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Dynamic analysis of a two-gyro Anschiitz compass

Z-M Ge, C-W Jen and F-N Ku

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract: In this paper, the dynamics of the two-gyro Anschiitz compass in two cases, i.e. the earth
spin velocity and zero vehicle velocity case, as well as the earth spin velocity and non-zero vehicle
case, are studied. The detailed exact equations of motion of this compass are obtained by Lagrange’s
equations. The system is studied by the linear approximation method, and these equations are solved
as eigenvalue problems. The stabilities of these motions are also discussed. The analytical stabilities
for two cases from the linear approximation method are checked by the numerical solutions.

Keywords: gyrocompass, Anschiitz compass, stability

NOTATION

C,, G, angular momentum of rotor 1 and
rotor 2

Jor Iy, . moments of inertia of the gyrosphere

with respect to the x, y, z axes respect-
ively (assume J,, J,, J.=J)

Jets Iy1s Jzn moments of inertia of rotor 1 with
respect to the x;, y;, z; axes respectively
O S ) moments of inertia of rotor 2 with

respect to the x,, y,, z, axes respectively

k stiffness of spring

K heading angle of vehicle

/ distance between the origin O and the
centre of gravity of the whole gyro-
compass

Iy unstretched length of spring

l length of crank

L length of spring when ¢ =0

P weight of the gyrocompass

R radius of the earth

R Rayleigh’s dissipation function

v velocity of vehicle

eo(—&p) initial angles between the x axis and
x,(x;) axis

g latitude angle at the position of the gyro-
compass

01, Qs spin angles of rotor 1 and rotor 2

Wi, W, angular velocity components of the

earth spin with respect to the 0X,, OZ,
axes, where w; = w, cos &, w, = w, sin §

The MS was received on 31 January 1995 and was accepted for
publication on 12 September 1996.
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W, earth spin velocity

Wy, O, O, angular velocity components of the
gyrosphere with respect to the X, y,z
axes respectively

., angular velocity components of rotor 1

with respect to the x,y;,z; axes

respectively

angular velocity components of rotor 2

with respect to the x,,y,,z, axes

respectively

Wy a)yl 9

Wy2, wy25 sz

1 INTRODUCTION

The gyrocompass is used for the guidance of vehicles.
Two kinds of gyrocompass are used, the single-rotor
gyrocompass and the multirotor gyrocompass. In gen-
eral, the multirotor gyrocompass is used to decrease the
error of the single-rotor gyrocompass when the vehicle
is wobbling.

In this paper, one kind of multirotor gyrocompass will
be discussed, the two-gyro Anschiitz compass. The main
parts of this gyrocompass are two rotors and a gyro-
sphere. The rotor axles of these two gyros are set at an
angle of ¢,, which is usually at 45° to the north/south
line of the compass card, and, although provided with
the freedom to rotate about the vertical axis, the casings
are linked together so that their spinning angles make
an angle equal with the meridian. The two rotors are
carried in a frame which is closed by a sphere, known
as the gyrosphere. The gyrosphere is placed inside the
outer sphere, known as the liquid container. The inner
diameter of the liquid container is slightly larger than
the diameter of the gyrosphere. The space between the
gyrosphere and the liquid container is filled with the
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supporting liquid. The density of the supporting liquid
is slightly less than the density of the gyrosphere, and
the gyrosphere will in fact sink gently to the bottom of
the liquid container in order to ensure its vertical pos-
ition. In 1956, Ischlinskij (1) found the equations of
motion of this system by neglecting the angular momen-
tum of the gyrosphere. In 1982, Kalinovich (2) discussed
the dynamics for the damping system and showed the
possibility of using the newtonometer to indicate a
method for designing a circuit that ensures damping of
two-rotor gyrocompass natural oscillations. In 1988,
Koshlyakov (3) studied the dynamic behaviour of the
Anschiitz compass (4) in a vibrating base. Since the
equations of motion derived for the two-gyro Anschiitz
compass are either inexact or linearized approximate
equations and neglect the second-order derivative terms
(5-9), the exact Lagrange equations of motion of this
compass will first be established and checked by the com-
puter software package ‘MACSYMA’, and then the
differential equations of the two cases will be solved and
analysed in order to predict the new results more
accurately.

