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Abstract

Assume that n is a positive integer with n � 2. It is proved that between any two different vertices x and y of Qn there exists
a path Pl(x,y) of length l for any l with h(x,y) � l � 2n − 1 and 2|(l − h(x,y)). We expect such path Pl(x,y) can be further
extended by including the vertices not in Pl(x,y) into a hamiltonian path from x to a fixed vertex z or a hamiltonian cycle. In
this paper, we prove that for any two vertices x and z from different partite set of n-dimensional hypercube Qn, for any vertex
y ∈ V (Qn) − {x, z}, and for any integer l with h(x,y) � l � 2n − 1 − h(y, z) and 2|(l − h(x,y)), there exists a hamiltonian path
R(x,y, z; l) from x to z such that dR(x,y,z;l)(x,y) = l. Moreover, for any two distinct vertices x and y of Qn and for any integer l

with h(x,y) � l � 2n−1 and 2|(l − h(x,y)), there exists a hamiltonian cycle S(x,y; l) such that dS(x,y;l)(x,y) = l.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, a network is represented as a loopless
undirected graph. For the graph definition and notation,
we follow [1]. G = (V ,E) is a graph if V is a finite
set and E is a subset of {(a, b) | (a, b) is an unordered
pair of V }. We say that V is the vertex set and E is
the edge set. A graph G = (V0 ∪ V1,E) is bipartite if
V (G) is the union of two disjoint sets V0 and V1 such
that every edge joins V0 with V1. Two vertices u and
v are adjacent if (u, v) ∈ E. A path is a sequence of

* Corresponding author.
E-mail addresses: jmtan@cs.nctu.edu.tw (J.J.M. Tan),

lhhsu@pu.edu.tw (L.-H. Hsu).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.02.013
adjacent vertices, written as 〈v0, v1, . . . , vm〉, in which
all the vertices v0, v1, . . . , vm are distinct except possi-
ble v0 = vm. We also write the path 〈v0,P , vm〉 where
P = 〈v0, v1, . . . , vm〉. The length of a path P , denoted
by l(P ), is the number of edges in P . Let u and v be two
vertices of G. The distance between u and v denoted by
dG(u, v) is the length of the shortest path of G joining u

and v. A cycle is a path with at least three vertices such
that the first vertex is the same as the last one. A hamil-
tonian cycle is a cycle of length |V (G)|. A hamiltonian
path is a path of length |V (G)| − 1.

Interconnection networks play an important role in
parallel computing/communication systems. The graph
embedding problem is a central issue in evaluating a
network. The graph embedding problem asked if the
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quest graph is a subgraph of a host graph, and an im-
portant benefit of the graph embeddings is that we can
apply existing algorithm for guest graphs to host graphs.
This problem has attracted a burst of studies in recent
years. Cycle networks and path networks are suitable
for designing simple algorithms with low communica-
tion costs. The cycle embedding problem, which deals
with all possible length of the cycles in a given graph,
is investigated in a lot of interconnection networks [2,
7,9,11,14]. The path embedding problem, which deals
with all possible length of the paths between given two
vertices in a given graph, is investigated in a lot of inter-
connection networks [3–6,11,13,14].

Let u = unun−1 . . . u2u1 be an n-bit binary strings.
The Hamming weight of u, denoted by w(u), is the
number of i such that ui = 1. Let u = unun−1 . . . u2u1
and v = vnvn−1 . . . v2v1 be two n-bit binary strings. The
Hamming distance h(u,v) between two vertices u and
v is the number of different bits in the corresponding
strings of both vertices. The n-dimensional hypercube,
denoted by Qn, consists of all n-bit binary strings as
its vertices and two vertices u and v are adjacent if and
only if h(u,v) = 1. Thus, Qn is a bipartite graph with
bipartition {u | w(u) is odd} and {u | w(u) is even}.
A vertex u of Qn is white if w(u) is odd, otherwise
u is black. It is known that dQn(u,v) = h(u,v). For
i = 0,1, let Qi

n−1 denote the subgraph of Qn induced by
{u = unun−1 . . . u2u1 | un = i}. Obviously, Qi

n−1 is iso-
morphic to Qn−1. For any vertex u = unun−1 . . . u2u1,
we use un to denote the vertex v = vnvn−1 . . . v2v1 with
ui = vi for 1 � i � n − 1 and un = 1 − vn.

