and measurements of Cu²⁺ ions are actively investigated as this metal ion is a significant environmental pollutant and an essential trace element in human body.^{2,3}

Calix[4]arenes have been shown to be useful molecular scaffold in the development of fluorescent chemosensors especially for metal ion recognition.⁴ Most calix[4]arene-based fluorescent sensors have been designed based on photophysical changes upon metal ion binding and their mechanisms include photoinduced electron transfer (PET),⁵ photoinduced charge transfer (PCT),⁶ formation of monomer/excimer,⁷ and energy transfer.⁸

In continuation of our interests in the design and synthesis of chromogenic⁹ and fluorogenic¹⁰ chemosensors, we report here the synthesis of a novel fluorogenic calix[4]arene using the 1,3-dipolar cycloaddition of an alkyne and a nitrile oxide to form an isoxazole cationic binding site.

The synthetic routes of host **1** and control compound **2** are depicted in Scheme 1. The 25,27-bisfluoroionphores 1^{11} was synthesized in 45% yield starting from 25, 27-bis(*O*-propargyl)-*p*-*tert*-butylcalix[4]arene 3^{12} using a 1,3-dipolar cycloaddition reaction methodology recently reported by us in capping the lower and upper rims of calix[4]arenas.¹³ In this work, 10-chloroanthracene (**CA**) instead of anthracene was chosen as the fluorophore because the preparation of parent anthracene hydroximoyl chloride requires an extremely careful control of the chlorination process, otherwise mixture of products is usually obtained. Therefore, excess chlorination reagents were used which produced pure **CA**

Scheme 1. Synthesis of fluorogenic calix[4]arene **1.** Reagents and conditions: (i) 10-chloroanthracene-9-hydroximoyl chloride, Et₃N, toluene, reflux, 24 h.

related products in high yield. Similar procedure was employed in the synthesis of control compound 2^{14} from precursor 4.¹⁵ Fluorogenic calix[4]-arene **1** was found to be in cone conformation based on the information obtained from ¹H and ¹³C NMR spectra data.

^{*} Corresponding author. Tel.: +886 3 513 1517; fax: +886 3 572 3764. *E-mail address:* wschung@cc.nctu.edu.tw (W.-S. Chung).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.06.060

Figure 1. Normalize fluorescence spectra of **1** (solid line). The solid line is fitted by multi-Gaussian functions and deconvoluted into two components (short-dash curve: monomer band; dash curve: excimer band). Excitation wavelength was at 375 nm.

The UV/vis spectra of the anthracene group(s) **1** and **2** showed four absorption bands at 338, 357, 375, and 396 nm in CH₃CN/ CHCl₃ (v/v = 1000:4) (see Fig. S7). The fluorescence spectrum of **1** (20 μ M) in CH₃CN/CHCl₃ (v/v = 1000:4) exhibits a dual emission (i.e., monomer and excimer) when excited at 375 nm (Fig. 1). The emission spectrum of **1** is composed of a structured feature, culminating at 430 nm and assigned to the locally excited **CA** referred to as monomer (similar in shape to the emission spectrum of monofluorophore **2**) and a red-shifted, broad and structureless band with λ_{max} at 511 nm, ascribable to the emission from an intramolecular excimer (**CA**·**CA**)^{*,16} The excimer formation comes from the interaction of one **CA** unit in the singlet excited state with the other **CA** in the ground state.

Excess perchlorate salts (10 equiv) of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Cr³⁺, Pb²⁺, Cu²⁺, Hg²⁺, Cd²⁺, Ag⁺, Ni²⁺, Mn²⁺, and Zn²⁺ (total 15 metal ions) were tested to evaluate the metal ion binding properties of **1** and **2**. The results are shown in Figures 2 and S8. Ligand concentration in all titration experiments was fixed at 20 μ M in CH₃CN/CHCl₃ (v/v = 1000:4). The fluorogenic chemosensor **1**, having two isoxazoles as the metal ligating groups, is found to exhibit remarkable selectivity toward Cu²⁺ ion over all other metal ions. The fluorescence of **1** (20 μ M) was strongly quenched by Cu²⁺ ion; however, no such quenching effect was found for the control compound **2** by any of the fifteen metal perchlorates used above. Moreover, the UV/vis spectra of **1** did not show any new absorption band after adding 10 equiv of Cu²⁺ ion (see Fig. S9). We have also

Figure 2. Changes in fluorescence emission spectra of 1 (20 μ M) before and after adding 200 μ M concentration of various metal perchlorates in CH₃CN/CHCl₃ (v/v = 1000:4).

