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Abstract:

The solutions of constant-head and constant-flux tests are commonly used to predict the temporal or spatial drawdown
distribution or to determine aquifer parameters. Theis and Thiem equations, for instance, are well-known transient and steady-
state drawdown solutions, respectively, of the constant-flux test. It is known that the Theis equation is not applicable to the
case where the aquifer has a finite boundary or the pumping time tends to infinity. On the other hand, the Thiem equation
does not apply to the case where the aquifer boundary is infinite. However, the issue of obtaining the Thiem equation from
the transient drawdown solution has not previously been addressed. In this paper, the drawdown solutions for constant-head
and constant-flux tests conducted in finite or infinite confined aquifers with or without consideration of the effect of the well
radius are examined comprehensively. Mathematical verification and physical interpretation of the solutions to these two tests
converging or not converging to the Thiem equation are presented. The result shows that there are some finite-domain solutions
for these two tests that can converge to the Thiem equation when the time becomes infinitely large. In addition, the time
criteria to give a good approximation to the finite-domain solution by the infinite-domain solution and the Thiem equation are
investigated and presented. Copyright  2008 John Wiley & Sons, Ltd.

KEY WORDS groundwater; aquifer test; Theis equation; Thiem equation; wells

Received 25 June 2007; Accepted 25 October 2007

INTRODUCTION

The Theis and Thiem equations are the well-known tran-
sient and steady-state drawdown solutions, respectively,
of a pumping test conducted in confined aquifers. Both
solutions are very simple and easily used to predict the
aquifer drawdown distribution in practical applications.
The Theis equation is derived under the conditions of an
infinite extended confined aquifer, neglecting the effect
of the well radius. It is important to note that the Theis
equation will give an infinite drawdown as the time
approaches infinity. Chen (1984) proposed a modified
Theis equation for drawdown distribution in a finite con-
fined aquifer and gave a time criterion when applying the
Theis equation.

The Thiem equation can be derived either from the
continuity equation coupled with Darcy’s law (Todd and
Mays, 2005) or the radial steady-state flow equation
(Charbeneau, 2000). Many researchers have discussed
the problem of steady-state flow and warn of erroneous
results when applying the Thiem equation to problems
of an infinite aquifer (Bear, 1979). Zaadnoordijk (1998)
proposed an analytical algorithm based on the superposi-
tion principle to simulate transient flow using the Theis
equation between any two given steady-state groundwa-
ter flows represented by the Thiem equation. His study
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implies that the steady-state condition is related to con-
sideration of the effects of the well radius and the finite
boundary. However, the issue of obtaining the Thiem
equation from the transient drawdown solution has never
previously been addressed.

The drawdown distribution may change in response to
the constant-head or the constant-flux test. The former
holds a specified drawdown in the test well while the
latter keeps a constant pumping rate at the pumping
well. Mathematically, these two tests can be formulated
as different types of boundary value problem. With
or without considering the effect of the well radius,
many studies have been devoted to developing analytical
solutions for these problems under various boundary
conditions. The objectives of this current paper are (1) to
examine the drawdown solutions obtained by considering
or neglecting the effect of the well radius in a finite
or infinite confined aquifer for both constant-head and
constant-flux tests, (2) to give physical interpretation for
the convergences of the transient drawdown solutions of
these two tests to the Thiem equation after a long period
of aquifer test, and (3) to present criteria for the time
when the finite-domain solution can be approximated by
the infinite-domain solution or the Thiem equation.

DRAWDOWN SOLUTIONS OF THE
CONSTANT-HEAD TEST

This section considers a constant-head test conducted in a
homogeneous and isotropic confined aquifer of constant

Copyright  2008 John Wiley & Sons, Ltd.



STEADY-STATE DRAWDOWN SOLUTIONS OF CONSTANT-HEAD AND CONSTANT-FLUX TESTS 3457

thickness. The one-dimensional radial flow equation
describing the drawdown in this confined aquifer can be
written as (Batu, 1998)

∂2s

∂r2 C 1

r

∂s

∂r
D S

T

∂s

∂t
�1�

where s�r, t� is the drawdown corresponding to the radial
distance r from the test well and the time variable t, S is
the storativity, and T is the transmissivity. The drawdown
is initially assumed to be zero before the start of the
aquifer test, i.e. s�r, 0� D 0.