The hypercube Qn is one of the most popular in-
terconnection networks for parallel computer/communi-
cation system [10]. This is partly due to its attractive
properties such as regularity, recursive structure, vertex
and edge symmetry, maximum connectivity, as well as
effective routing and broadcasting algorithm.

For the path embedding problem on hypercube, Li et
al. [11] proved that between any two different vertices
x and y of Qn there exists a path Pl(x,y) of length l

for any l with h(x,y) � l � 2n − 1 and 2|(l − h(x,y)).
Note that the requirement 2|(l − h(x,y)) is needed be-
cause Qn is a bipartite graph for every positive inte-
ger n. Moreover, the requirement h(x,y) � l � 2n − 1
is needed because the distance between x and y in Qn is
h(x,y). Obviously, we expect such path Pl(x,y) can be
further extended by including the vertices not in Pl(x,y)

into a hamiltonian path from x to a fixed vertex z or
a hamiltonian cycle. For this reason, we prove that for
any two vertices x and z from different partite set of
Qn, for any vertex y /∈ {x, z}, and for any integer l with
h(x,y) � l � 2n − 1 − h(y, z) and 2|(l − h(x,y)), there
exists a hamiltonian path R(x,y, z; l) from x to z such
that dR(x,y,z;l)(x,y) = l. As a corollary, we prove that
for any n � 2, for any two distinct vertices x and y of
Qn and for any integer l with h(x,y) � l � 2n−1 and
2|(l −h(x,y)) there exists a hamiltonian cycle S(x,y; l)
such that dS(x,y;l)(x,y) = l.

In the following section, we introduce another in-
teresting property, called 2RP-property, of hypercubes.
We defer the proof of 2RP-property for hypercube in
Section 3. Instead we prove that many interesting prop-
erties, including the aforementioned properties, of hy-
percube is a direct consequence of 2PR-property. In
Section 4, we give a discussion on 2RP-property.

2. 2RP-property

Assume that n is any positive integer with n � 2. Let
u and x be two distinct white vertices of Qn and v and
y be two distinct black vertices of Qn. It is proved in
[8] that there are two disjoint paths P1 and P2 such that
(1) P1 is a path joining u to v, (2) P2 is a path joining x
to y, and (3) P1 ∪ P2 spans Qn. We call such property
the be the 2P property. The 2P property has been used
in many applications of hypercubes [8,12]. Obviously,
the lengths of P1 and P2 satisfy l(P1)+ l(P2) = 2n − 2.
Yet, we can further require that the length of P1, and
hence the length of P2, can be any odd integer such that
l(P1) � h(u,v) and l(P2) � h(x,y). We call such prop-
erty to be the 2RP property. More precisely, let u and x
be two distinct white vertices of Qn and v and y be two
distinct black vertices of Qn. Let l1 and l2 are odd inte-
gers with l1 � h(u,v), l2 � h(x,y), and l1 + l2 = 2n −2.
Then there are two disjoint paths P1 and P2 such that
(1) P1 is a path joining u to v with l(P1) = l1, (2) P2 is
a path joining x to y with l(P2) = l2, and (3) P1 ∪ P2
spans Qn. In next section, we will formally prove the
following theorem.

Theorem 2.1. Qn satisfies the 2RP property if n � 4.

Now, we make some remarks to illustrate that some
interesting properties of hypercubes are consequences
of Theorem 2.1.