Figure 3. Fluorescence emission spectra of 1 (20 μ M) upon addition of various equivalents of Cu(ClO₄)₂ in CH₃CN/CHCl₃ (v/v = 1000:4).

carried out fluorescence quenching experiments on **1** using more polar solvents such as DMSO and MeOH/CHCl₃ (v/v = 1000:4) instead of CH₃CN/CHCl₃ (v/v = 1000:4) (see Figs. S10 and S11) and found that CH₃CN/CHCl₃ is by far the most efficient solvent system in sensing Cu²⁺ ion.

The two isoxazole moieties of **1** are proven to form an efficient metal ion binding site, whereas compound **2** is lack of such an efficient metal ion binding site. Furthermore, the geometry of the binding site of the host **1**, comprising the two oxygen atoms of isoxazole units and two hydroxyls of the phenol units, seems to be ideal in terms of size and arrangement for recognition of Cu²⁺ ion. The fluorescence quenching of **1** may be explained by either a reverse PET¹⁷ or a heavy atom effect.¹⁸ In the former case, when the Cu²⁺ ion is bound by two isoxazole oxygen atoms and two phenol moieties, the **CA** units probably behave as PET donors whereas the metal ion bound isoxazole groups behave as electron acceptors.

The fluorescence spectra of **1** (20 μ M) at various concentrations of Cu(ClO₄)₂ are depicted in Figure 3, as can be seen, no shift in the fluorescence emission maximum was observed. However, the fluorescence intensities of both the monomer and excimer emission of **1** gradually decreased as the Cu(ClO₄)₂ concentration increased from 12 μ M to 300 μ M. Based on the fluorescence intensity of **1** as a function of [Cu²⁺], the association constant for complex **1**·Cu²⁺ in CH₃CN/CHCl₃ (v/v = 1000:4) was calculated to be (1.58 ± 0.03) × 10⁴ M⁻¹ by Stern–Volmer plot.¹⁹ (Fig. S12) In the Job plot,²⁰ the maximum fluorescence change was observed when the molar fraction of ionophore **1** versus Cu²⁺ was 0.5, indicative of a 1:1 complex (Fig. 4).

Figure 4. Job plot of a 1:1 complex of **1** and Cu²⁺ ion, where the emission at 430 nm was plotted against the mole fraction of **1** at an invariant total concentration of 20 μ M in MeCN/CHCl₃ (1000:4, v/v).

Figure 5. ¹H NMR spectra of 1 (5.0 mM) in CDCl₃/CD₃CN (3:1) (a) and in the presence of 25 mM (5.0 equiv) of Cu(ClO₄)₂ (b), where * denotes an external standard CHCl₃ and the descriptors are shown in Scheme 1.

Metal ion-induced chemical shift changes in the ¹H NMR spectra support that Cu²⁺ is bound to the two oxygen atoms of the isoxazole units and the two hydroxyl phenol groups of 1 (see Fig. 5). In the presence of 5.0 equiv of Cu^{2+} , the peaks of H_a-H_c were downfield shifted by 0.23, 0.22, 0.21, and 0.22 ppm, respectively, and the peak of H_d in the hydroxyls of the phenol units was also downfield shifted by 0.22 nm with a reduced intensity. Furthermore, the peak of H_e on the OCH₂-isoxazole unit was downfield shifted by 0.24 ppm; however, the peak of H_f on the isoxazole group was significantly downfield shifted by 1.30 ppm, suggesting that the two isoxazole groups were involved in the complexation of Cu²⁺. In contrast, the chemical shifts of protons H_g-H_i on the anthracene groups were modestly downfield shifted and the peak shapes were slightly broadened. However, upon adding 5.0 equiv of Cu²⁺ to the solution of $\mathbf{2}$, the peak of H_f on the isoxazole group was downfield shifted by only 0.26 ppm (Fig. S13). Its downfield shift is much smaller than that for **1** (Fig. 5), suggesting that the complexation of Cu²⁺ with the mono-isoxazole group of **2** is weaker than its complexation with the two isoxazole groups of **1**. In principle, the ¹H NMR spectrum of 1 should become broadened in the presence of Cu^{2+} ; however, it appeared to be quite sharp, implying that the Cu²⁺ might have been reduced to Cu⁺. The auto-reduction of Cu²⁺ by a phenol is well documented,²¹ which is probably the source for the redox observed in the addition of Cu^{2+} to 1. We have also carried out experiments using [(CH₃CN)₄Cu]PF₆ to affect the fluorescence of 1; however, no change in fluorescence emission spectra of 1 was observed in the presence of excess Cu⁺ ion (Fig. S14). The above results suggest that Cu²⁺ might be reduced by the phenols of the host 1 and the oxidized phenols then help to trap the reduced Cu^+ ions (Fig. S15).²² Thus, the compound **1** is a highly selective fluorogenic chemodosimeter for Cu²⁺ ion.