For the constant-head test, the drawdown in the test
well is maintained constant and denoted sw. The rim
of the wellbore is selected as the inner boundary and
the inner boundary condition for the drawdown can be
expressed as s�rw, t� D sw where rw is the well radius.
An outer boundary condition should be provided to solve
the flow equation (1). Hereafter, we will present and
discuss the solution for the outer boundary specified as
a zero drawdown and located at either an infinite or a
finite distance from the test well. In general, the zero-
drawdown boundary plays a role in supplying water if the
head in adjacent area is lower than the zero drawdown.
The zero drawdown is often located at the boundary
of a water body, such as a river, lake, or reservoir. In
addition, the drawdown solution obtained by considering
or neglecting the effect of well radius will also be
presented.

Infinite domain with a finite well radius

It is assumed that the outer boundary is located at
infinity and the outer boundary condition is expressed
as s�1, t� D 0. The solution subject to the infinite outer
boundary assumption is referred to as the infinite-domain
solution. Using the method of Laplace transforms, the
general Laplace-domain solution of (1) can be expressed
in terms of bases I0 and K0, which are modified Bessel
functions of the first and second kinds of order zero,
respectively. The function I0 tends to infinity under the
outer boundary condition and therefore must be excluded.

Application of the inverse Laplace transforms under
the inner boundary condition yields the drawdown distri-
bution for the constant-head test as (Carslaw and Jaeger,
1959, p.335; Peng et al., 2002)
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where J0 and Y0 are Bessel functions of the first and
second kinds of order zero, respectively, and x is a
dummy variable.

The flow rate entering the test well can then be
obtained by applying Darcy’s law to (2). Accordingly,
the wellbore flux Q�rw, t� under the condition that the

aquifer has an infinite boundary and a finite well radius
is (Peng et al., 2002)
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The exponential term on the right-hand side of
(2) reduces to zero as time approaches infinity; the
steady-state drawdown can thus be obtained as sw. How-
ever this result does not account for the outer bound-
ary condition s�1, t� D 0. Such a result implies that the
steady-state drawdown prevails within the entire domain
and at the test well. Also, (3) shows that the wellbore
flux decreases with increasing time and approaches zero
for large times. This result suggests that under the infi-
nite outer boundary condition there is not enough water
to maintain a non-zero flow rate within the aquifer for
a constant-head test. Thus (2) does not converge to the
Thiem equation at large times.

Peng et al. (2002) proposed an improved algorithm
for numerical evaluation of (2) and (3). Their results
give dimensionless drawdown and dimensionless well-
bore flux in tabular forms with better accuracy than
Jaeger and Clarke (1942), Jacob and Lohman (1952),
and Jaeger (1956). The solid line in Figure 1 is a plot of
dimensionless wellbore flux (3), Q�rw, t�/�2�T sw�, ver-
sus dimensionless time, Tt/r2

wS. It can be observed that
the wellbore flux decreases continuously and approaches
zero rather than a constant flux as time becomes infinitely
large. Similar results were also discussed in Yang and Yeh
(2002, Figure 3) when considering the case of single-
zone formation, and Zhan and Bian (2006, Figure 5)
when decreasing the leakage across an aquitard as the
time becomes large.

Figure 1. Dimensionless wellbore flux versus dimensionless time for
the finite-domain solution (Equation (5)) with R/rw D 10 and 102, the
infinite-domain solution (Equation (3)), and the Thiem equation. Note

that both Equations (3) and (5) are solved for the constant-head test
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Infinite Domain with Neglecting the Well Radius

When neglecting the effect of test well radius, that
is, rw ! 0, the basis K0 of the general Laplace-domain
solution tends to infinity and must be excluded. There-
fore, there is no solution for this case. The transient and
steady-state solutions of the drawdown for the constant-
head test with and without considering the effect of well
radius under the infinite domain are listed in Table I.

