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Stability of an elastically connected two-body space
station by the perturbation method

Z-M Ge and S-C Ku
Institute of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract: This investigation deals with the stability, in a circular orbit, of a flexible space station
consisting of two inertially identical rigid end bodies connected together by an elastic structure. The
earth-pointing motion and the rotation with arbitrary initial angular velocity perpendicular to the orbital
plane are studied by using the multiple-scales technique. The first-order approximate analytical solution
and the conditions of stability are obtained.

Keywords: stability, space station, perturbation method, multiple-scales technique

NOTATION T ‘;-”/- component of gravitational torque of body i
in the j direction
A, B, C  principal moments of inertia of end bodies Ty different time-scales, n =0, 1, 2, 3, ...
d ratio of L with respect to R X mutually perpendicular principal axes of
E the earth inertia of R; for P; in the j direction
F component of structural contact force of body
i in the j direction
F ’; component of gravitational force of body i in Greek symbols
the j direction

a; ~ aps transformed parameters in the ¢ first-order
differential equations

p1 ~ P transformed parameters in the ¢ second-order
differential equations

yo ~ s  natural frequencies of the first-order differen-
tial equations

G universal gravitational constant

L undeformed distance between the mass cen-
tres of end bodies

m mass of end body R;

M mass of earth £

N inertial reference frame

(0]

0;

. € small dimensionless parameter

reference frame perpendicular to N .

. . 0; deformed angle of R; with respect to Ry

right-handed set of mutually perpendicular . . .

axes of P T dimensionless time

e Y, attitude angle of Ry with respect to reference
Dj elastic displacements of structure frame O
D dimensionless constant extension due to con- . .
. A w; component of angular velocity of Ry in the
stant initial angular velocity @ S
inertial reference frame N
P; mass centre of end body R; _ L. . .
. w initial angular velocity of axis PxO;
P mass centre of space station . . .
. . Q orbital angular velocity of the space station
R radius of the circular path
R; inertial identical rigid bodies
[S stiffness matrix of elastic connected structure .
. . . Subscripts

Su element of the stiffness matrix [S] in row &

and column / i identifies the end body, i =1, 2
T component of structural contact torque of j direction, j =1, 2, 3

body i in the j direction

Superscripts

The MS was received on 18 February 1997 and was accepted for ¢ cont?Ct.
publication on 4 April 1997. g gravitation
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194 Z-M GE AND S-C KU

1 INTRODUCTION

In recent years there has been a growing trend towards
large, lightweight, flexible spacecraft. With the success of
the space shuttle it may soon be possible to see satellites
ranging from a few metres to several hundred metres in
size. International Space Station Alpha is an example,
whose lattice-like framework spans 155 m. It will take at
least 18 separate flights of the space shuttle over a four year
period to assemble the full station. For this type of satellite
the influence of environmental forces will be very signifi-
cant.

In the past papers have investigated the dynamics of the
same model, an elastically connected two-body space
station. In 1964 and 1965, Frueh and Miller (1,2) dealt
with the effect of elastic deformations on the performance
of manned space stations. Austin (3) analysed two axisym-
metric rigid bodies connected in such a way as to permit
only relative rotation about a common axis of symmetry. It
was concluded that the effects of elasticity on gross rigid-
body motion are of minor importance. For this model, in
1967 Robe and Kane (4), using rather simplified models of
space stations, showed that the nature of the elastic
connection can affect the stability of the vehicle. Specifi-
cally, certain vehicle configurations which are predicted to
be stable when rigid must be classed as unstable when
flexibility is taken into account. With a proper selection of
vehicle parameters the instability can be avoided. Similar
dynamic models have been used in studies of the stability
in 1984 (5) and non-linear oscillations in 1988 (6).

In the present study the differential equations of motion,
given by Robe and Kane (4), are applied. There are twelve
differential equations and twelve variables. In reference (4),
the effect of gravitational force was neglected. In this paper
this effect will be included since the effects of gravitational
force are not always negligible for the stability problem. It
will be considered as a perturbation term and the perturba-
tion method will be applied. The multiple-scales technique
is used to obtain the first-order approximate analytical
solution and the stability conditions.

The work that follows is divided into four sections.
Section 2, entitled ‘The first-order and second-order differ-
ential equations using the multiple-scales technique’,
contains a detailed description of the system model to be
analysed, non-dimensionalization of the differential equa-
tions of motion and the equilibrium motion. In the final
subsection of Section 2, using the multiple-scales tech-
nique, the first-order and second-order differential equa-
tions about the equilibrium motion are obtained. In the first
subsection of Section 3, ‘The dynamics of an earth-
pointing motion’, four sets of the first-order simultaneous
differential equations obtained in the previous section are
solved, and the first-order approximate analytical solution
is obtained. In the next subsection, the secular terms in the
second-order differential equations are eliminated to obtain
equations for the coefficients of the first-order analytical
solution. The final subsection of Section 3 gives a conclu-
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sion for the earth-pointing motion. In Section 4, ‘Rotational
dynamics with arbitrary angular velocity perpendicular to
the orbital plane’, the analytical solution of the rotation
with arbitrary initial angular velocity of the motion is
obtained and conclusions are given. The last section
contains the conclusions of the full article.

2 THE FIRST-ORDER AND SECOND-ORDER
DIFFERENTIAL EQUATIONS USING THE
MULTIPLE-SCALES TECHNIQUE

The aim of this section is to obtain the first-order and
second-order differential equations by the multiple-scales
technique from the governing differential equations of the
space station for use in subsequential analysis.