In conclusion, we have synthesized a new bisisoxazolyl-methylcalix[4]arene **1** bearing two anthracene groups, which displayed a dual fluorescent emission (monomer and excimer) and showed an extreme selectivity toward Cu²⁺ ion over all other metal ions examined.

Acknowledgments

We thank the National Science Council (NSC) and MOE ATU program of the Ministry of Education of Taiwan, ROC for financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.06.060.

References and notes

- (a) Czarnik, A. W. Chem. Biol. **1995**, *2*, 423; (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. **1997**, 97, 1515; (c) de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. **2000**, 205, 41; (d) Molecular Fluorescence; Valeur, B., Ed.; Wiley-VCH: Weinheim, Germany, 2001.
- 2. Kramer, R. Angew. Chem., Int. Ed. 1998, 37, 772.
- (a) Jang, Y. J.; Moon, B.-S.; Park, M. S.; Kang, B.-G.; Kwon, J. Y.; Hong, J. S. J.; Yoon, Y. J.; Lee, K. D.; Yoon, J. Tetrahedron Lett. 2006, 47, 2702; (b) Yang, H.; Liu, Z.-Q.; Zhou, Z.-G.; Shi, E.-X.; Li, F.-Y.; Du, Y.-K.; Yi, T.; Huang, C.-H. Tetrahedron Lett. 2006, 47, 2911; (c) Jun, J. E.; Won, H. N.; Kim, J. S.; Lee, K.-H.; Yoon, J. Tetrahedron Lett. 2006, 47, 4577; (d) Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J. Org. Chem. 2006, 71, 2881; (e) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8, 371; (f) Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863; (g) Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 10; (h) Kamila, S.; Callan, J. F.; Mulrooney, R. C.; Middleton, M. Tetrahedron Lett. 2007, 48, 7756; (i) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 9838.
- (a) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713; (b) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780; (c) Liang, Z.; Liu, Z.; Jiang, L.; Gao, Y. Tetrahedron Lett. 2007, 48, 1629; (d) Xu, Z.; Kim, S.; Kim, H. N.; Han, S. J.; Lee, C.; Kim, J. S.; Qian, X.; Yoon, J. Tetrahedron Lett. 2007, 48, 9151.
- (a) Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. J. Org. Chem. 2003, 68, 597; (b) Bu, J.-H.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2004, 6, 3301; (c) Li, G.-K.; Xu, Z.-X.; Chen, C.-F.; Huang, Z.-T. Chem. Commun. 2008, 1774.
- (a) Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. Org. Lett. 2005, 7, 4839;
 (b) Choi, J. K.; Kim, S. H.; Yoon, J.; Lee, K.-H.; Bartsch, R. A.; Kim, J. S. J. Org. Chem. 2006, 71, 8011.
- (a) Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126, 16499; (b) Schazmann, B.; Alhashimy, N.; Diamond, D. J. Am. Chem. Soc. 2006, 128, 8607.
- (a) Lee, M. H.; Quang, D. T.; Jung, H. S.; Yoon, J.; Lee, C.-H.; Kim, J. S. J. Org. Chem. 2007, 72, 4242; (b) Othman, A. B.; Lee, J. W.; Wu, J.-S.; Kim, J. S.; Abidi, R.; Thuéry, P.; Strub, J. M.; Van Dorsselaer, A.; Vicens, J. J. Org. Chem. 2007, 72, 7634.
- (a) Kao, T.-L.; Wang, C.-C.; Pan, Y.-T.; Shiao, Y.-J.; Yen, J.-Y.; Shu, C.-M.; Lee, G.-H.; Peng, S.-M.; Chung, W.-S. J. Org. Chem. 2005, 70, 2912; (b) Ho, I.-T.; Lee, G.-H.; Chung, W.-S. J. Org. Chem. 2007, 72, 2434; (c) Chang, K.-C.; Su, I.-H.; Lee, G.-H.; Chung, W.-S. Tetrahedron Lett. 2007, 48, 7274.
- 10. Chang, K.-C.; Su, I.-H.; Senthilvelan, A.; Chung, W.-S. Org. Lett. 2007, 9, 3363.
- 11. Compound 1: A mixture of 3 (0.200 g, 0.276 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (10.0 equiv) in toluene (50 mL) was stirred. Then, Et₃N (20.0 equiv) was added dropwise and the mixture was refluxed for 24 h. The solvent was removed under vacuum, and the residue was dissolved in chloroform (30 mL), washed with water, and dried over MgSO₄. The residue