2 EQUATIONS OF MOTION OF THE TWO-
GYRO ANSCHUTZ COMPASS

In this section, the Lagrange equations are used to
describe the motion of the gyrocompass system. From

—
-

Fig. 1 The position of the gyrosphere relative to the
geographic coordinte system

Proc Instn Mech Engrs Vol 211 Part C

rotor 2
gyrosphere

Fig. 2 Sketch of the gyrosphere

Figs 1 and 2, where the coordinate X, Y,Z, is the geo-
graphical coordinate system and the xyz frame is fixed
with the gyrosphere, OX, points to the north, OY, points
to the west, OZ, is the local vertical and the coordinate
transformation is as given in Table 1, where 6, a and y
represent attitude angles of the gyrosphere coordinate
relative to the geographic coordinate system. From these
relations, the angular velocities of the gyrosphere of
rotor 1 and of rotor 2 are obtained:

vsin K
cos 0 cos a

C()x:)/‘l‘((l]l‘l’

vsin K .
— d+w2+Ttan§ sin 0

vcos K

+ cos 0 sin a

v sin K)

wyzécosy+<w1+ n

x (—cos y sin a + sin Y sin 6 cos a)

vsin K .
+la+w,+ tan & | siny cos 6

vcos K
R

(cos y cos a + sin y sin 6 sin a)
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Table 1 The coordinate transformation

0X, 0Y, 0z, OL
Ox cos 6 cos a cos 6 sin a —sin 6 -0
Oy —cos y sin a + sin y sin 6 cos a cos y cos a + sin y sin 6 sin a sin y cos6 cosy
Z sin o sin y + cos y sin 6 cos a —sin y cos a +cos y sin 6 sin a cos y cos 0 —siny

. vsin K
wz=051ny+<w1+ R )

X (sin a sin y + cos y sin 6 cos a)
vsin K
+ d+w2+Ttan§ cos y cos 0

vcos K

(cos v sin O sin a — sin y cos a)

Wy = @1 + 0, cos(g + ¢) — wy sin(g + @)

Wy = o, sin(eg + @) — w, cos(g, + @)

W =0,—¢

Wy =W+ @

Wy = s+ @, c0s (g + 9) + 0, sin(go + ¢)
W, = —w,sin(g + p) + w, cos(eg + p)

where w,, w, and w, represent the angular velocity com-
ponents of the gyrosphere with respect to the x, y and
z axes respectively, o, w,; and w,, represent the angu-
lar velocity components of rotor 1 with respect to the
X1,y and z; axes respectively, w,,, o, and w,, represent
the angular velocity components of rotor 2 with respect
to the x,, y, and z, axes respectively, ¢, and ¢, represent
spin angles of rotor 1 and rotor 2, K represents the head-
ing angle of the vehicle, R represents the radius of the
earth, v represents the velocity of the vehicles, &,(—¢&g)
represents the initial angle between the x axis and the
X,(x;) axis and w, and w, represent the angular velocity
components of the earth spin with respect to the OX,,
0Z, axes, where w; =w,cos&, w,=w,sin& and w,
is the earth spin velocity. The kinetic energy of the
system is

Ttotalsz+T1+T2

where T is the kinetic energy of the gyrosphere, T is
the kinetic energy of rotor 1 and 7, is the kinetic energy
of rotor 2. The masses of linkage and casings are neg-
lected. The total kinetic energy Ty 1S

1
Tiotar = E[J(w;zc + w§ + w?) + Jxlw)zcl + Jy1w§1 + ]zlwgl
+ o0+ Jy2w§2 +J.,02%]

where J,, J, and J, represent the moments of inertia of
the gyrosphere with respect to the x, y and z axes respect-
ively, J,, J,; and J, represent the moment of inertia of
rotor 1 with respect to the x,, y; and z, axes respectively

C02095 © IMechE 1997

and J,,, J,, and J,, represent the moments of inertia of
rotor 2 with respect to the x,, y, and z, axes respectively.
For the xyz coordinate, the centre of gravity of the
system is (0, 0, —/) and the weight of this system is P;
the potential of the weight then becomes
Vi= —Plcosycosf

From the geometrical relation (Fig.3), ¢ ~¢ when
¢ ~ 0. The potential energy of the spring is

Vy=kl(I39* +13)'2 — L, ]?
The potential energy of the inertial force field due to
moving coordinate X, Y,Z, is

dvX,
Vi=|— & —wvY,

x ml(sin a sin y + cos y sin 6 cos a)

dUYO
+| - & — wvX,

x ml(cos y sin @ sin @ — sin y cos a)

v
—1 0
+mR COS  COS

Fig. 3 Connecting cranks and spring
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where v is the velocity of origin O with respect to the earth,
vX,, vY, are the components of velocity v along the X, Y
axes and w is the component of the angular velocity of
coordinate X, Y,Z, along the local normal to the earth.
From Lagrange’s equations, there are six equations of
motion for ¢y, ¢,, 0, ¥, a and ¢ (see the Appendix).