Remark 1. The hamiltonian laceable property of hyper-
cubes, proved in [15], states that there exists a hamil-
tonian path of Qn joining any white vertex u to any
black vertex y. Now, we prove that Qn is hamiltonian
laceable by Theorem 2.1. Obviously, Qn is hamiltonian
laceable for n = 1,2,3. Since n � 4, we can choose a
pair of adjacent vertices v and x such that v is a black
vertex with v �= y and x be a white vertex with x �= u.
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By Theorem 2.1, there are two disjoint paths P1 and P2
such that (1) P1 is a path joining u to v, (2) P2 is a path
joining x to y, and (3) P1 ∪ P2 spans Qn. Obviously,
〈u,P1,v,x,P2,y〉 forms a hamiltonian path joining u
to y. Thus, Qn is hamiltonian laceable.

Remark 2. The bipanconnected property of Qn, proved
in [11], stated that between any two different vertices x
and y of Qn there exists a path Pl(x,y) of length l for
any l with h(x,y) � l � 2n −1 and 2|(l−h(x,y)). Now,
we prove that Qn is bipanconnected by Theorem 2.1.
Obviously, Qn is bipanconnected for n = 1,2,3. Now,
we consider n � 4. Without loss of generality, we as-
sume that x is a white vertex.

Suppose that y is a black vertex. Thus, h(x,y) is odd.
Let l be any odd integer with h(x,y) � l � 2n − 1. Sup-
pose that l = 2n − 1. By Remark 1, Qn is hamiltonian
laceable. Obviously, the hamiltonian path of Qn joining
x and y is of length 2n − 1. Suppose that l < 2n − 1.
Since n � 4, we can choose a pair of adjacent vertices u
and v such that u is a white vertex with u �= x and v be
a black vertex with v �= y. Obviously, h(u,v) = 1. By
Theorem 2.1, there exist two disjoint paths P1 and P2
such that (1) P1 is a path joining u to v with l(P1) =
2n − 2 − l, (2) P2 is a path joining x to y with l(P2) = l,
and (3) P1 ∪ P2 spans Qn. Obviously, P2 is a path of
length l joining x to y.

Suppose that y is a white vertex. Thus, h(x,y) is
even. Let l be any even integer with h(x,y) � l <

2n − 1. Since n � 4, we can choose two different neigh-
bors u and v of y such that h(x,u) = h(x,y) − 1.
By Theorem 2.1, there exist two disjoint paths P1 and
P2 such that (1) P1 is a path joining x to u with
l(P1) = l − 1, (2) P2 is a path joining y to v with
l(P2) = 2n − l − 1, and (3) P1 ∪ P2 spans Qn. Obvi-
ously, 〈x,P1,u,y〉 is a path of length l joining x to y.

Thus, Qn is bipanconnected.

Remark 3. The edge-bipancyclic property of Qn,
proved in [11], stated that for any edge e = (x,y) and
for any even integer with 4 � l � 2n there exists a cy-
cle of length l containing the edge e if n � 2. Again,
we prove that Qn is edge-bipancyclic by Theorem 2.1.
Obviously, Qn is edge-bipancyclic for n = 2,3. Thus,
we consider n � 4. Suppose that l = 2n. By Remark 1,
there exists a hamiltonian path P joining x to y. Obvi-
ously, 〈x,P ,y,x〉 forms a hamiltonian cycle of length
2n containing the edge e. Suppose that l < 2n. Since
n � 4, we can choose a pair of adjacent vertices u and
v such that u is a white vertex. By Theorem 2.1, there
exist two disjoint paths P1 and P2 such that (1) P1 is a
path joining u to v with l(P1) = 2n − l − 1, (2) P2 is a
path joining x to y with l(P2) = l − 1, and (3) P1 ∪ P2

spans Qn. Obviously, 〈x,P2,y,x〉 is a cycle of length l

containing the edge e. Thus, Qn is edge-bipancyclic for
n � 2.

The following results are also consequence of Theo-
rem 2.1.