Finite domain with a finite well radius

In this case, a well of finite radius is considered
and a finite distance R from the well is selected to
represent the outer boundary where the drawdown is kept
at zero. Thus, the solution under a finite outer boundary
condition, denoted as s�R, t� D 0, is referred to as a
finite-domain solution. Carslaw and Jaeger (1959, p.332)
gave the solution for this problem with Cauchy boundary
conditions. By neglecting the flux components of the
Cauchy boundary, a drawdown solution of the constant-
head test for an aquifer with finite domain and well radius
can be obtained as

s�r, t� D sw

[
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where ˛n are the roots of J0�rw˛�Y0�R˛� � Y0�rw˛�
J0�R˛� D 0. A detailed procedure for obtaining (4) is
given in Appendix A. The flow rate at wellbore can then
be determined as
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Obviously, the steady-state wellbore flux of (5) for
time approaching infinity is Q�rw� D 2�Tsw/ ln�R/rw�
which indeed is the Thiem equation. Figure 1 shows that
the curve (5), i.e. the finite-domain solution, coincides
with (3), i.e. the infinite-domain solution, at early stages
of the constant-head test and asymptotically approaches
the Thiem equation after a long period of time. In

other words, the infinite-domain solution can approxi-
mate the finite-domain solution when time is less than
the boundary-effect time criterion t1, implying that the
finite boundary has no effect on the wellbore flux. In
addition, the finite-domain solution can be reduced to
the Thiem equation when time is greater than steady-
state time criterion t2, implying that the wellbore flux
can be considered at steady state. It is worth noting
that both the Thiem equation and the infinite-domain
solution have the advantage of computing the draw-
down solution more easily than the finite-domain solu-
tion.

Figure 1 indicates that both dimensionless time cri-
teria Tt1/r2

w S and Tt2/r2
w S increase with the dimen-

sionless distance R/rw. The values of Tt1/r2
w S and

Tt2/r2
w S, for instance, are 4 and 4 ð 102 for R/rw D 10

and 1 ð 103 and 3 ð 104 for R/rw D 102, respectively,
if one defines that the absolute difference in dimension-
less wellbore flux between (3) and (5) is less than 10�5.
Thus, the time criterion for t1 can be obtained approxi-
mately as R2S/10T based on a linear relationship between
Tt1/r2

w S and R/rw for the constant-head test. Using the
same approach, t2 is 4R2S/T approximately. Table II
gives a list of time criteria for the finite-domain solu-
tion.

Finite domain with neglecting the well radius

In this case, the outer boundary of the radial flow
system is located at a finite distance from the test well and
the inner boundary of the well radius is negligible. Note
that the general Laplace-domain solution for drawdown
in a constant-head test contains the bases of I0 and

Table II. The boundary-effect and steady-state time criteria for
finite-domain solutions

Solution type Boundary-effect time
criterion, t1

Steady-state time
criterion, t2

Constant-head test 1
10 � 4�

Constant-flux test 3
100� 8�

Constant-flux test
when neglecting
well radius

1
16 � 105

4 �

� D R2S/T.

Table I. Transient and steady-state drawdown solutions of constant-head and constant flux tests

State Constant-head test Constant-flux test

Infinite domain Finite domain Infinite domain Finite domain

Considering well radius
Transient Equation (2) Equation (4) Equation (8) Equation (11)
Steady Ł Thiem equation Ł Thiem equation

Neglecting well radius
Transient Ł Ł Theis equation Equation (12)
Steady Ł Ł Ł Thiem equation

Ł Indicates that the solution does not exit.
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K0. The basis K0 has to be excluded from the general
solution as rw ! 0 and the remaining basis I0 cannot
satisfy the boundary conditions of fixed drawdown at
wellbore and zero drawdown at the finite outer boundary
simultaneously. Consequently, there is no solution for
this case. Table I also lists the transient and steady-state
drawdown solutions for the constant-head test when the
outer boundary is finite, with and without considering the
effect of well radius.