obtained after evaporation of the solvent was subjected to a silica gel column chromatography using a gradient polarity (eluent: ethyl acetate/n-hexane, 1:14 to 1:6) to afford 0.153 g (45%) of 1 as a white solid; mp 172–174 °C; $R_{\rm f} = 0.93$ (ethyl acetate/n-hexane = 1:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.49 (d, J = 8.7 Hz, 4H), 7.83 (d, J = 8.7 Hz, 4H), 7.60–7.49 (m, 4H), 7.47–7.36 (m, 4H), 7.22 (s, 4H), 6.94 (s, 4H), 6.91 (s, 2H), 6.55 (s, 2H), 5.34 (s, 4H), 4.41 (d, J = 13.2 Hz, 4H), 3.49 (d, J = 13.2 Hz, 4H), 1.43 (s, 18H), 1.07 (s, 18H); ¹³C NMR (CDCl₃, 75.4 MHz) δ 168.0 (Cq), 160.5 (Cq), 150.3 (Cq), 149.5 (Cq), 147.7 (Cq), 141.9 (Cq), 132.4 (Cq), 131.1 (Cq), 130.7 (Cq), 128.1 (Cq), 127.7 (Cq), 126.6 (CH), 126.5 (CH), 125.8 (CH), 125.8 (CH), 125.2 (CH), 124.8 (CH), 122.4 (Cq), 108.0 (CH), 67.6 (CH₂), 33.9 (Cq), 33.8 (Cq), 31.8 (CH₂), 31.7 (CH₃), 30.9 (CH₃); FABMS *m*/z 1231 (M⁺); HR FABMS calcd for C₈₀H₇₆ ³⁵Cl₂N₂O₆, 1230.5080; found, 1230.5098.