2.1 Description of the system model

The dynamics model is indicated in Fig. 1, where Ry and
R; represent inertially identical rigid bodies connected by
an elastic structure that is light in comparison with the end
bodies. N designates an inertial reference frame in which
the earth E is fixed. Also fixed in N is an ‘orbital plane’, in
which the mass centre of the space station, Px, is presumed
to move in a circular path. The radius of its path is R. With
its origin at Px, a right-handed set of mutually perpen-
dicular axes O;, O, and Os is oriented such that O; is the
extension of the line passing through £ and Px, and O; is
normal to the orbital plane. A reference frame in which
these axes are fixed is designated O and this reference
frame has a constant angular velocity of magnitude € in
reference frame N. Py and P; are mass centres with respect
to Ry, R;. Finally, X j (superscript i = 1, 2 represents end
bodies, subscript j =1, 2, 3 represents three directions)
designate mutually perpendicular principal axes of inertia
of R; for P; in the j direction. The orientation of the body

E (FIXED IN N)

Fig.1 Schematic representation of the space station in
circular orbit
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Ry in reference frame O is described with attitude angles
Y1, ¥, and 3 (Fig. 2). Three successive right-handed
rotations of amounts ; are ¥; — ¥, — ¥3; the same
sequence of rotations of R; with respect to Ry is specified
with deformed angles 6, 6, and 65 (Fig. 3), which have the
same sequence of rotations 6; — 6, — 65. It will be
assumed that X9 is parallel to X'} and that X9 and X)
coincide when the structure connects Ry and R; in the
undeformed state. Finally, the elastic displacements of the
structure p;, p, and p; are presented in Fig. 4.

2.2 The non-dimensionalization of the differential
equations of motion

In reference (4), the governing differential equations of
motion are obtained in accordance with D’Alembert’s
principle, the resultant of all contact, inertia and gravita-
tional forces acting on R;, and the moments of these forces
about P; may be set equal to zero. As the analysis will be
confined to deformations that are small in the usual sense
of linear structural theory, all non-linear terms in p; and 6;
may therefore be dropped. Thus, p; and 6; are restricted to
small values, but w; and 1 ; are not limited in size.

2

Fig. 2 Attitude angles between coordinate axes fixed in
O and Ry

Fig.3 Deformed angles between coordinate axes fixed
in Ry and Ry

G00497 © IMechE 1997

Fig. 4 Elastic displacements

To determine approximate analytical solutions of the
problem by the perturbation method, first a process to keep
certain elements, neglect some and approximate others
must be involved. To accomplish this important step, the
order of magnitude of the different elements of the system
needs to be decided by comparing them with each other as
well as with the basic elements of the system. Therefore,
expressing the equations in dimensionless form brings out
the important dimensionless parameters that govern the
behaviour of the system. Consequently, dimensionless
variables would always be introduced before attempting to
make any approximations.

In this mathematical modelling, 6; and v ; are dimen-
sionless variables and p; and w; need to be considered.
The elastic displacements p; can be made dimensionless
by using the undeformed distance between the mass centres
of end bodies, L, as a characteristic distance, whereas the
angular velocity of Ry, w;, can be made dimensionless by
using the initial angular velocity of axis PxOj;, @, as a
characteristic angular velocity. Then defining

T =Wt (1)
and putting
pP1 P2 »
wf =2, wf =22, wf =2 3)
7] 7] )

where the asterisks denote dimensionless quantities, and
substituting these equations into the governing differential
equations of motion (and for convenience neglecting the
symbol *), the following equations are obtained:
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d2p1 _ 2 2 1 1
w2 (w5 + w3)p1 — (1 = k3)wiwa2(1 + p)
dp> dps
—(1+k 2 7—2
(1 + k)wiws ps + 2w;3 e CERry
2 1
+—= = FY, —ﬁ(ﬁs — LFY))
2 1 1
+mF%1—ﬁ 02P3+C T5.(1+ p)
“4)
d2
2= @3+ D1 + p2) — (1 = k)wsws s
dps dp
—(1+k 2 7—2
(1 + k3)waw1 p1 + 20, kg
2 2,
Tt ot e
| |
—ﬁTogpl +ETOIP3 Q)
d2
dtl? = (0} + 0 ps — (1 — k)wso py
d
— (1 + knwswa(1 + p) + 20, 2
dp2 2 1 c
—2w [ t—= ) 13‘|‘ Z(T + LFY3)
2 1
+WF%3 _ﬁTgl(l + p2)
1
+TWT%2p1 (6)
dw1 1
E:klwzm—ﬁ(ﬁﬁ‘LF%_T&) (7
da)z 1
? = kywsw; —Biwz(T?z - ng) (®
d(,()3 1 c c
E—kswlwz—ﬁ(Tn_LFn_T%ﬂ 9
d26 do
T = k(@3 = )0+ (1 + kws
dos
+ (k1 — Dy — I + (k1 + k3)wrw10,
— (k1 + ky)wiw305 + (2T + LF§ 3)
1 T8 7%
+H(T%l —To) — 8322 05 + C03 0>
(10)
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d’6 dé
T = Rt = 00 + (1 + ko>
do
+ (k2 — 1)w3d7r1+ (k2 + kw0365
1
— (ko + k3)wr01 61 + ﬁ(”ﬁz)
T Ts,
Jrﬁ(rf2 — T§) — =256, + 0 (11)
d’6 dé
G = B(@3 — oD+ (1 + kywr—
de
+ (ks = Do~ + (ks + ko0,
1
— (k3 + kl)w3w292 —l—ﬁ(ZT% — LF?I)
1 T%l Tt
+ﬁ(T —Th) — 50+ o 0,
(12)
d (w1 cos 3 — w; sin )—&—gcos tan
dr ~ cosys 1 COS Y3 281N Y3 - Y tany,
(13)
d . Q .
Q2 = w;sinY3 + wy cos Y3 — — sin P (14)
dr w
d . Q cos
% = w3 — tan Y, (w| cos Y3 — w, sinPs3) — =08 zl
(15)
where
B-C CcC—-4 A— B
kl—T, kz—T, k3_T (16)

and 4, B and C denote the corresponding principal
moments of inertia of end body R;. It is assumed that they
are identical for the two bodies.

F; is the component of contact forces and T7 is the
component of the contact torque, applied at P; by the
deformed connecting structure. The first subscript i identi-
fies the end body and the second subscript ;j refers to the
coordinate axis number. This convention will also be
adopted for gravitational force and torque measure numbers
introduced subsequently. This relationship is given as

Fe, Si 0 0 0 0 Se][Ly
F<, 0 S 0 0 0 0||L,
Fol _ 0 0 S5 S 0 0 |[L,
TS, 0 0 Si3 Su 0 0|6
TS, 0 0 0 0 S5 0/|]6
TS, Ss¢ 0 0 0 0 Se|l| 65
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where Sy, is the element of the stiffness matrix [S] of the
elastic connecting structure. In addition, the [S] satisfies
the requirements

2834 + LS3; = 2843 + L33 = 0 (19)

With a modest amount of structural symmetry, these
requirements on [S] can easily be satisfied.