3 NON-ZERO EARTH SPIN VELOCITY

In this section, the non-linear terms of the governing
equations are neglected but the non-zero earth spin vel-
ocity and non-zero vehicle velocity cases are considered.
Assuming that the vehicle velocity is constant, the
approximate equations can be obtained and the solu-
tion found.

3.1 Non-zero vehicle velocity case

3.1.1 The undamped motion

From the equation of motion, it can be assumed that
Juwy=Ci=Jmw,=0C,, Jyl = Jy27 Jyl =J,;. The
equations then become

[M][X] + [CI[X] + [K][X]=[Q] (1)

where

My 0 0 0

[M]=
0 0 My, 0
0o 0 0 M,
0 C12 C13 C14
[C]: _C12 0 C23 C24
—Cy —Cy 00
—Cy —GCy O 0
Kll KIZ K13 K14
K12 KZZ K23 KZ4
[K]=
K13 K23 K33 K34
_K14 Ky Ky Ky
0,
0,
[Q]=
0,
o
(6
y
[X]=
a
K

Proc Instn Mech Engrs Vol 211 Part C

where
M,y =J+2J, cos® &
M,y =J+2J,sin’ ¢,

M33 :J+2Jy1
Myy=2J),
vsin K
Cp=J|w,+——tan&
R
. veos K
Ciy= —4J,cosggsingg———
. vcos K
Coy=(J +4J,; sin’ &) R
vsin K
Cy3=2C; cos gy — (J +4J,; cos® &) | w; + R
. vsin K
Coy= —2Cysingy+4J,; cos gy | w; + R
vsin K
K =Ilp+2C,cosey| w + R
, vsin K 2
+2J,,cos” g | | w, + R tan &

+usinK2 vj
—| o, n —my
- vsin K 2
Kyy=Ip+2J,sin gy | | w,+ R tan &
vcos K\? vj
R "R

vsin K
R

., UCos K
K, =2J, sin" g wq+
R
. vsin K
Kyy=—2J,sin’ g, | 0 + R

< vsin K
X | W,y + R

K3 = —2J,, cos’ ¢, <w2 +

tan 5) + mwvX,

vsin K vcos K
tan & R

—mwvY,

vsin K vecos K
an
R R

K, =4J,; cos g sin g, <U)2 +

2
|

. vsin K
= —2C; sin g, <w2 + R tan §>

vsin K

+4J,; cos g, sin &y <a)2 + tan §> 2)

N vsin K
X
o} R
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. vsin K
Kiy=| —8J,1cos gy sin gy | wy + TR

vcos K
R

+2C; sin so}

vsin K
K33:2C1 COoS 80 C()1+ R

v sin K\? v cos K\?
+2J | | 0+ R — R

x (sin? g5 — cos? &)

I} sin K
K44=2k1§<1 _10> +2C, cos & <w1 42 i >
2

+ 2J,, (cos? &, — sin” &)

vcos K\? v sin K\?
X R ) \&nt g

. vsin K
0;=2C;sin g, | w, + R tan &

) vsin K
—2J, cos” g | 0y + R
N v sin Kt £
X an
W, 2
o] sin? +vsinK vecos K
0,=—2J,;sIn” &y | w, R an R

vcos K
Q3= —2C cos ¢,

vecos K vsin K
“\Tr )\t TR

vsin K

—2J,,(sin &, — cos” &)

0,=2C, sin g, <w1 + > —2J,, cos g, sin g,

v sin K\? vcos K\?
X (U1+ R R

By normalization, the differential equations can be rep-
resented in the following form:

[AI[Y]+[BIY]=[Q] (3)

where

0] M
[A]=[[] [ 1}

[M] [C]
—[M] [0
[B]:[ [M] [1}
[0] [K]

- [10]
Q1= [[QJ

C02095 © IMechE 1997

LetO=a,e ™ y=a,e ™ a=ase ™ p=a,e ™. Then

for the homogeneous solution of these differential equa-
tions, the following characteristic equation is given:

M11M22M33M44/18+‘“=0 (4)
If
A=A, w,=¢

+vsinK +vsinKt E—b
w = ae, w,+——tan & =be
! R 2 R
vcos K

=ce, —movXy,=de
R

U2

—mwvY,=ee, —m— = fe

. 2=
A=Ag+eA, + -

and a, b, ¢, d, e, f are constants, by the perturbation
method, the following equations are obtained:

e My My, My My A+ -+ =0

(5)
el 4M Moy Mys Myy A3A + -+ =0
where
G12:J, G23=4Jy1 Sinz 80+J
I
H,,=2kl? <1 — ;), Gy = —4J,; cos gy sin g,
2
F;3=2C cos &, Gy3=—(4J,, cos’ g5+ J)
Fi,= —2C; sin g, G,y =4J,, cos g, sin g, (6)

Hi =H,=Ip, I, =2Ccos eg=1I;3=14

Ly=15,=13=1, 11, =2Csin g,
L, =2C,sin g,

Using the computer software package ‘MACSYMA’, the
solution of equations (5) is obtained:

Ap=0

\/(H%1M4214—2H11H44M22M44 +2F5,H My,
+ Hi M3, + 2F5 Hy My + F3,)

Nen =
0 2Mp, M
_F§4+H44M22+H11M22 (7)
2M My
\/(H%1M§4_2H11H44M22M44+2F%4H11M44
Ao + Hiy M3, + 2F5Hyy Moy + F3y)
o DMy, My,
_ F34+ HyuMsy + Hy M,

2M5y My

Proc Instn Mech Engrs Vol 211 Part C
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Substituting A1;, =0 into equations (5) gives

aH, I3

A= uls
H Hy M3 + Fi,

Because A5y, Asy, A9, A4, are all negative and A =
+ /4, the eigenvalues of these governing equations are
pure imaginary. The motion is stable.

Substituting the eigenvalue into equation (1) gives the
following homogeneous solution:

O=ayy e Fayze  fayse
+ay,e M e,
Y =ay) a1 €+ ayyns e+ ays e
+ayy,e M4 cc. (8)
Ast

_ gt — st -
a=a;Y3; € +ay)33€ " +azxzs€
+ag s, e +cc.

p=a, M +a,e P fase S +ae M e

where ¢; is constant, i = 1-4, and

M22M33M44/1i6+“'
X1i= —
! M22M33C14/1i5+"'
. C12M33M44/1i5+“'
xii My My Cihi + -+
_ CiaMoy Mysdi + -
= My M3 Cighi + -

The particular solution of equation (1) is
. K, K3 K3 Qs+ - -
K1 Ky Ky Kyu + -+
_ K1 Kp3 K34 Qs+
K11K22K33K44 +
o= K Ky K3 Qs+
K1 Ky Ky Kyy + -
0= K11K22K33Q4 +
K11K22K33K44 + -

0=

)

The complete solution is the sum of the homogeneous
solution and the particular solution.

3.1.2  The damped motion

In this section, the effect of damping will be studied. Let
Rayleigh’s dissipation function R be
9{ _ ("1192 + CZZ’})Z + (’133dz + (”44(’52
B 2

Then the equations of motion become

[M][X] + [C][X] + [K][X]=[Q] (10)

Proc Instn Mech Engrs Vol 211 Part C

where
M, O 0 0
0 M 0 0
[M]= 22
0 0 M;; O
0 0 0 My,
Cll C12 C13 C14
[C] _ - C12 C22 C23 C24
—Cz —Cy Gy 0
—Cy —Cy 0 Cy
Kll K12 K13 K14
[K]_ K12 K22 K23 K24
K13 K23 K33 K34
_K14 Ky Ky Ky
0,
0,
[Q]=
0
K2
K
Y
[X]=
a
| ¢

where My, My, Myz, My, Ciy, Ciyy Cos, Ciz, Cog,
Klla K227 K129 K23’ K13v K249 K14a K34v K339 K44’ Qla
Q,, 05, O, are the same as equation (2). By normaliz-
ation, the differential equations can be represented as
equation (3). Then for the homogeneous solution of
these differential equations, the characteristic equation
is given as equation (4). If

vsin K

w,=E¢, wy + =ae

vsin K vcos K
tan & = be, R -

w, + ce

—mwvX, = de, —movY,=ee

02

H’ZE:ff, /l:/‘{o‘l‘é'ﬂ.l‘*'

and a, b, ¢, d, e, f are constants, by the perturbation
method, the following equations are obtained:

e’ M My, MysMygAg+ -+ =0

el SM My Myy My Ao+ =0

where Gyy, Gps, Gy, Gi3, Gaas Fi3, Fay, Hyy, Hyy, Hyy,

(11)

C02095 © IMechE 1997
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1y, L, Ly, Lz, Ly, L3, 14, I3, are the same as in
equations (6).