- Asfari, Z.; Bilyk, A.; Bond, C.; Harrowfied, J. M.; Koutsantonis, G. A.; Lengkeek, N.; Mocerino, M.; Skelton, B. W.; Sobolev, A. N.; Strano, S.; Vicens, J.; White, A. H. Org. Biomol. Chem. 2004, 2, 387.
- (a) Shiao, Y.-J.; Chiang, P.-C.; Senthilvelan, A.; Tsai, M.-T.; Lee, G.-H.; Chung, W.-S. *Tetrahedron Lett.* **2006**, *47*, 8383; (b) Senthilvelan, A.; Tsai, M.-T.; Chang, K.-C.; Chung, W.-S. *Tetrahedron Lett.* **2006**, *47*, 9077.
- 14. *Compound* **2**: A mixture of **4** (0.200 g, 0.926 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (2.50 equiv) in toluene (50 mL) was stirred. Then, Et₃N (15.0 equiv) was added dropwise and the mixture was refluxed for 24 h. The solvent was removed under vacuum, and the residue was dissolved in chloroform (30 mL), washed with water, and dried over MgSO₄. The solid residue was purified by column chromatography with ethyl acetate/*n*-hexane (v/v = 1:10) to give 0.292 g (67%) of **2** as a yellowish green powder; mp 175-177 °C; $R_f = 0.91$ (ethyl acetate/*n*-hexane = 1:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.61 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.70–7.58 (m, 2H), 7.57–7.47 (m, 2H), 7.09 (s, 2H), 6.62 (s, 1H), 5.13 (s, 2H), 2.40 (s, 6H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 75.4 MHz) δ 169.2 (Cq), 160.7 (Cq), 152.9 (Cq), 147.4 (Cq), 131.3 (Cq), 131.0 (Cq), 103.0 (Cq), 128.4 (Cq), 126.8 (CH), 126.7 (CH), 126.0 (CH), 125.1 (CH), 122.8 (Cq), 107.0 (CH), 64.7 (CH₂), 34.2 (Cq), 31.5 (CH₃), 16.6 (CH₃); EIMS *m*/*z* 469 (M^{*}, 34), 237 (100), 177 (54); HRMS calcd for C₃₀H₂₈³⁵CINO₂, 469.1809; found, 469.1795.
- 15. *Compound* **4**: A solution of 4-*tert*-butyl-2,6-dimethylphenol (0.200 g, 1.12 mmol), potassium carbonate (2.00 equiv) and propargyl bromide (1.50 equiv) in acetonitrile (50 mL) was stirred and heated at reflux for 4 h. The solvent was removed under vacuum and the residue was purified by column chromatography with ethyl acetate/*n*-hexane (v/v = 1:6) to give 0.206 g (85%) of **4** as a colorless oil; $R_f = 0.83$ (ethyl acetate/*n*-hexane = 1:3); ¹H NMR (CDCl₃, 300 MHz) δ 7.05 (s, 2H), 4.50 (d, *J* = 2.1 Hz, 2H), 2.53 (t, *J* = 2.1 Hz, 1H), 2.35 (s, 6H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 75.4 MHz) δ 153.1 (Cq), 146.9 (Cq), 130.2 (Cq), 125.7 (CH), 79.3 (Cq), 74.7 (CH), 59.8 (CH₂), 34.1 (Cq), 31.4 (CH₃), 16.7 (CH₃); EIMS *m*/z 216 (M⁺, 39), 177 (100), 119 (81); HRMS calcd for C₁₅H₂₀O, 216.1514; found, 216.1515.
- (a) Bouas-Laurent, H.; Castellan, A.; Daney, M.; Desvergne, J.-P.; Guinand, G.; Marsau, P.; Riffaud, M.-H. J. Am. Chem. Soc. **1986**, *108*, 315; (b) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Marsau, P.; Lehn, J.-M.; Kotzyba-Hibert, F.; Albrecht-Gary, A.-M.; Al Joubbeh, M. J. Am. Chem. Soc. **1989**, *111*, 8672; (c) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Lehn, J.-M.; Konopelski, J.-P.; Marsau, P.; Barrans, Y. J. Chem. Soc., Chem. Commun. **1990**, 655; (d) Fages, F.; Desvergne, J.-P.; Kampke, K.; Bouas-Laurent, H.; Lehn, J.-M.; Meyer, M.; Albrecht-Gary, A.-M. J. Am. Chem. Soc. **1993**, *115*, 3658; (e) Marquis, D.; Desvergne, J.-P.; Bouas-Laurent, H. J. Org. Chem. **1995**, *60*, 7984.
- (a) de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M. J. Chem. Soc., Perkin Trans. 2 1995, 685; (b) Ojida, A.; Mito-oka, Y.; Inoue, M.-A.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 6256.
- 18. Chae, M.-Y.; Cherian, X. M.; Czarnik, A. W. J. Org. Chem. 1993, 58, 5797.
- 19. Stern, O.; Volmer, M. *Phys. Z.* **1919**, 20, 183.
- (a) Job, P. Ann. Chim. Appl. **1928**, 9, 113; (b) Connors, K. A. Binding Constants; Wiley: New York, 1987.
- Hay, A. S.; Blanchard, H. S.; Endres, C. F.; Eustance, J. W. J. Am. Chem. Soc. 1959, 81, 6335.
- 22. It was found that if compound **1** in $CH_3CN/CHCl_3$ (v/v = 1000:4) was pretreated with 3 equiv of Cu^{2+} , then, any added Cu^+ (ca. 10–30 equiv) showed significant quenching of the fluorescence of **1**; however, no such quenching effect was found if compound **1** was directly titrated with 30 equiv of Cu^+ (see Fig. S15).