The approximate expressions of the component of the
gravitational force, F’ ’j, and torque, T %-, exerted on the body
R; by the earth F are

3/GM
F§ =—Ff, == () mL(cos® 1, sin 3 cos 13)

2\ R3
(20)
1/GM
F§, = —F%, = 3 <R3> mL(1 — 3 cos® 1, sin® 13)
(21)

3(/GM . .
F§, = —F}, = 3 (}23) mL(cos i, sinyy sinys)  (22)

TS, =3(B — C)(?j) Kl —% cos 1, sin%)

X (cos Yy siny;, sinys) + % sin 1/)2] (23)

TS, =3(C — A) (?j) Kl - % cos 1 sim/);)

X (— cos Y, sin i, cos 1/}3):| (24)

T, =3(4 - B)(GRA;[) [(1 —% cos sim/)g)

L
X (cos? 1, cos 3 sinyp3) + 7R COS 13 COS 1/)3}

(25)

GM 5L :
T, =3(B—C) (123) { (1 + R cos Y s1n1/)3>

X [—6; (sin2 Py — cos? (2 sin’ P3)
+ 6, cos? 1, sin Y3 cos Y3
+ 03 cos P, sin Y, cos 3

+ cos Y, sin 1 sin Y3 ]

vk o
R , COS 1 COS Y3

— 26, cos Y, sinp; — sin 1/}2)} (26)

G00497 © IMechE 1997

GM 5L .
TS, =3(C — A)<R3) { <1 +oz cos s s1n1/)3>

X [0:(sin? 1, — cos? Y cos? P3)
+ 05 cos Y, sin P, sin 13
— 6, cos? P, sin Y3 cos Y3

— COS P sin i, cos P3]

+ %(01 cos 1P, cos P3 — B3 sin 1/)2)} (27)

7%, =3(4 - B) (i‘j) { (1 + % cos Y sin1p3)
X [—63(cos? 1y, sin 13 — cos? P, cos® 13)

— 0 cos P, sin Y, cos Y3

— 6, cos 1y, sin P, sin Y3

+ cos? 1y, sin 13 cos 3]

L
+ ﬁ(ez sin ), + 265 cos i sin Y3

— Cos Y, cos 1/)3)} (28)

In these equations, G is the universal gravitational constant
and M and m are the masses of E and R; respectively.
Additionally, the component of angular velocity, w;, of Ry
in the inertial reference frame N with the attitude angle v,
have the following relationships:

d d .
) = % COS Y2 COS Y3 +% sin i3

+ %(sin Y sinys —cosyy sinyp cosPs)  (29)

d d .
Wy = % Cos Y3 — % COS 33 SIN Y3

+ %(sin Y1 cos Y3 + cosy siny, sinys)  (30)

_d’l/)g, d’l/)1 . Q
w3_¥+¥smwz+5coswlcoswz (1)

The problem of the elastically connected two-body space
station in circular orbit has now been reduced to a set of
twelve differential equations, (4) to (15), in the twelve
variables p;, w;, 0;, ¥ ;. The equations are non-linear in y;
and w; but linear in p; and 6;; hence they are valid for

large attitude motions accompanied by small elastic
deformations.
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2.3 The equilibrium motion

A popular type of motion is chosen to study. Intuitively, it
seems possible that the elastic space station under con-
sideration can have an initial spin about an axis parallel to
XY and X} and that the resulting motion is then a steady
initial spin of (constant) rate @ accompanied by a constant
elastic extension p,. For this type of motion, there are the
following parameter values:

=0 p==ph =0 (32)

0 =0, w=0, 3=2-1 (33)
w

0,=0, 6,=0, 6;=0 (34)

Y1 =0, Y, =0, Y3 =13 (35)

The parameters of p;, w;, 6; satisfy the differential
equations exactly, as shown in reference (4). The solution
of attitude angle 3 will now be found. Substituting
equations (33) and (35) into equations (29) to (31) gives

dys B Q
w1 (36)

which in integral form is

@3—[(1—i>dr+c (37)

In the circular path the orbital angular velocity £2 of mass
centre Py is constant, and the initial angular velocity @ has
a designated constant value. Then 13 becomes

1213—(1—i>r+c (38)

From the initial condition 3(0) = 0, then ¢ = 0. From the
constant d, = (1 — /), it is found that 15 is propor-
tional to 7.

2.4 The first-order and second-order differential
equations

Selecting € = 3(GM /R*)(1/@?) as the small dimensionless
parameter, if the perturbation method is applied the approx-
imate analytical solution is obtained. The multiple-scales
technique (7) introduces the different time-scales Ty = 7,
T) = et and using the chain rule, the derivatives with
respect to T transform into

d
—=Dy+eD; +- - - 39
dr 0T (39)

Proc Instn Mech Engrs Vol 211 Part G

d2
where
0 0
Dy = —— D = — 41
V=5 Di=gp (41)

An approximate analytical solution for equations (4) to
(15) is sought in powers of ¢ in the form

pL=epi+Epn+-
W = ewq) + Ewyp + - - - (42)

p=prtepu+Epn+--

Wy = €wy + Ewxp + -+ (43)

pi=epi+Epn+--
w3 =1+cw3 +Ewp +-- - (44)

01 = O + 0 + - - -,
Yr=cpn+EPn+- - (45)

0 = by + 00 + - - -,
Yo =€y +EPy + - - - (46)

03 = Oy + 03 + - - -,
Py =dat+ P31+ EYn + - - - (47)

where pim, @jm, Ojm, Yjm (j =1, 2, 3 represents direction
and m =1, 2, ... defines the orders of ¢) are functions of
To, Ty, T, . . .. It is also assumed that

sin(epji +EPp +- - )= +EPp +- - (48)
cos(eyji +EYp + - ) =1 (49)
Then

sinys = sind,7 + (ey3; + 621/)32) cosdrt+6 - - -
(50)

cos 3 = cos drT — (eys3 + 621/)32) sind,7+¢€ - -

(51

Equations (42) to (47) are substituted into equation (17) and
equations (48) to (51) into equations (20) to (28) and then all
the results are substituted into the governing equations (4) to
(15). Since the equations are very lengthy, the expan-
sions will not be listed here. After equating the coefficients
of ¢, ¢! and ¢? on both sides, the following are obtained:
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1. The € zero-order equations: az =2k3;(1+ p2) — 2
1 as = —kydi(1+ p2)
L — 52
P2 S ma? — 1 (52)
2
as = — Szz — 1
Q maw
dy=1-2= (53)
o

ag = —2(1+ p)

where p, is a constant dimensionless extended length of 5 I
an elastic structure during a constant spin rate . In a a7 =—— 833 +—— (83 + LS33)
circular orbit d, is a constant also, as already men- maw Aw
tioned. Certainly, the ¢ zero-order equations satisfy the
conditions of an undisturbed state.