The solution of equations (11) can be found using the
computer software package ‘MACSYMA'’. The solution
is as follows:

10:0
1= Cii M+ Ci3 My,
' 3My My
1= CiiMis + C33 My,
’ 3M,, M
P Ciy M3+ Ci3 My,
’ 3My; My
CopyMy, + CiyM
dam 220 My a4 M (12)
AM 5, M yy
1= Cor My, + Cyy M5,
’ 4My Moy
P Cor My, + Cyu M5,
° 4M 5y My
1= CoxMyy+ Cyy M,
’ AMy My,

Substituting the eigenvalue into equation (10), the
homogeneous solution obtained is

O=ayy;, e M +ayne " +agye ™

— At —Ast —Aet
T as)14€ "+ as)is€ 7+ dg)ie€ "°

—Aqt —Agt
+azx;;€ 77 +agyige

_ —Aqt —Ast —Ast
Yy =a1)21€ "+ ax)ne P tazyse

+ ag)2a € F dsys €+ dgyas e

— gt —Agt
tazxr€ "7 tasgyge "®

a=ajyz e Mt ayys e agysz e (13)

Ast

—Agt —Ast -
+a4)34€ Y+ ds)35€ T+ de)3e©

—Aqt — gt
+agxs7€ "7 +agyge "°

p

p=a,e M dae M taze B fase M fase s

+age "' +a, e +age s

where a; is constant, i = 1-8, and

Y= M11M22M33M44/1i6+"'
u —M11M22M33C14/1,~5+---
Yii= —M11C12M33M441,~5+'“
! _M11M22M33C14/1i5+"'
e —Cis M My My, 23+
. _M11M22M33C14/1?+“‘

If the numerical constants of Section 3.1.3 are substi-
tuted into the solution of equations (11), the following

C02095 © IMechE 1997

results are obtained:

Ao1 =0, Aoz =0.0017, Ao3=0.0172

Aos=0.0196, Aos.06 = 1557.71 + 2239.37i (14)

Ao7.08 = 1573.85 £ 2494.49i, el11 =934 x107°
Because all of the main parts of eigenvalues, 1,, .. ., os,

ey, have a positive real part, the motion is asymptoti-
cally stable.

The particular solution of equation (10) is the same
as equation (9). The complete solution is the sum of the
homogeneous solution and the particular solution.

3.1.3 Numerical examples

From reference (5), the constants of elements of the
gyrosphere are given as:

J=10.89 gwems?,  J,; =40.13 gwem s?
2C, cos 5= 1.585 x 10° gw cm s
Ip=6.675 x 10° gw cm
2kl3 <1 — 50> =140 gw cm, gy =45°
2
Ci1=Cyp=C33=Cyy=1x10°gwecms
and
E=30°N, v=0.67 m/s, K=90°
The following numerical equations are obtained:
(a) Undamped system:
1.9 x 10748 +2.19 x 1042 + 6.31 x 10244
+2.68 x 104 +6.7 x 10'°=0 (15)

The solution of the above equation using the com-
puter software package ‘MATHEMATICA’ is

A1, = £0.00161, As4= £2387.461
Ass = 10.0062i, Asg= 1+2412.88i
(b) Damped system:
1.9 x 10748 — 1.19 x 1027 +4.93 x 10'42°
—9.6 x 10172% +1.23 x 10*'1* — 4.75 x 10943
+4.95x 10742 =717 x 101 4+ 6.7 x 101°=0
(17)

The solution of the above equation using the com-
puter software package ‘MATHEMATICA’ is

2;=0.0001, 1,=0.00159, A,=0.0173
24=00195,  Ass=1557.7142239.37i  (18)
Ar g = 1573.85 + 2429 49

From these results, the undamped motion is stable and
the damped motion is asymptotically stable.

If K=45° is taken and other assumptions remain
unchanged, the following numerical equations are
obtained:

(16)

Proc Instn Mech Engrs Vol 211 Part C
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(a) Undamped system:

1.9 x 10748 +2.19 4+ 10142° + 6.31 x 10244
+2.68 x 10142 4+ 6.7 x 101°=0 (19)
(b) Damped system:
1.9 x 10728 — 1.19 x 101147 4-4.93 x 1014A°
—9.6 x 10Y72% +1.23 x 10*'A% — 4.75 x 101923
+4.95 x 101722 —7.17 x 101, 4+ 6.7 x 101°=0
(20)

These two equations are the same as the equations for
the case K=90°. Therefore the solutions are the same.

