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INTRODUCTION

Protein subcellular localization prediction

Background

Predicting protein subcellular localization (PSL) is key

to elucidating many biological problems, such as protein

function prediction, genome annotation and drug discov-

ery. The task is to assign a protein to one or more local-

ization sites corresponding to the subcellular compart-

ments based on its sequence. Recently, many prediction

methods for Gram-negative bacteria have been developed

using different computational techniques, including

expert system,1 k-nearest neighbors,2 artificial neural

networks,3,4 support vector machines (SVM),5,6–11 and

Bayesian networks.12–14 Among them, PSORTb v.2.012

(updated from PSORTb v.1.113) and CELLO II5

(updated from CELLO11) have been tested on a new

Gram-negative bacteria data set.15 PSORTb v.1.1,
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ABSTRACT

Prediction of protein subcellular localization (PSL) is impor-

tant for genome annotation, protein function prediction,

and drug discovery. Many computational approaches for

PSL prediction based on protein sequences have been pro-

posed in recent years for Gram-negative bacteria. We present

PSLDoc, a method based on gapped-dipeptides and proba-

bilistic latent semantic analysis (PLSA) to solve this problem.

A protein is considered as a term string composed by

gapped-dipeptides, which are defined as any two residues

separated by one or more positions. The weighting scheme of

gapped-dipeptides is calculated according to a position spe-

cific score matrix, which includes sequence evolutionary

information. Then, PLSA is applied for feature reduction,

and reduced vectors are input to five one-versus-rest support

vector machine classifiers. The localization site with the

highest probability is assigned as the final prediction. It has

been reported that there is a strong correlation between

sequence homology and subcellular localization (Nair and

Rost, Protein Sci 2002;11:2836–2847; Yu et al., Proteins

2006;64:643–651). To properly evaluate the performance of

PSLDoc, a target protein can be classified into low- or high-

homology data sets. PSLDoc’s overall accuracy of low- and

high-homology data sets reaches 86.84% and 98.21%, respec-

tively, and it compares favorably with that of CELLO II (Yu

et al., Proteins 2006;64:643–651). In addition, we set a confi-

dence threshold to achieve a high precision at specified levels

of recall rates. When the confidence threshold is set at 0.7,

PSLDoc achieves 97.89% in precision which is considerably

better than that of PSORTb v.2.0 (Gardy et al., Bioinfor-

matics 2005;21:617–623). Our approach demonstrates that

the specific feature representation for proteins can be suc-

cessfully applied to the prediction of protein subcellular

localization and improves prediction accuracy. Besides,

because of the generality of the representation, our method

can be extended to eukaryotic proteomes in the future. The

web server of PSLDoc is publicly available at http://

bio-cluster.iis.sinica.edu.tw/~bioapp/PSLDoc/.
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released in 2003, integrates homology analyses, identifica-

tion of sorting signals and other motifs, and machine

learning methods into an expert system based on a

Bayesian network to decide the final prediction. PSORTb

v.2.0, released in 2005, uses SVM as the underlying

machine learning model and takes frequent subsequences

occurring in proteins as input features. CELLO also uses

SVM trained by multiple feature vectors derived from n-

peptide compositions. The updated CELLO II is based

on a two-level SVM system: the first-level SVM is com-

prised a number of SVM classifiers using different feature

vectors, and each classifier generates a probability distri-

bution of subcellular localization sites; the second-level

SVM is considered as a jury SVM that yields a final

probability distribution based on those generated in the

previous stage and determines the final prediction as the

site of the highest probability. The authors of CELLO II

also classify a query protein, whose localization site is to

be predicted, into low- or high-homology data sets

depending on its highest pairwise sequence identity with

the training data set whether it is below or above a simi-

larity threshold of 30%. This classification of data is

motivated by an observation that sequence homology

and subcellular localization have strong correlation when

the sequence identity is higher than 30%. Hence, they

also propose a hybrid method, called HYBRID,5 which

uses the two-level SVM system for low-homology pro-

teins and a homology search method for high-homology

proteins.

Document classification approach

In this article, we formulate PSL prediction as a docu-

ment classification problem. The document classification

problem is to assign an electronic document to one or

more categories, based on its contents. A protein

sequence can be considered as the content of a docu-

ment, and localization sites are considered as categories.