2. The ¢ first-order differential equations:

ag = (1 + k)1 + p2)

2 1
a9 = —— 834 + ——(Sa4 + LS34)
5 mLow Aw
(Dg + a1) p11 — 2Dy pa1 + 203
L
= [as sin daT + ag(5sin® dot — 1] cos dyr (54) 10 =~z (Sas + L)
aj = —ki

2Dy pi1 + (D + as)pa1 + aews; = —2(4 — sin® dy7)

(55) 1
ap = _E(SM + LS34)
(D§ + a7)p31 + agwy) + agby =0 (56)
ap = —k
apps + Dowi + anwz +apb =0 (57) 1
a4 = _TWSSS
apwi + Dywy + agbh =0 (58)
L
ais = ——=— (Se1 — LS11)
aispi1 + Dowsy + a6 Caw?
) . 1
= [a17sin dy7 + ag(5sin” drt — 1)] cos dt (59) g = *ﬁ(sée — LS716)
(D} + a19)011 + azgDobhy = 0 (60) a7 =2k3
2 _ alg = —k3d1
a D61 + (Dg + 022)62 =0 (61)
1
(Dg + (l23)931 = ay(5 SiIl2 drT — 1)cos d>T (62) 019 = A2 (2844 + LS34) —
w11 coSdrT — Wy SindrT — Doy + axsypo; =0 (63) A0 = *(1 + ki)
w11 SINdrT + Wy c0S daT — sy — Dopo; =0 (64) oy =1—h
2
w31 — Doz =0 (65) axp = TWSSS + k>
where 1
ax = ﬁ(%’ee — LSi6)
2 L
e S - == (Se1 — LS1) — 1
ar = — S C@z( 61 1) s = 2ksd,
2 1 (9}
— Si6— ——(Ses — LS _
a = - S CaZ( 66 16) s =—
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3. The € second-order differential equations:
(D} + a1)p1a — 2Do pay + 263
=2((=DoDy + w31)p11 + {D1 + w31 Dy
+ [Bisindat + Ba(5sin® dyt — 1)] cos dat} poy
+ (B3011 — w21 Do) p31 + Pawiiwa
+ [Bs(cos® doT — sin® d,1)

+ Be(5sin® drt — 10 cos® dpT — 1)sind,T]13)
(66)

2Dy piz + (D + as) pa + 0032
=2({(=D1 — w31 Dp)

— [Bisind,yT + Ba(5sin® dat — 1)] cos dyT} piy

+ (w31 — DoD1) pa1 + (w11 Do + Brwar) psi

+ ﬁg(wfl + w%l) + 2sind,Tcos dyTip3) (67)
(D§ + a7)p32 + aswan + asb
= 2{(w21 Do + Bow11) p11

+ (Brow21 — w11 Do) pa1 — Do D1 p31 + Briwz 1wz

+ [Brasindyt + Pi3(5sin® dot — 1)y } (68)
a0 p32 + Dowia + anwxn + anbn
= —Djw; + Prawy w3

+ 2[Bua sin dot + Bi5(5 sin® dat — 1)]as (69)
apwiz + Dowayy + 1462
= —Diwa1 + Brsw1103

— 2(B16 — 5P17sin dr7) cos daTia) (70)
ais p12 + Dowsy + 16632
= —Dyw3; + frowa + 2[Bi(cos® daT — sin’ da1)

— Ba(5sin® dyt — 10 cos? dot — 1) sindyt]ys;  (71)

Proc Instn Mech Engrs Vol 211 Part G

(D + a@19)612 + 20 Do

=2({=Do Dy + fraws;
+ [Buasind,t — Bi5(5 sin? dyt — 2)] sind,7}6y;
+ {=Bu(ws31 Dy + Dy)
+ [(B1a + B1)sindst

(ﬁ15 — ﬂz)(s sin2 dz‘L' — 1)] Ccos dz‘lf}@z]

+ (Brwa1 Dy + Bisw11)031 — 2B15(5 sin® dat — Day)
(72)

021 DoO12 + (D} + 2265
= 2({Bo(D1 + w31 Dy)
— [(Bis + B1)sindat + (B17 + B2)
X (5sin® dat — 1)] cos dp7}01,
+ [=DoDy — Brswsi — (Bis + 5B17 sin dy7) cos® d7]05;

- (ﬁ18w21 + ﬁ3(,()11D0)931 — 2ﬂ17(5 sin dz'L' CcoS dz'L')'l/)z])
(73)

(D} + a23)03

= 2((B19w21 Do + Ba1w11)011
+ (Baowi1 Dy + Prawa1)0r1 + {[B1(cos® dat — sin® da1)
+ Ba(5sin® drt — 5cos® dat — 2) sindot] — Dy Dy } 03

+ 2f,(5 sin’ dyT — 10 cos® doT — 1) sin dyTyh3)
(74)

W12 €08 drT — W sindyrT — Doia + AasyPm

= D1y + (w11 8indyT + wyy cos dat)yps; (75)
W12 SINd)T + W) 08 daT — sy 12 — Doy

= Dy + (w21 sindyT — wyy cos dat)ypsr (76)

w3y — Doy3p = Diyp31 + (w11 cos drT — wyy sin drT)yoy

(77)
where
B = ks
B2 = —%ksd,
B3 = —3(1 + k2)

Bs = =31 = k3)(1 + p2)
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Bs=k(1+ p)—1

Be = 3ksd\(1 + p2)

Br = 1 — k)
Bs =31+ p2)

Bo = =51 — k)
Bio = —5(1 + ki)

Bi1 = =31+ k)1 + p2)
Bio=—-ki(1+p)—1

Biz = 3kidi(1 + p2)

Ba=k

Bis = —kid,

Bis = kz

Bi7 = 3kad,

Bis = —3(k1 + k)
Bro =31 + ks3)
P20 = —3(1 — k3)

Ba1 = (ks + k2)
Bar = —5(ks + ki)

The first-order and second-order differential equations
are the foundation of the two sequential sections.