3.2 Zero vehicle velocity case

Since 0, a, y, ¢ are usually small, the non-linear terms
of the governing equations are neglected and the vehicle
velocity is taken to be zero. Using these assumptions,
the approximate equations can be obtained and the solu-
tion found.

3.2.1 The undamped motion

From the equation of motion, Jy 0w, =C;=J,,0n =
C,, Jy1=J,s, Jyy =J,; are assumed and the equations
become

[M][X] +[C][X] + [K][X]=[Q] (21)
where

[M] =
0 0 My 0
0 0 0 M,
(C]= —Cy, 0 0 Gy
—Cys 0 0 0
0 —Cyu 0 0
Ky 0 0 K4
K] — 0 K, Ky; 0
0 Ky Ky 0
K, 0 0 K,
0,
[Q]= 0
1o
o
0
Y
[X]=
a
@
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where
My =J+2J, cos® g

My, =J+2J,,sin’ g

My, =J+2J,
M= 2Jy1
Cr=Jo,

Cy3=2C, cos gy — (J +4J,; cos® gy)w,
Cyy= —2C; sin gy +4J,; cos g, sin g4,

Ky =1Ip+2C; cos g0, + 2J,; cos? gy(w3 — w?)

Ky, =Ip +2J,, sin® g3 (22)
K,y = —2J,, sin® g,0, 0,
Kiy= —2C; sin gqw, + 4J,; €08 € Sin &g, 0

K33 =2C; cos g0, + 2J,; w3 (sin® g — cos® &)

i
K, = 2ki? <1 — 10> +2C, cos gyw,

2

—2J,4(cos? g — sin” &) w?
0, =2C; sin g0, — 2J,; sin’ £,0, w,
Q,=2C; sin g,w, — 2J,; €08 &, sin g0}

By normalization, the differential equations can be rep-
resented as equation (3) in Section 3.1.1. The character-
istic equation is obtained as equation (4) in
Section 3.1.1. If A=A, w,=¢, A=Ag+¢eA;+ -+, by
the perturbation method, the following equations are
obtained:

e’ My Moy, Myy My AG+ -+ =0

(23)
el 4M i My Mys My A5 A + -+ =0
where
G, =Jsin &, Fi3=2C; cos g,
lo
Hy, =2k (1——+
b
Gy3=—(4J,, cos’ ¢y +J) cos &
F,,= —2C,sin g, (24)

Gy =4J,; cOs & sin gy cos &

H,,=H,,=1p, I,;=2C coseycosE=13=14
1,,=2C;cos g,sin &

Using the computer software package ‘MACSYMA’, the
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solution of equations (23) is obtained:

A10=0

\/(H%1M4214—2H11H44M22M44+2F§4H11M44
+ HiyM3s + 2F 3, Hyyu My, + F3,)

Neq =
30 2My My,
_F§4+H44M22+H11M22 (25)
2My My
JH My —2H  Hyy My, My + 2F3,Hy My,
e + H2, M2, +2F3,H M, + F3,)
0 2M My,
B Fi,+HyuM,,+ Hy M,

2Myy My,
Substituting A1;, =0 into equations (23) gives

aHy 1,

A, =— i
H Hy My + Fi,

Because A5y, Asg, A79, Ay are all negative and A =
+ /4, the eigenvalues of these governing equations are
pure imaginary. The motion is stable.

Substituting the eigenvalue into equation (21), the
following homogeneous solution can be obtained:

_ Aqt — st — st

O=ayy; €' +ayize ¥ +azyse s
+ayy,e M+ cc.

_ Aqt —Ast —Ast

Y =a1X21 € +azy)sz€ " tdaz)se
+auy.ne M +coc.

Ast

_ At —Ast -
O =a,)31 € + a3 33€ " +daz) zs€
+ayyse M e,
p=a, e +a,e ™ faze M +ae M 4 e

where ¢; is constant, i = 1-4, and

_ My, Myy My A9 + -+
xi= My M3 K gAf + -+
. CiaMyz My, 23+

U My My KA + -
Y= C13M22M44ﬂ.i5 + -
U My My Ky A3+

The convergence of the above solution by the pertur-
bation method can be certificated by numerical results.
The particular solution of equation (21) is

_ Q1K44 — Q4K14 _ Q4K11 _ Q1K14

0= R = (26)
K1 Ky —Kis K1 Kuy—Kiy

The complete solution is the sum of the homogeneous
solution and the particular solution.