To predict the localization site(s) of a protein is equiva-

lent to predicting the category (e.g., sport, politics) of a

document (e.g., a piece of news). This transformation is

intuitive. Document classification methods have been

successfully applied in many protein classification prob-

lems, such as protein function prediction16 and protein

family classification.17 King and Guda showed that using

document classification techniques on the primary

sequence can achieve good results on estimating subcellu-

lar proteomes of eukaryotes.18

Given a large number of documents, document classi-

fication is usually tackled by the following three steps.

First, documents have to be transformed into feature vec-

tors in which each distinct term corresponds to a feature.

The value of a feature in a vector represents the weight

of a term in a document. Another set of documents with

known categories is used as a training set. Second,

because of high-dimensional feature spaces, feature

reduction is necessary before applying machine learning

methods, to improve generalization accuracy19 and to

avoid overfitting.19,20 The first two steps could be con-

sidered as feature representation. Finally, these reduced

feature vectors are used to perform the category assign-

ment automatically.

In this article, we propose a specific feature representa-

tion embedded in a prediction system called PSLDoc

(Protein Subcellular Localization prediction based on

modified Document classification method), which uses

SVM as the underlying machine learning model. The

design of PSLDoc’s feature representation includes the

following tasks: (1) define the terms of a protein; (2)

design a term weighting scheme; and (3) apply a feature

reduction and extraction method.

For a benchmark data set of Gram-negative bacteria,15

PSLDoc performs better than HYBRID and PSORTb

v.2.0. Our approach demonstrates that the specific feature

representation for proteins can be successfully applied to

PSL prediction.

A baseline system using TFIDF

Before describing our method, we introduce a baseline

system for performance comparison that uses a tradi-

tional document classification method. Salton’s vector

space model (VSM) is one of the most widely used

methods for ad hoc retrieval in document classifica-

tion.21 Each document is represented by a feature vector

(vector, in short) composed of all terms in a collection of

documents, where each entry (or feature) of the vector

corresponds to a term and its value is given by the

weight of the term in the document.22 The similarity

between two documents d and q, denoted by sim(d,q),

can be defined as the cosine of the angle between their

vectors, called cosine similarity, as shown below:

simðd; qÞ ¼ cos \ð~d;~q Þ
� �

¼
~d �~q��~d ��j~q j ð1Þ

where ~d denotes the vector for a document d. Given a

collection of documents with known categories, we clas-

sify a document with unknown category (called query

document) into the same category as the document

whose cosine similarity with the query document is the

largest. We refer to this prediction method as the 1-Near-

est Neighboring (1-NN) method based on cosine similar-

ity. The advantage of the 1-NN method is that there is

no training required as in general machine learning

approach.

Weighting scheme, that is, determining the weight of

each entry in a vector, is crucial in document classifica-

tion. In this baseline system, we use term frequency–

inverse document frequency (TFIDF) as the weighting

scheme. For a term ti in a document d, a simple term fre-

quency (TF) is the number of ti’s occurrences in the
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document, denoted as ni. However, to prevent a bias to-

ward longer documents, term frequency tf(ti,d) is usually

normalized as follows:

tf ðti; dÞ ¼ niP
k nk

; ð2Þ

where the denominator is the number of occurrences of

all terms. The term frequency tf(ti,d) gives a measure of

the importance of the term ti in the document d. The

higher the term frequency, the more likely the term is a

good description of the content of the document. In con-

trast, inverse document frequency (IDF) of ti is a measure

of the general importance of the term. A semantically

important term will often occur several times in a docu-

ment if it occurs at all. However, semantically unimpor-

tant terms are spread out homogeneously over all docu-

ments. A frequently used IDF for ti, idf(ti), is defined as

follows:

idf ðtiÞ ¼ log
jDj��ðdi � tiÞ

�� ; ð3Þ

where jDj is the number of documents in the collection,

and j(di � ti)j denotes the number of documents in

which ti appears. In the TFIDF scheme, the weight of the

term ti in a document d, W(ti, d),* equals to tf (ti, d) mul-

tiplied by idf(ti).23 The values in a vector are normalized

to (0–1] by dividing the maximum value in the vector.

METHODS

PSLDoc uses gapped-dipeptides24 as the terms of a

protein and calculates their weights according to a posi-

tion specific score matrix (PSSM) instead of the TFIDF

used in the baseline system. Probabilistic latent semantic

analysis (PLSA) is used for feature reduction to improve

learning efficiency and accuracy. The reduced feature vec-

tors are input to five one-versus-rest (1-v-r) SVM classi-

fiers corresponding to five localization sites. The proba-

bility estimated by a classifier can be considered as the

confidence level of a target protein belonging to the cor-

responding localization site. The final prediction is deter-

mined to be the localization site whose corresponding

classifier outputs the largest confidence score.