3 THE DYNAMICS OF AN EARTH-POINTING
MOTION

An ‘earth-pointing’ motion, which corresponds to an
equilibrium solution of the set of differential equations, is
accomplished when the assembly moves such that the rigid
bodies are at rest in the orbital reference frame O and such
that the connecting structure remains coincident with the
line joining the centre of the earth E and the mass centre of
the space station Px. Such motion is of benefit in space
communicational and navigational systems. It is also well
suited for carrying Earth observation equipment.

3.1 The first-order approximate analytical solution

For this case of motion, the initial angular velocity @
equals the orbital angular rate £. Then d; =
1 — Q/w =0, which gives sind,7 =0, cosd,7 =1 and

G00497 © IMechE 1997

a5 = 1. The € first-order differential equations (54) to (65)
become

(D§ + ar)pii — 2Dy par + azbs) = —ay (78)
2Dy pi1 + (D + as)po1 + agws; = —2 (79)
(D§ + a7)ps1 + agwa + agb =0 (30)
ai0p31 + Dowi1 + anwar + apnbi =0 (81)
apzw1r + Dowzy + a1462 = 0 (82)
arspi1 + Dows1 + ai6631 = —as (83)
(D§ + a19)011 + a9 Db = 0 (84)
21 Do011 + (D} + a22)021 = 0 (85)
(D} + ax)b31 = —az (86)
o — Doy + 91 =0 (87)
w21 — Y1 — Doy =0 (88)
w31 — Dop31 =0 (89)

On the right-hand sides of the above equations, a4, aig and
a4 are constant values and have no effect on the stability
of the system.

Equations (78) to (89) are divided into four sets of
simultaneous equations, and it is convenient to express the
general solutions in a complex form. First solving equa-
tions (84) to (86), from equation (86), the following
equation is obtained:

6051 = K31 e To + c.c. (90)
where
Y1 = \/0623 (29)

and c.c. stands for the complex conjugate of the preceding
terms. This notation serves to display long expressions
efficiently. For a first-order expansion, K3; is considered as
a function of 7 only, and is complex [K3; will be obtained
in equation (127)]. The first subscript j of K, represents
direction and the second subscript n refers to y,. This
notation will be used sequentially. Next, solving equations
(84) and (85), the solution is assumed to be

011 = ¢ elw”To, 6, = ¢ elw”TO (92)

Substituting equation (92) into equations (84) and (85), the
coefficients of exp (iw, Ty) equal zero as follows:

w029 } {Cl:| —0 (93)

—a)i “+ A [}

—wi + a9
iwnazl
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Since ¢; and ¢, have a non-zero solution, the equation
above must satisfy

det _‘“i +ag ia;na20 —0 (94)
10,021 —w;, + axn
or
o} + [aa0az — (19 + a2)]0? + di9azn =0 (95)
The roots are
o — 4 \/[—al + ¢;a§ ) 6

where the parameters are transformed as

01 = axnaz — (a9 + an), 02 = a9 97
and set as
1 + V(07 — 402)
V2= 5
(98)
B \/[51 - VO - 462)}
Y3 = 5
The solution will be
01 = K eiVZTO + K3 ei%TO + c.c. (99)
0,1 = K»» eisz" + K3 ei” T 4+ c.c. (100)

Substituting equations (99) and (100) into equation (84)
gives

2
K> = i<(119)/2> Ki» =i0n K1, (101)
az0Y2
2
Ky = 1<0“9V3> Kis = i05K13 (102)
axys

Then the solution of 6,; is

60,1 =10 K> elr2To + 10,3 K13 elr2To + c.c. (103)
where
a9 — V% a9 — V%
Oy =—"=, = ————
a2 ays3

By the same procedure, solving the other sets of
equations gives

Proc Instn Mech Engrs Vol 211 Part G

pit = My Ky €0 4 11767770 4 g e 4 coc.

(104)
pa1 = iMy K3y @70 4 iMy; 117 7710
+ iMyslig e +c.c. (105)
P31 = MK e”T0 4 My3K i3 e 70 4 [y e74 00
+ Isse”To 4 ce. (106)

w11 = iNp K e +iN;3K 377 +iN 4134 €740

+ iNishse”5 T 4 Jige”sT 4 cc. (107)
wa1 = NpKip €70 + Np3K i3 €770 4 NoyI54 €470

+ Nyslzs e T 4 iNyJ g e7eT 4 c.c. (108)
w31 = iN3; K31 €770 4 iN37 117 €770 4 iNsg g s To

+c.c. (109)
Y11 = PaKip e 4+ Pi3Ky3 730 4 Pyl e

=+ P15125iysT0 +1P1gJ 16 e%T‘) +1Pj9Ljg eiTO + c.c.
(110)

Yo = iPpnKip €10 + 1Py K3 €770 + iPyylpg 7470

+ iP25]25 e% To + iP26J16 eiV"TO + L29 eiT‘) +c.c.
(111)

P31 = P31 K31 €70 + Pyg17e7770 4 Piglig e 4 coc.
(112)

where
03 = a7 — ajas, 04 = g0l 3 — 07011 C13
05 = (90103 — UgA1203, O = agti4
(57 =0 +as+ 4, 68 = |05 — 20!50!15

09 = 206016 — 0205

0 &2 — 46
Y45 = \/[ 3 \/(23 A 4)}3 Y6 = \/(—anaw)