C02095 © IMechE 1997

3.2.2  The damped motion

In this section, the effect of damping will be studied. Let
Rayleigh’s dissipation function R be

R C1 6% + Coup? + Ca3d? + Cyy?

2
Then the equations of motion become
[M][X] + [C][X] + [K][X] =[Q] (27)
where

My, 0 0 0
0 M, 0 0

[M]=
0 0 My 0
0o 0 M,
Cll CIZ C13 0
[C]: _CIZ CZZ O C24
—Cy 0 Gy 0
0 -Gy 0 Cy
[k, 0 0 K
| 0 Ka Ka 0
0 Ky Kz 0
K. 0 0 K,
0,
[Q]=
o
[0
y
[X]=
a
K

where My, Myy, Msz, Myy, Cia, Ciz, Couy Ky, Ko,
Ky, K4, Ki3, Kuu, Q1, Q4 are the same as equations
(22). By normalization, the differential equations can be
represented as equation (3). Then for the homogeneous
solution of these differential equations, through the
characteristic equation (4), if w,=¢, A=21,+ €A, + -,
by the perturbation method, the following equations are
obtained:

e’ M My, Mys MyyAg+ -+ =0
el 8M My, Mys My A3A +---=0

where Myy, My,, My, My, Gy, Gz, Gag, Fiz, Fog,
H,,, Hy,, I, 1,, are the same as equations (24).
The solution of equations (28) can be found by using

(28)
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the computer software package ‘MACSYMA'’. The solu-
tion is as follows:

l():()
1= Ciy M3+ Ci3 My,
' 3My My,
1= Ci My + C3 My,
’ 3My; My
P Cii M3+ Ci3 My,
) 3My M (29)
1= CouMyy+ Cyu My,
! 4M 5y M4
de— CoxMyy+ Cyy M,
’ 4M;y M 4
1= CooyMy, + CyyM,,
° 4M 5y M4
1= Cor My, + Cyy M5,
L=

4M;y My,

Substituting the eigenvalue into equation (27), the fol-
lowing homogeneous solution can be obtained:

—Aqt —Ast —Ast
O=ayye” " +ayne " tazyze

+agiae " +asyise s +agyee e
+ asx17 e M+ As)1s e
Y =ai)a e M aryp e dazysy e
+ay)ra e Fasyss e 4 agyse e
+aryyr e+ agyyg e
a=ajys e M+ ayys e Hagysz e (30)

—Agt —Ast —Aet
T a4)34€ " T AsY3s€ TP+ dsX36€ °

—Aqt —Agt
+tasx37€ 7 +ag)g€ °
p=a,e M tae P taze B tae M fase
+age ' +a,e M fage e

where «; is constant, i = 1-8, and

Y= Moy Myg Myy A3 + -

! My, M3 K Af + -+
_ CiaMys Musdi + -
xi = ]\422]‘/133K14/1§1 +
_ CaMyy Myhi + -+
xii M22M33K14}-? + -

If the numerical constants of Section 3.1.3 are substi-
tuted into the solution of equations (28), the following

Proc Instn Mech Engrs Vol 211 Part C

results are obtained:

Aoy =0,  Ap=0.0017, Ay =0.017

Aos=0.019, Aos.os = 1434.71 + 2243.09i (31)

Ao7.0s = 700.63 + 2494.49i, &1 =934 x107°
Because all of the main parts of eigenvalues, 15, .. ., os,

€A1, have a positive real part, the motion is asymptoti-
cally stable.

The particular solution of equation (27) is the same
as equation (26). The complete solution is the sum of
the homogeneous solution and the particular solution.

3.2.3 Numerical examples

Taking the assumptions of Section 3.1.3 and £ = 30° N,
the following numerical equations are obtained:

(a) Undamped system:
3.62 x 10MA% +4.18 x 10%1A° + 1.2 x 10%8*
+5.11 x 10242+ 127 x 108 =0 (32)

The solution of the above equation using the com-
puter software package ‘MATHEMATICA’ is

Ay, = £0.0016i, Az = 1+2490.451
Ass = 10.0063i, Ayg= 1+2311.85i
(b) Damped system:
3.62 x 10148 —2.27 x 101817 + 9.4 x 10?118
—1.82 x 10%°4° 4+ 2.34 x 10?4 —9.05 x 10%°43
+9.43 x 10*4%> — 1.36 x 10221 +1.27 x 108 =0
(34)

The solution of the above equation using the com-
puter software package ‘MATHEMATICA’ is

A;=0.0001, 1,=0.0016, Ay=0.017
Aa=0019,  Ago=14347142243.09  (35)
Arg = 1700.63 + 2429.99i

(33)

From these results, the undamped motion is stable and
the damped motion is asymptotically stable.