Interestingly, a heat problem presented in Carslaw and
Jaeger (1959, p.327) is similar to the case mentioned
above but admits a solution. Analogous to the groundwa-
ter flow, their inner boundary condition has a finite draw-
down instead of fixed drawdown and the outer boundary
condition at a finite distance R from the test well has a
fixed drawdown rather than zero drawdown. The solu-
tion can be written as (Carslaw and Jaeger, 1959, p.328,
Equation (7))

s�r, t� D sR � 2sR

R

1∑
nD1

exp
(

�T

S
�2

nt

)
J0�r�n�

�nJ1�R�n�
�6�

where sR represents a fixed drawdown at finite distance
R, �n are the roots of J0�R�� D 0 and J1 is the Bessel
function of the first kind of order one. This solution,
(6), is extractable due to the fact that the inner boundary
condition is finite and allowed to vary instead of being
fixed in the constant-head test.

DRAWDOWN SOLUTIONS OF THE
CONSTANT-FLUX TEST

This section considers a constant-flux test conducted at
a confined aquifer. The initial condition for drawdown
before the start of the pumping test is assumed to be zero.
The drawdown solutions for (1) are presented for the
cases that the outer boundary specified as zero drawdown
is located at either an infinite or a finite domain and the
inner boundary considers or does not consider the effect
of well radius.

Infinite domain with finite well radius

The constant-flux test has a constant pumping rate Qp.
Thus, the inner boundary condition for the constant-flux
test may be written as

2�rwT
∂s

∂r

∣∣∣∣
rDrw

D �Qp �7�

The drawdown solution of the constant-flux test subject
to (7) and zero drawdown at infinity can be obtained by
Laplace transforms as (Carslaw and Jaeger, 1959, p.338)

s�r, t� D Qp

�2rwT

∫ 1

0

[
1 � exp

(
�T

S
x2t

)]
Y0�rx�J1�rwx� � J0�rx�Y1�rwx�

J2
1�rwx� C Y2

1�rwx�

dx

x2 �8�

where Y1 is the Bessel function of the second kind
of order one. Papadopulos and Cooper (1967) also

developed a drawdown solution to the constant-flux test
by further considering the wellbore storage, and their
inner boundary can be expressed as

2�rwT
∂s

∂r

∣∣∣∣
rDrw

� �r2
w

dH

dt
D �Qp �9�

where H�t� is the well water level. Therefore, their
drawdown solution can be reduced to (8) if one ignores
the wellbore storage in (9). In addition, Cooper et al.
(1967) also gave a well water level solution of the slug
test by considering the wellbore storage.

Yeh et al. (2003) presented a closed-form solution
with detailed numerical evaluations for a radial two-zone
drawdown equation for groundwater under constant-flux
pumping in a finite-radius well. The evaluation of (8) can
be obtained if the transmissivities and storativities for the
skin zone and formation zone are the same as in their
article.

Figure 2 gives a graphical representation of dimension-
less drawdown of (8) for dimensionless distance r/rw D
102 and dimensionless time Tt/�r2

wS� ranging from 102

to 109. The plot of drawdown distribution demonstrates
that drawdown increases with time and becomes infinity
as time approaches infinity. This implies that the outer
boundary cannot provide enough water to balance con-
tinuous well pumping and the aquifer is overdrawn as
time becomes infinitely large. This result indicates that
the transient drawdown solution of the constant-flux test
when considering the effects of well radius and the infi-
nite domain does not reduce to the Thiem equation at
very large times.

Infinite domain, neglecting well radius
The solution of the constant-flux test conducted in

an infinite domain obtained by neglecting the effect of

Figure 2. Dimensionless drawdown versus dimensionless time for the
finite-domain solution (Equation (11)) with R/rw D 103 and 104 and
r/rw D 102, the infinite-domain solution (Equation (8)), and the Thiem
equation. Note that both Equations (8) and (11) are solved for the

constant-flux test
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well radius is analysed in this case. By applying the
Laplace transforms and the asymptotic form of modified
Bessel function (Abramowitz and Stegun, 1979, p.375),
one obtains the drawdown equation as

s�r, t� D Qp

4�T

∫ 1

u

exp��x�

x
dx �10�

where u D r2S/�4T t�, indicating that the value of u is
inversely proportional to time.