Theorem 2.2. Assume that n be any positive integer
with n � 2. Let x and z be two vertices from differ-
ent partite set of Qn and y be a vertex of Qn that
is not in {x, z}. For any integer l with h(x,y) � l �
2n − 1 − h(y, z) and 2|(l − h(x,y)), there exists a
hamiltonian path R(x,y; z, l) from x to z such that
dR(x,y,z;l)(x,y) = l.

Proof. By brute force, we can check the theorem holds
for n = 2,3. Now, we consider n � 4. Without loss of
generality, we assume that x is a white vertex and z is a
black vertex.

Suppose that y is a black vertex. Obviously, h(y, z) �
2. There exists a neighbor w of y such that w �= x
and h(w, z) = h(y, z) − 1. Obviously, w is a white
vertex. By Theorem 2.1, there exist two disjoint paths
R1 and R2 such that (1) R1 is a path joining x to y
with l(R1) = l, (2) R2 is a path joining w to z with
l(R2) = 2n − l − 2, and (3) R1 ∪ R2 spans Qn. We set
R as 〈x,R1,y,w,R2, z〉. Obviously, R is the required
hamiltonian path.

Suppose that y is a white vertex. Obviously, h(x,y) �
2. There exists a neighbor w of y such that w �= z and
h(w,x) = h(y,x) − 1. Obviously, w is a black ver-
tex. By Theorem 2.1, there exist two disjoint paths R1

and R2 such that (1) R1 is a path joining x to w with
l(R1) = l − 1, (2) R2 is a path joining y to z with
l(R2) = 2n − l − 1, and (3) R1 ∪ R2 spans Qn. We set
R as 〈x,R1,w,y,R2, z〉. Obviously, R is the required
hamiltonian path. �
Corollary 2.1. Assume that n is a positive integer with
n � 2. Let x and y be any two different vertices of Qn.
For any integer l with h(x,y) � l � 2n−1 there exists a
hamiltonian cycle S(x,y; l) such that dS(x,y;l)(x,y) = l

and 2|(l − h(x,y)).

Proof. Let z be a neighbor of x such that z �= y. By The-
orem 2.2, there exits a hamiltonian path R joining x to
z such that dR(x,y,z;l)(x,y) = l. We set S as 〈x,R, z,x〉.
Obviously, S forms the required hamiltonian cycle. �
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3. Proof of Theorem 2.1

Now, we prove Theorem 2.1. By brute force, we
can check the theorem holds for n = 4. Assume the
theorem holds for any Qk with 4 � k < n. Without
loss of generality, we can assume that l1 � l2. Thus,
l2 � 2n−1 − 1. Since Qn is edge symmetric, we can as-
sume that u ∈ V (Q0

n−1) and x ∈ V (Q1
n−1). We have the

following cases.

Case 1. v ∈ V (Q0
n−1) and y ∈ V (Q1

n−1). Suppose that
l2 < 2n−1 − 1. By Remark 1, there exists a hamiltonian
path R of Q0

n−1 joining u and v. Since the length of R

is 2n−1 − 1, we can write R as 〈u,R1,p,q,R2,v〉 for
some black vertex p with pn �= x and some white vertex
q with qn �= y. Obviously, h(pn,qn) = 1. By induction,
there exist two disjoint paths S1 and S2 such that (1) S1
is a path joining pn to qn with l(S1) = l1 − 2n−1, (2) S2
is a path joining x to y with l(S2) = l2, and (3) S1 ∪ S2
spans Q1

n−1. We set P1 as 〈u,R1,p,pn, S1,qn,q,R2,v〉
and set P2 as S2. Obviously, P1 and P2 are the required
paths. See Fig. 1(a) for illustration.

Suppose that l2 = 2n−1 − 1. By Remark 1, there ex-
ists a hamiltonian path P1 of Q0

n−1 joining u and v and
there exists a hamiltonian path P2 of Q1

n−1 joining x
and y. Obviously, P1 and P2 are the required paths. See
Fig. 1(b) for illustration.