Gapped-dipeptides as the terms of proteins

When considering proteins as documents, many differ-

ent types of terms have been proposed, including single

amino acid (AA)3,4,7,9,25–27 as a uni-gram descriptor,

and the general n-peptide,11 that is, peptides of length n

without gaps. In particular, for n 5 2, dipeptide (Dip) is

a neighboring bi-gram descriptor. However, AA and Dip

cannot represent information between two gapped amino

acids. The use of n-peptide to capture long distance

amino acid information will result in a high-dimensional

vector space. For example, the feature number of a vector

is 3,200,000 (5 205), when n equals five. ‘‘Gapped amino

acid pair’’ was first proposed by Park and Kanehisa9 for

protein representation. Later, Liang et al.24 proposed a

method based on a similar encoding scheme, called

amino acid-coupling patterns, to extract the information

from a protein sequence; the encoding scheme works

well on distinguishing thermophilic proteins. An amino

acid-coupling pattern XdZ denotes the peptides of length

d 1 2 such that amino acids X and Z are separated by d

amino acids, where d can be negative depending on

whether the position of X is closer to N-terminus or C-

terminus.24

We adopt the same encoding scheme as in Liang et al.

except with nonnegative d as the term of a protein

sequence regardless whether the pattern appears near

the N-terminus or C-terminus. We call such amino acid-

coupling pattern as gapped-dipeptides. For example, the

gapped-dipeptides for d 5 0 are dipeptide without gaps

(Dip’s). Given a positive integer l as the upper bound of

gapped distance, each protein sequence is represented by

a vector in the space of gapped-dipeptides with each fea-

ture given by XdZ for 0 � d � l. The length of vectors is

the number of all possible combinations of gapped-

dipeptides, that is, (l 1 1) 3 20 3 20. For example,

given l 5 10, a protein is represented as a feature vector

of 4400 (5 11 3 20 3 20) features.

Term weighting—position specific score
matrix information

Motivation

On the basis of the finding in a previous work that

sequence identity and subcellular localizations of proteins

have a strong correlation,28 Yu et al.5 proposed a homol-

ogy search method for PSL prediction, which predicted

the localization site of a query protein by the most simi-

lar protein among the aligned protein sequences with

known localization sites generated by the global align-

ment program ALIGN.29 The authors observed that,

when the query protein and its most similar protein with

known localization site have sequence identity over 30%,

the homology search method performed very well with

97.7% accuracy. But the prediction performance dropped

significantly when the sequence identity is under 20%. In

this case, it would be difficult to predict the localization

site of a query protein based on the sequence identity or

sequence information. To overcome this difficulty, we

borrow the idea from protein secondary structure predic-

tion, in which homologous sequences are usually re-

moved from the testing and training data sets.30–35
*In this paper, we use the weights of the terms in a document and in a vector,

denoted by W(ti, d) and W(ti, ~d), interchangeably.
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Most of the prediction methods address the problem

of weak homology by utilizing sequence evolutionary in-

formation. One widely used representation of evolution-

ary information is the PSSM generated by PSI-BLAST,36

which has been used in PSIPRED,37 a very popular sec-

ondary structure prediction method. PSI-BLAST finds

remote homologues to a query protein from a chosen

sequence database (e.g., NCBI nr38). Instead of TFIDF

based on the sequence information, our weighting

scheme is based on PSSM.

Position specific score matrix

The PSSM of a sequence S of length n is represented

by an n 3 20 matrix, in which the n rows correspond to

the amino acid sequence of S and the columns corre-

spond to the 20 distinct amino acids. Each row of a

PSSM represents the log-likelihood of the residue substi-

tutions at the corresponding position in S.36 The PSSM

elements are normalized to the range from 0 to 1 using

the following sigmoid function32:

f ðxÞ ¼ 1

1þ e�x
; ð4Þ

where x is the original PSSM value. The higher the nor-

malized value of the residue is, the higher it is for the

propensity of the residue in this position. In PSLDoc,

the PSI-BLAST’s parameters were set to j 5 5 (five

iterations), e 5 1022 (E-value < 0.01), and the

sequence database was NCBI nr which contains 3,747,820

sequences.