\/[57 + /(62 — 458)}
V18 =

2
2
ay] + 09
M —
! v — 07y} + ds
Mo, :(V%_al)Mll —

2y,
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v2 —a Py = Ny +72Pn
My =—F—
2y7
P13 = Naz +y3 P
2
Vs — a1
My =8 —— Py = Nyg + yaPoy
2ys
Pis = Nas + ysPas
a9y3 + 05 — d6y20n
My, = 4 2
Y3 — 03y + 04 P = Nag — V6 Pas
a9y3 + 0s — 0673003 Prg =1
Mo = o+ o
3 3 Y2N»n — Nip
Po=""""7"
Nos — ai0Y2 Mz + annys — 01101400 72
12 — 2
2t i y3No3 — Ni3
P23 = 1— 2
Nox = aioysMs3 + anys — anaaOn 73
13 — 2
V3T ands YalNag — Nig
Py = T2
ay4 — V4
M= anan
4T ENE YsN2s — Nis
Pys =———5—
a10Ys 1 -5
Mis = vi+ana
5 11413
p —(y6Nas + 1)
26 =" 1 _ 2
V2N —anonMsz —ap 1 -5
Ny = P
11
N3 N37 Nsg
Py=—, P7y=—, Pg=—
3Nz — aroMs; — ap 14 V7 14
Ny =
all . . . .
The first-order approximate analytical solution, equa-
Now — YaN14 — g tions (90), (99), (103), (104) to (112), can be collected and
% an summarized in Table 1. The coefficients of the same
column are related to each other by the generators of
Nys = ysNis — o coefficients, K31, K12, K13, 134, I35, J1s, 117, 18, Lag. They
arl will be determined in the next section.
—76
Nyg = ——
apg 3.2 The secular terms
Nay — aisMi + a6 In seeking a solution in the form of equations (42) to (47),
3 Y1 practical considerations dictate that the form be limited to
the first few terms. This can produce an unbounded
N3y = ais Nig = ais solution owing to the appearance in the solution of terms
Y7 Vs that grow indefinitely with time, these terms being fre-
Table 1 The components of the first-order approximate analytical solution
eiVl Ty ei}’z Ty eil’z Ty ei}’4 Ty eiys Ty eil’ﬁ Ty ei}’7 Ty eiVx Ty eilo
o Mk I Iig
P My K3y iMy; 7 iMoglig
D31 MKy MKz Ly bLs
w11 iNpKiy  iN3Kiz  iNghe iNishs Jis
w2 NpKiy NsKiz Naglg Nos s 1NysJ16
w31 1N31K3p iNs7l17 iNsglig
011 K12 K13
021 0Ky  10;3K)3
01 K A ‘
Y1 PpKpy Pk Pula Pisls iPisJ16 P19 Loy
P2 iPpKiy  iP3Kiz  iPubs  iPshs  Padis Lo
Y31 PaKsy Ps117 Piglig
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quently referred to as ‘secular’ terms. In the present study,
the first-order approximate analytical solution is sought.
There is no intention to find the second-order resonance
phenomenon, but the coefficients of the first-order approx-
imate analytical solution can be found by vanishing the
coefficients of the secular terms. The condition for the
elimination of secular terms from pj, wp, 0p, Yhp
demands that each of the coefficients of exp (iy;Ty) ~
exp (iTy) vanish independently.

As in the previous section, in the circular orbital earth-
pointing motion the d, vanished and sind,z =0,
cosd,T =1 and ays = 1 are obtained. By substituting in
equations (66) to (77) and comparing the left-hand sides of
equations (66) to (77) with equations (54) to (65), it is
found that they have the same coefficients. Therefore, on
the right-hand sides the terms of second degree of variables
will not produce resonance, and can be dropped. Equations
(66) to (77) become

(D§ + ar)pi2 — 2D px + @263

=2[-DoDpi1 + (D1 — B2)par + Bsyn]l  (113)
2Dy p12 + (D + as) pr + asws

= =2[(D1 — B2)p11 + Do D1 pai] (114)

(D} + a7)p3a + agwy + agbiy = —2(DoDy p31 + Bi3ar)
(115)

aps + Dowiy + anwxn + apbiy, = —Diwy — Pisya
(116)

aiwiz + Dowa + a14bn = —Diwr — 2B16y1 (117)
aispi2 + Dowsy + o663 = —Dyws; + 21931 (118)
(D(Z) + a19)012 + a20Do0x

= —2{DyD1 611 + [BioD1 — (B1s — B2)1621 — 2B15921 }
(119)

021 Do012 + (Df + a22)05:

=2[(Bo D1 + B17 + B2)011 — (DyDy + Bi16)021]  (120)

(D} + ax3)03 = 2(—Dy Dy + B1)031 (121)
w12 — Doy12 + Y2 = D1y (122)
W2 — Y12 — Doy = D12 (123)
w3 — Doysr = Dy (124)

Substituting the first-order approximate analytical solu-
tion of Table 1 into equations (113) to (124) and consider-
ing the same sets of simultaneous equations with the

Proc Instn Mech Engrs Vol 211 Part G

procedure of solving the first-order differential equations,
to solve the first set, equation (121) gives

(D§ + @23)032 = 2(—iy 1 Dy + B1)K3 €T (125)
The condition for the elimination of secular terms from 65,

demands that the coefficient of exp (iy; 7y) vanishes, which
yields

[Dl +i<’31>}K31 - (126)
71
Therefore
K3 = a e~ iBi/yT — a e i (127)
where
il (128)
71

and a; is a complex constant because K3; is a function of
T only and depends on the initial condition. Note that v; is
real. The other two equations (119) and (120), are

(D§ + a10)012 + a0 Db
= 2{~i(y2 + B1002) Dy
+ i[(B1s — B2) 02z + 2B15Pra]} Kp €72T0
+ 2{=i(y3 + f10023) D
+ i[(B1s — B2) 023 + 2B15 Pl K13 €730 . .
a21 D012 + (Df + 022)62
=2{(By + y2022) D
+ [(B17 + B2) — iB160n]} K12 7210
+ 2{(Bo + 73023) D

+ [(B17 + B2) — iBi1s0x1} K1z e 10 + - -

By the superposition method, the term of exp (iy,Ty) is
first considered:

(D§ + 19)012 + a20 Do
=2{—i(y2 + f1002) D,

+ i[(Bis — B2)On + 2B15 Pl K1 €720 (129)
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021 DoB1y + (D} 4 )02

= 2{(By + y2022) D,

+ [(B17 + B2) — iB160n]} Kip e72T0 (130)
Let the solution be
01, = P(Ty)e"?Do, 0y = O(T))e72To (131)

Substituting equations (131) into equations (129) and
(130), the coefficients of the left-hand sides satisfy

a0y

2
‘ Y2 + 019 * _ (132)
—Y5 + oxn

021y

The solution is found from the solvability condition (7)
using the following condition:

V34 aw 2{=i(y2 + f1002) Dy +i[(Bis — f2)Oxn + 2B15 P} K12 —0

la21y2 2{(By + 72022) Dy + [(B17 + B2) — iP160n1} K12
(133)
Then
Ky = ay e (ationTs (134)

where u, and v, are real are follows:
Uy =

(a19 — ¥3)(B17 + P2) + a21y2[(Brs — B2) O + 215 P2]
(@19 — Y3)(Bo + ¥202) — a21y2(y2 + B1002)
(135)

0y = —(a19 — ¥3)B160x
(19 — Y3)(Bo + 7202) — an1y2(y2 + 10022)
(136)

Secondly, the term exp (iy3 7)) is used to obtain
Ki3 = aze (otio)h (137)
where u3 and v; are real also:

uz =

(19 — Y3)(B17 + B2) + an1y3[(Bis — B2) O3 + 215 Pr3]
(a19 — ¥3)(Bo + 73023) — az1y3(y3 + P10023)
(138)

vy = —(a19 — ¥3)P16023
(a19 — Y3)(PBo + 73023) — a2173(y3 + 10023)
(139)

Similarly, when solving the other sets of equations,

G00497 © IMechE 1997

Iy = a ef(u7+izz7)T1’ Lig = ag o (us+ivs) Ty (140)
I34 = ag et I35 = ase (s tio)T (141)
J16 = age (stivoh (142)

where

_ (2Biav; — agansPis + 2a11a13P13) P
Uy = — (143)
2y3 — aga;3Nig + agyaNog + 201103)4

04 = 2a3f1674Pos (144)
2y3 — agai3Nig + agyaNos + 2a11013)4

(2B13y% — asaizPis + 2a1101313) Prs
us = —5 (145)
2ys — agazNis + agysNos + 20q1013)'s

2 P
vs = — agPisysPas (146)
2y: —agazNis + agysNos + 20110135

_ —(2B13yi — agai3fis + 2a11a13613) P

Us
agays + agyaNog

(147)

—2asB16Y4 P26

— Osi16¥a 26 148
© 7 agans + agyaNag (148)

Bal(as — y3) Moz + 2y7]

ur =
’ (v3 — as)(My7 — y7) — agN37 — 2y7(y7Ma7 — 1)
(149)
vy = [Bs(as — v3) — 2a6P1] Py
(73 = as)(Ma7 —y7) — aeNsy = 2y(y1Mar — 1)
(150)
ug = ﬁz[(aS - y%)MZS + 2V8]
(v3 — as)(Mag — ys) — aNag — 2ys(ysMag — 1)
(151)
Ug = [ﬂS(QS — V%) — zaéﬁl]P38

(v3 — as)(Mag — ys) — agN3g — 2y5(ys Mg — 1)
(152)

3.3 Conclusions

Substituting (127), (134), (137), (140) to (142) into Table
1, the first-order approximate analytical solution becomes

P = alM“ ei(yl To—vi1 1Y) + a; e—u7T|+i(y7Tg—v7T1)

+ aS e—ugT1+i()/gTo—U8Tl) + C.C. (153)

o1 = ia; M, el To-uiTy) 4 ia7 My, e~ Ti+ily1 To—v1Th)

+ iagMyg e TiHisTo—usT) 4 ¢ o (154)
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P31 = axM, et Ti+i(y2To—v2 1)

+ a3Myye Ty +i(y3 To—v3 1)
+ ase e T\ +i(yaTo—v4 T1)

+ ase tshitisTo—vsT) 4 ¢ o (155)

Wi = i@y Ny e w2 Titi(y2To—v:Th)

+ ia3N13 e s Ty +i(y3; To—v3 1)
+ iagNi4 e taTi+i(yalo—vsT1)
+ ia5N15 efu5T1+i(y5Tgfv5T1)
+ age UTiHielo=vsT) | ¢ ¢ (156)

Wy = ay Ny e Titi(y2To—v2Th)

+ a3 ]\[23 e s Ti+i(y3 To—v3 1)

+ ayNos e*u4T1+i(74To*04T1)

4 a5 Nys e s TititrsTo—osTy)

+ iagNyg e s Ti+isTo=0eT) 4 ¢ ¢ (157)
w31 = ia; N ei(% To—vi T1) +ia7 N3 e*ll7T1+i(V7To*U7T1)

+ iagNsge whHisTo-vsT) 4 ¢ o (158)

011 = a e wlitiaTo—v2T) | as e whitisTo-vsT) | ¢ o
(159)

01 = ias O e Titi(y2To—02 1)

+ ia3 Oy e B NHsTo=vsT) 4 ¢ (160)

931 = da ei(y‘ h=oiTh) 4+ c.c. (161)
Y11 =a P e*uzTHri(}’zTo*val)

+ a3 Pi3 e~ Titi(ysTo—vsTh)

+ asPis e U T1+i(y4To—v4T1)

+ asPise s Ti+i(ys To—vs T1)

+ iagPis e U TiFi(ysTo—vsTh)

+ iagPyg e +c.c. (162)

Proc Instn Mech Engrs Vol 211 Part G

Yo = iax Py et Ti+i(y2To—v2 1)

+ a3 Py e TitilysTo—vsTh)

iay Py e—M4T1 +i(yaTo—0v4T1)

ia5 st e Us T +i(ys To—vs T1)

4
+
+ agPye Ty +i(ys To—v6 T1)
+

agel™ +c.c. (163)

P31 = a, Ps, e+1(}’1T0*U1T1) + a7 Py e*ll7T1+l(V7T0*U7T1)

+ agPss e usTi+i(ysTo—vsT1) +c.c. (164)

Except for 65, the exponents of the complex form
solution, equations (153) to (164), contain real parts. For
stability, the coefficients of real parts must be non-positive.
Thus, for the earth-pointing motion the conditions of
stability are

us =0, §=2,3,4,56,7,8 (165)
The values of the transformed parameters (uy), listed in
(135), (138), (143), (145), (147), (149) and (151), in
equations (165) originate from the dimensions of the space
station and the stiffness of structure. They are independent
of gravitational forces and torques.