Case 2. {v,y} ⊂ V (Q1
n−1). Suppose that l2 < 2n−1 − 1.

We choose a neighbor p of v such that p �= x. Obviously,
p is a white vertex. By induction, there exist two disjoint
paths S1 and S2 such that (1) S1 is a path joining p to
v with l(S1) = l1 − 2n−1, (2) S2 is a path joining x to y
with l(S2) = l2, and (3) S1 ∪S2 spans Q1
n−1. By Remark

1, there exists a hamiltonian path R of Q0
n−1 joining u

and pn. We set P1 as 〈u,R,pn,p, S1,v〉 and we set P2

as S2. Obviously, P1 and P2 are the required paths. See
Fig. 1(c) for illustration.

Suppose that l2 = 2n−1 − 1. Again, we choose a
neighbor p of v such that p �= x. By induction, there
exist two disjoint paths S1 and S2 such that (1) S1 is a
path joining p to v with l(S1) = 1, (2) S2 is a path join-
ing x to y with l(S2) = 2n−1 − 3, and (3) S1 ∪ S2 spans
Q1

n−1. Obviously, we can write S2 as 〈x, S1
2 , r, s, S2

2 ,y〉
for some black vertex r with rn �= u. Again by induc-
tion, there exist two disjoint paths R1 and R2 such that
(1) R1 is a path joining u to pn with l(R1) = 2n−1 − 3,
(2) R2 is a path joining rn to sn with l(R2) = 1, and (3)
R1 ∪ R2 spans Q0

n−1. We set P1 as 〈u,R1,pn,p,v〉 and
set P2 as 〈x, S1

2 , r, rn, sn, s, S2
2 ,y〉. Obviously, P1 and

P2 are the required paths. See Fig. 1(d) for illustration.

Case 3. y ∈ V (Q0
n−1) and v ∈ V (Q1

n−1). Suppose that
l2 = 1. Obviously, x = yn. Let p be a neighbor of y in
Q0

n−1 such that yn �= v and let q be a neighbor of p in
Q0

n−1 such that p �= y. By induction, there exist two dis-
joint paths R1 and R2 such that (1) R1 is a path joining
u to q and l(R1) = 2n−1 − 3, (2) R2 is a path joining
p to y and l(R2) = 1, and (3) R1 ∪ R2 spans Q0

n−1.
Obviously, pn is a black vertex and qn is a white ver-
tex. Again by induction, there exist two disjoint paths
S1 and S2 such that (1) S1 is a path joining qn to v
with l(S1) = 2n−1 − 3, (2) S2 is a path joining x to pn

with l(S2) = 1, and (3) S1 ∪ S2 spans Q1
n−1. We set P1

as 〈u,R1,q,p,pn,qn, S1,v〉 and set P2 as 〈x,y〉. Obvi-
Fig. 1. Illustration for Theorem 2.1.
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ously, P1 and P2 are the required paths. See Fig. 1(e)
for illustration.

Suppose that l2 � 3. We set p be a neighbor in Q0
n−1

of y with p �= u if h(x,y) = 1 and set p be a neighbor
of y in Q0

n−1 with p �= u and h(p,y) = h(x,y) − 1 if
h(x,y) � 3. Let q be a neighbor vn in Q0

n−1 such that
q �= y and qn �= x. Thus, h(qn,v) = 1. By induction,
there exist two disjoint paths R1 and R2 such that (1) R1
is a path joining u to p with l(R1) = 2n−1 − 3, (2) R2
is a path joining q to y with l(R2) = 1, and (3) R1 ∪ R2
spans Q0

n−1. Again by induction, there exist two dis-
joint paths S1 and S2 such that (1) S1 is a path joining
qn to v with l(S1) = l1 − 2n−1 + 2, (2) S2 is a path join-
ing x to pn with l(S2) = 12 − 2, and (3) S1 ∪ S2 spans
Q1

n−1. We set P1 as 〈u,R1,q,qn, S1,v〉 and set P2 as
〈x, S2,pn,p,y〉. Obviously, P1 and P2 are the required
paths. See Fig. 1(f) for illustration.