4 CONCLUSIONS

The detailed exact Lagrange equations of motion of the
two-gyro Anschiitz compass are obtained. The earth spin
velocity and zero vehicle case and the non-zero earth
spin velocity and non-zero velocity case are studied using
the linear approximation method.

All solutions of undamped motion in the two cases
are periodic functions of time, which means that these
motions are stable. Rayleigh’s dissipation function is
added to the equations of motion and then the eigen-
values, i.e. the solutions of characteristic equations of
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damped motion for the two cases, are obtained. All of
the exponential parts decrease with time, and these
motions are asymptotically stable by the numerical

results of these eigenvalues.

From the numerical examples, the characteristic equa-
tions are seen to be slightly different from each other
when the vehicle velocity and heading angle parameters

vary. The effect of these parameters is rather small.
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In this Appendix, the Lagrange equations are used to describe the equations of motion of the two-gyro Anschiitz

compass and obtain six equations of motion as follows:

1. The equation of motion for ¢,:

Jawy=C (36)
2. The equation of motion for ¢,:
Joa0n=0C (37)
3. The equation of motion for 6:
.. .. vsin K
J{cosy[@cosy—@s1ny7+<wl+R>
x (sin yy sin a — cos ¥ cos ad + cos y sin @ cos ay + sin ¥ cos @ cos af — sin v sin 6 sin ad):|
@ sin K diK veos K ( . . " )
i R + a R COosS ¥ sin a + sin y sin 6 cos a
las @sinK_FdichosKt £ s P
a i R & R an & | sin y cos
vsin K . .
+la+w,+ tan & | (cosy cos Oy —sinysin 00)  +---=0 (38)
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4. The equation of motion for y:

dv smK dK vcos K 0
i R dt R cos 0 cos a

vsin K
J{)‘/’+ <a)1 + R> (—sin 66 cos o — cos O sin a sin ad) + <

. dvsin K dKvcos K ) vsin K
—la & R +dt R tan& sinf— a4+ w, + ——— R tan & | cos 66

dvsmK dK vcos K
dr R dt R

. vcos K . . :
)cos@sma—k (cos a cos Oa — sin 0 sin aG)} +---=0 (39)

S. The equation of motion for o.:

cos 0 sin a

K vsin K . vecos K
R cos B cosa — d—i—wz—f—Ttang sin 6 +

<cos 00( + wy +

dvsmK+decosK 00 si
sin 6 sin a
dt R dt R

dvsmK dK vcos K . vsin K .
—|d+ tan & |sinf — | o+ w, + R tan & | cos 66

. vsin K
+ sin 6 {)’/’-ﬁ- (wl + R> (—sin 60 cos a — cos 0 sin ad) + (

dr R dr R

vcos K

(dv cos K dK vsin K

& R dt R > cos 6 sin a + (cos a cos Ba — sin 6 sin a0)}>

. .. . vsin K\ | .
+J{smycos€)|:6’cosy—051nyy+<a)2+ )(smy))sma

—cos Y cos ad. + cos y sin O cos af + sin y cos af —sin y sin 6 sin ad)]

<dv sin K dK vcos K

i R dt R )(—cosysina—l—sinysinﬁcosa)}—|—~~~=0 (40)

6. The equation of motion for ¢:
.o . vsin K
J. |:—t9 siny —60cosyy + <w2+R>

x (cos a sin yd + sin a cos yy — sin y sin 6 cos ay + cos y cos @ cos ad — cos y sin 0 sin ad)

dvsmK dK vcos K\ . . in 6
& R dt R (sin a sin y 4 cos y sin 6 cos a)

v sin .
+ <o‘c+w1+ tan §> (—siny cos Oy —cos y sin 60)

@cosK diKvsinK in 0+ vcos K 0
&t R 4 R cos y sin R COS Y COS

vsin K

(—sin y sin 6 sin ay + cos y cos @ sin ad + cos y sin O cos ad — cos y cos ay + sin y sin ad)

dv cos K desmK( O . ile =0 41
& R & R ) (cosysin sin a — sin y cos @) — ¢ = (41)
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