Equation (10) is the well-known Theis equation and
the integral in (10) is called the well function and
expressed as W�u�. This function tends to infinity when
time approaches infinity and/or radial distance approaches
zero; thus the drawdown of the Theis equation also
becomes infinite. In addition, Cooper–Jacob’s equation,
a special case of the Theis equation under the condition
u < 0Ð01, should also give infinite drawdown when
u approaches zero. Note that the expression for the
difference in the drawdowns at any two points within
the aquifer is the same as the Thiem equation if the
drawdown is expressed in terms of Cooper–Jacob’s
equation. However, this expression is applicable only
when the values of u for both points are less than
0Ð01. Accordingly, the locations of these two points
should not be too far away from the pumping well and
the expression for the drawdown difference based on
Cooper–Jacob’s equation does not apply to the entire
aquifer domain.

The transient and steady-state drawdown solutions of a
constant-flux test conducted in an aquifer with an infinite
outer boundary are compared in Table I. The results for
the constant-head and constant-flux tests indicate that
these two tests in an infinite domain do not have steady-
state solutions; thus, (2), (8), and the Theis equation
cannot reduce to the Thiem equation.

Finite domain with finite well radius

Similar to the development of (4), the drawdown
solution for (1) subject to (7) and the condition of
zero drawdown at a finite domain can be obtained as,
according to Carslaw and Jaeger (1959, p.334),

s�r, t� D Qp

2�T

[
ln

R

r
� �

rw

1∑
nD1

exp
(

�T

S
ˇ2

nt

)

J1�rwˇn�Y0�rˇn� � Y1�rwˇn�J0�rˇn�

ˇn[J2
1�rwˇn� � J2

0�Rˇn�]/J2
0�Rˇn�

]
�11�

where ˇn represent the roots of J1�rwˇ�Y0�Rˇ�
� Y1�rwˇ�J0�Rˇ� D 0. It is noteworthy that the numer-
ator of the second term in brackets of (11) equals
2/��rwˇn� when r D rw and the related drawdown solu-
tion was given in van Everdingen and Hurst (1949). The
steady-state drawdown solution can easily be obtained
by setting the time to infinity in (11), which is indeed
the Thiem equation if the distance r is equal to the well
radius.

Figure 2 shows the distribution of dimensionless draw-
down of (11) versus dimensionless time for R/rw being

equal to 103 and 104 with r/rw D 102. It also demon-
strates that the curve of (11), i.e. finite-domain solution,
can be approximated by (8), i.e. infinite-domain solution,
at early times and reduces to the Thiem equation after
a long period of time. The former indicates the draw-
down distribution that behaves as in an infinite aquifer
before having the boundary effect. The latter implies that
the drawdown distribution almost reaches its steady-state
condition and the Thiem equation is applicable if the time
is larger than the steady-state time criterion. Similar to the
analysis used in the constant-head test, t1 is obtained as
3R2S/100T approximately for the constant-flux test when
considering the well radius if the absolute difference of
dimensionless drawdown between (11) and (8) is less
than 10�5. In addition, t2 approximately equals 8R2S/T
if the absolute difference of dimensionless drawdown
between (11) and Thiem equation is also less than 10�5.

Finite domain, neglecting well radius

In this case, we consider that the outer boundary is
located at some finite distance and the well radius effect
is negligible. Chen (1984) gave the drawdown solution
as

s�r, t� D Qp

4�T
[W�u� � W�U� C 2] �12�

and

 D
1∑

nD1

J0b�u/U�1/2�nc
�nJ1��n�

Ð
∫ 1

0
exp

[
�U

x
� �2

n�1 � x�

4U

]
dx

x
�13�

where U is R2S/�4T t� and �n represents the roots of
Bessel function J0��n� D 0.

Both the arguments u and U in (12) and (13) are
inversely proportional to time. The functions W�u� and
W�U� can be expressed in terms of an infinite series
and approximated as ��0Ð5772 C ln u� and ��0Ð5772 C
ln U�, respectively, as u ! 0 and U ! 0 after a long
period of time (Todd and Mays, 2005). The difference
of W�u� and W�U� reduces to 2 ln�R/r� where r should
not be equal to zero. Moreover, the exponential term in
the integrand of (13) approaches zero as U ! 0 and
the value of  is negligible. As a result, the draw-
down of (12) approaches the Thiem equation when time
approaches infinity. The results of transient and steady-
state drawdown solutions for the constant-flux test with
a finite outer boundary when considering or neglecting
well radius effects are also shown in Table I.