4 ROTATIONAL DYNAMICS WITH ARBITRARY
ANGULAR VELOCITY PERPENDICULAR TO
THE ORBITAL PLANE

To provide suitable living conditions in space, the rotation
of the space station is intended to generate an artificial
gravitational environment. For this reason, the dynamics of
the arbitrary spinning angular velocity @ perpendicular to
the orbital plane is also studied.

4.1 The first-order approximate analytical solution

Under this condition,

eidz To efidz To

sindptT=————
2i ’

eidz To + efidz To

2
(166)

cos drT =

Substituting equations (166) into equations (54) to (65), by
the same procedure to solve them, the particular solution is

pllp — 11(3‘12) e3id2Tg + ]l(2d2) ezidzTo _|_ [l(dz) eidzTg +C.C.
(167)
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P21p = Dagan €7 + Doay @77 + Ly e 4 c.c.

3id, It 2id, T, id, Tt
w31 = J334,) €70 + T304y €70 + T34y 70 4 coc.

0931p = K3(3d2) GSidZTO + K3(d2) CidZTO + c.c.

i(y2+d2) T i(y2—d)) T

Y11, = Lo elr2+d2)To —|—L12126(y2 2)To
+ Lisn eirstdnTo 4 L3 elva—d)To
+ Lun ei(vatd)To + L ei(va—d)To

+ Lisp el(V5+dz)To + Lisio e‘()’s—dz)To

+ Lisi1 glvetd2)To + Lis12 ¢lre=d)To 4+ c.c.

_ i(y2+d2) T i(y2—da) T
Yarp = Lot el(r2+d2)To +L22126(y2 2)To
+ Lo eiva+d)Ty + Lo elva=d)To
+ Loy el(ratd2)To + Loa el(ra=d2)Ty

+ Lysiy ei(rs+d2)To + Lsio el(rs—=d)To

+ Lo e1(76+dz)To + Lo el(}/o—dz)To +ec.c.

w31p — L3(3d2) e3idzT0 + L3(2d2) eZidzTo + L3(d2) eidzTo +ecoc.

where

Lay) =

(168)

(169)

(170)

(171)

(172)

(173)

(9d3 — as) (@2 K34y + 304) + a6(2016K3Gas) + 3015)

81d3 — 907d5 + Oy

i[as(d; — Las) — 2d> + Lasair]
16d3 — 40,d3 + O3

La,) =

Lay =

(174)

(175)

(d5 — as) (02 K34y — S0a) + 262016 K,y — Sars)

dg - (37d§ + Og

i(9d5 — a1 — 02 K334, — 304)
6d,

h@a) =

G00497 © IMechE 1997

(176)

(177)

i(4d5 — ay) + las

hoa) = i,
i(d5 — a1 — 02 K34y + a4)
Iy, = 2,
i(a1sh13dy) + 16 K33a,) + 30018)
J33dy) = 3d,
(ai1s]iay) — 3a17
34y = 2d,
(a5 li(ay) + a16K3as) — 30118)
3y = A
—5dp4
Ky = ——22%
OB 7 84y — 942)
A4
K3y = ——5~
7 8(as — d3)
Lo — (N2 + Ni2)Kia — 2i(y2 + d2) Lao1
1211 =
2as
Lo — (N2 — Ni2)Kia — 2i(y2 — d2) Lonn
1212 = 20s
Lo = N3 + Ni3)Kis — 2i(ys + do) sy
1311 =
2(125
Lo = N3 = Ni3)Kis — 2iys — da) Lo
1312 = Yrs
Lov — (N2 + Nia)l34 — 2i(ys + do)Loann
1411 =
2as
Lo~ (NVos = Nia)lsg — 2i(ys — do) Loano
1412 = Yars
Lierr — (Nas + Nis)I3s — 2i(ys + da) Losi
1511 =
2as
Licts — (N2s — Nis)I3s — 2i(ys — da) Losin
1512 = s
Lo = —i[(1 — Na)J16 + 2(y6 + d2)Lae11]
1611 = Y
Lo — i[(1 + Nag)J16 — 2(y6 — d2) Lag12]
1612 = Gy
i{[y2N22 — (a2s5 — d2)N12]
Lo = + [y2N12 — (25 — d2) N1} Ko
=i 2[a3s — (72 + d2)]
i{[y2N2 — (az5 — d2)N12]
Lovis — — [y2N12 — (a5 — dy) N1} K1n
02 =

2[a3s — (y2 — d2)?]

207

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)
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i{[y3Na3 — (az5 — d2)Ni3] (yp£da) # v, ass, p,r=2,3,4,506 (209)
+ [y3N13 — (025 — d2)Na3]} K3
L = 197
1 A — (s + Do)l D an
i{[y3N23 — (25 — d2)Ni3] us =0, §=2,3,4,56,7,8 (210)
— N1z — (ars — dr)N K
Loty — [v3 N1z — (025 — d2)Nas]} K3 (198)

2[a3s — (y3 — d2)?]

i{[yaN24 — (a25 — d2)N14] , _
+ [¥4Nis — (a5 — d2)Naal} 34 As a result of the present work, the following points can be

Loy = 199 i ion:
2411 2[e2; — (7a + d2)7] (199) made in conclusion:

5 CONCLUSIONS

. 1. In earth-pointing motion, the gravitational terms do
i{ly4Nas = (a2s = d2)N1a] not affect the stability with regard to the first-order
Loay = — [742]\714 — (025 — do)Noal} 4 (200) approximate analytical solution.
2[a3s = (ya — d2)’] 2. According to the stability criteria (165), the stability
. of earth-pointing motion depends on the configuration
i{[ysNas — (025 — d2)Nis] of the s;l:ace stition and thI; elastic propertiesg of the
Losi = i [y5§\f 15 — (G2 — ZZ)NZS 135 (201) connecting structure.
2[azs = (ys + d2)’] 3. For the motion with an arbitrary initial spinning rate
. perpendicular to the orbital plane, the gravitational
i{lysNos — (c2s — d2)Nis] forces and torques will limit the spinning rate.
Losiy — - [Vsi\’ls — (a5 — o) Nos | }ss (202) Therefore, besides the stability criteria (165), the
2[5 = (ys — da)’] stable spinning rate has some limitations, equations
(208) and (209).

L1 =

{_[)/6N26 + (aZS - dZ)] + [')/6 + (a25 - dZ)N26]}J16 ACKNOWLEDGEMENTS
2[5 — (v6 + d2)*]
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