Case 4. {v,y} ⊂ V (Q0
n−1). Suppose that l2 = 1. Ob-

viously, y = xn. By Remark 1, there exist a hamil-
tonian path R of Q0

n−1 joining u to v. Obviously, R can
be written as 〈u,R1,p,y,q,R2,v〉. Note that u = p if
l(R1) = 0. Obviously, p and q are white vertices. Thus,
pn and qn are black vertices. Let r be a neighbor of qn

in Q1
n−1 such that r �= x. By induction, there exist two

disjoint paths S1 and S2 such that (1) S1 is a path joining
pn to r with l(S1) = 2n−1 − 3, (2) S2 is a path joining
qn to x with l(S2) = 1, and (3) S1 ∪ S2 spans Q1

n−1. We
set P1 as 〈u,R1,p,pn, S1, r,qn,q,R2,v〉 and set P2 as
〈x,y〉. Obviously, P1 and P2 are the required paths. See
Fig. 1(g) for illustration.

Suppose that l2 � 3. We set p be a neighbor of y in
Q0

n−1 with p �= u if h(x,y) = 1 and set p be a neighbor
of y in Q0

n−1 with p �= u and h(p,y) = h(x,y) − 1 if
h(x,y) � 3. By induction, there exist two disjoint paths
R1 and R2 such that (1) R1 is a path joining u to v with
l(R1) = 2n−1 − 3, (2) R2 is a path joining p to y with
l(R2) = 1, and (3) R1 ∪ R2 spans Q0

n−1. Obviously, we
can write R1 as 〈u,R1

1, s, t,R2
1,v〉 for some black vertex

s such that sn �= x. By induction, there exist two disjoint
paths S1 and S2 such that (1) S1 is a path joining sn to
tn with l(S1) = l1 − 2n−1 − 2, (2) S2 is a path joining x
to pn with l(S2) = l2 − 2, and (3) S1 ∪ S2 spans Q1

n−1.
We set P1 as 〈u,R1

1, s, sn, S1, tn, t,R2
1,v〉 and set P2 as

〈x, S2,pn,p,y〉. Obviously, P1 and P2 are the required
paths. See Fig. 1(h) for illustration.

4. Discussion

Since there are four vertices in Q2, it is easy to check
that Q2 satisfies the 2RP-property. However, the 2RP-
property does not hold for Q3. Let u = 000, v = 111,
x = 011, and y = 001. By brute force, we can check
that we cannot find two disjoint paths P1 and P2 such
that P1 is a path joining u to v with l(P1) = 3 and P2 is
a path joining x to y with l(P2) = 3.

By changing the roles of the vertices in bipartite sets
in Theorem 2.1, we have the following theorem. The
proof is similar to the proof of Theorem 2.1.

Theorem 4.1. Assume that n is a positive integer with
n � 4. Let u and x be two distinct white vertices of Qn

and v and y be two distinct black vertices of Qn. Let l1
and l2 be even integers with l1 � h(u,x), l2 � h(v,y),
and l1 + l2 = 2n − 2 except for the case {l1, l2} =
{2,2n − 4} with {u,x,v,y} inducing a cycle of length 4.
There exist two disjoint paths P1 and P2 such that (1) P1

is a path joining u to x and l(P1) = l1, (2) P2 is a path
joining v to y and l(P2) = l2, and (3) P1 ∪P2 spans Qn.

Suppose that n = 3. Let u = 000, v = 011, x = 100,
and y = 111. We can check that there are no two dis-
joint paths P1 and P2 such that P1 is a path joining u
to v and P2 is a path joining x to y such that P1 ∪ P2

spans Q3. Again, the above theorem does not hold for
n = 3.
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