Again, Equation (12), i.e. a finite-domain solution, can
be approximated by the Theis equation (10) when U ½ 4
(Chen, 1984) and reduces to the Thiem equation when
U � 10�5 if the absolute difference of dimensionless
drawdown is less than 10�5. The time criteria t1 and
t2 for the constant-flux test when neglecting the well
radius effect are obtained as R2S/16T and 105R2S/4T,
respectively, as shown in Table II.
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CONCLUDING REMARKS

This paper addresses the development of steady-state
solutions from transient drawdown solutions of constant-
head and constant-flux tests in a finite or infinite domain,
with or without considering the well radius. The results
show that the finite domain condition is sufficient for
the development of a steady-state solution from a tran-
sient drawdown solution. Such a condition ensures that
the mass balance between extraction and supply is sat-
isfied and the flow can reach its steady state condition
within a finite domain. In addition, time criteria, which
may be useful in practical applications, are provided for
the approximation of the finite-domain solution by the
infinite-domain solution or Thiem equation. It is found
that the infinite-domain solutions can be used to deter-
mine the drawdown distribution or the aquifer parameters
if the time is smaller than the boundary-effect time cri-
terion for an aquifer with a finite domain. Similarly, the
Thiem equation is applicable whenever the time is larger
than the steady-state time criterion.
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APPENDIX A: DERIVATION OF EQUATION (4)

General solutions of the one-dimensional radial heat con-
duction equation, which is analogous to the groundwater
drawdown equation, subject to Cauchy boundary condi-
tions at the edges of a hollow cylinder were given in
Carslaw and Jaeger (1959, p.332). The Cauchy boundary
conditions in terms of drawdown were expressed as

k1
∂s

∂r
� k2s D k3, r D a �A1�

and
k0

1
∂s

∂r
� k0

2s D k0
3, r D b �A2�

where k1, k2, k3, k0
1, k0

2, k0
3 are constant; a and b are the

radial distance of the inner boundary and outer boundary
in the considered region, respectively. Equations (A1) and
(A2) represent the combination of the constant-head and
constant-flux boundary conditions.

Using Laplace transforms, the drawdown solution
based on (A1) and (A2) is

s�r, t� D A1 � �
1∑

nD1

exp
(

�T

S
˛2

nt

)

bk0
1˛nJ1�b˛n� � k0

2J0�b˛n�cC0�r, ˛n�

F�˛n�
A2�˛n�

�A3�

where

A1 D �ak3bk0
1 � bk0

2 ln�r/b�c C bk0
3[k1 C ak2 ln�r/a�]

ak2k0
1 C bk1k0

2 C abk2k0
2 ln�b/a�

A2 D k3bk0
1˛nJ1�b˛n� � k0

2J0�b˛n�c
� k0

3[k1˛nJ1�a˛n� C k2J0�a˛n�]

C0�r, ˛n� D J0�r˛n�[k1˛nY1�a˛n� C k2Y0�a˛n�]

� Y0�r˛n�[k1˛nJ1�a˛n� C k2J0�a˛n�]

F�˛n� D �k02
1 ˛2

n C k02
2 �[k1˛nJ1�a˛n� C k2J0�a˛n�]2

��k2
1˛2

n C k2
2�[k0

1˛nJ1�b˛n� � k0
2J0�b˛n�]2

and ˛n are the positive roots of

[k1˛J1�a˛� C k2J0�a˛�]bk0
1˛Y1�b˛� � k0

2Y0�b˛�c
�[k1˛Y1�a˛� C k2Y0�a˛�][k0

1˛J1�b˛� � k0
2J0�b˛�] D 0

For the constant-head test with a finite well radius and
outer boundary, the constants in (A1) and (A2) can be
replaced by k1 D 0, k2 D �1, k3 D sw, k0

1 D 0, k0
2 D 1,

k0
3 D 0, a D rw, and b D R. By careful substitution, the

drawdown (4) can be obtained from (A3).
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