TFPSSM weighting scheme

We design a term weighting scheme based on PSSM,

denoted by TFPSSM as follows. Given a protein sequence

S of length n, any gapped-dipeptide XdZ of S has PSSM

entries corresponding to gapped-dipeptides S(i)dS(i 1 d

1 1) for 1 � i � n 2 (d 1 1), where S(i) denotes the

ith amino acid of S. For example, the PSSM (with origi-

nal value without normalization) of the sequence

MPLDLYNTLT is shown in Figure 1. From the sequence

information, M2D only occurs once. However, in view of

PSSM, M2D may occur in the corresponding gapped-

dipeptides obtained from the sequence, that is, M2D,

P2L, L2Y, D2N, L2T, Y2L, N2T. We define the weight of

XdZ in S as

W ðXdZ ; SÞ ¼
X

1�i�n�ðdþ1Þ
f ði;XÞ 3 f ði þ d þ 1;ZÞ ð5Þ

where f(i,Y) denotes the normalized value of the PSSM

entry at the ith row and the column corresponding to

amino acid Y. In the above example, the weight of M2D

based on PSSM is given by f(1,M) 3 f(4,D) 1 f(2,M) 3
f(5,D) 1 � � � 1 f(7,M) 3 f(10,D) 5 0.99995 3 0.04743

1 0.11920 3 0.00247 1 � � � 1 0.00669 3 0.26894. It is

unnecessary to incorporate IDF with term weighting

based on PSSM because the term occurs in all documents

based on PSSM.

As mentioned before, each protein is represented by a

vector, and each entry of the vector is given by TFPSSM

of the corresponding gapped-dipeptides. Note that the

values in each feature vector are normalized between 0

and 1 by dividing the maximum value in the vector.

Feature reduction—probabilistic latent
semantic analysis

Motivation

There are some limitations of the VSM for document

classification. First, the vector space is high-dimen-

sional.21 Training and testing have to deal with the curse

of dimensionality. Second, document vectors are typically

very sparse, that is, most features of a vector are zeros

that are susceptible to noise,39 and cosine similarity

could be inaccurate. Finally, the inner product defining

document similarity can only match occurrences of the

same terms. As a result, the vector representation does

not capture semantic relations between terms. Further-

more, this representation, which considers a document as

a bag of words, is unable to capture phrases and seman-

tic/syntactic regularities.

Hence, dimension reduction (feature reduction) is pro-

posed for dealing with the above limitations. The task of

dimension reduction is to map similar terms to a similar

location in a low dimensional space called latent semantic

space, which reflects semantic associations. A frequently

used dimension reduction technique is Latent Semantic

Analysis (LSA) (or called Latent Semantic Indexing in

some papers), which uses singular value decomposition

(SVD) to do data mapping.40 The document similarity

based on the inner product is computed on the latent

semantic space. Empirically, there are advantages of SVD

Figure 1
PSSM of the sequence MPLDLYNTL, where each entry is the original value

without normalization.
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over naive VSM. However, SVD still has the following

disadvantages.41 First, the resulting dimensions might be

difficult to interpret. For instance, the size of a vector is

reduced from three to two by LSA as shown below:

fðA0AÞ; ðA1AÞ; ðG0GÞg!fð1:3�A0Aþ 0:2�G0GÞ; ðA1AÞg

The value of the first reduced feature equals 1.3 multi-

plied by the value of the origanl first feature plus 0.2

multiplied by the value of the original third feature. This

leads to results which might be justifiable on the mathe-

matical level, but have no interpretable meaning in the

original application. Second, the probabilistic model of

LSA does not match observed data.41 Third, the recon-

struction may contain negative entries, which are inap-

propriate as a distance function for count vectors.

Probabilistic latent semantic analysis

Hofmann proposed probabilistic latent semantic analy-

sis (PLSA) based on an aspect model to deal with those

above disadvantages.41 The aspect model is a latent vari-

able model for co-occurrence data (i.e., documents and

terms) that each observation is associated with an unob-

served class variable z [ Z 5 {z1, . . ., zK}. The weight of

the term w in a document d, W(w, d), is considered as a

joint probability P(w, d) between w and d, which is mod-

eled by z, a latent variable which can be loosely thought

of as a topic or a reduced feature. Thus, the joint proba-

bility P(w, d) based on PLSA model is

Pðw; dÞ ¼ PðdÞPðwjdÞ; PðwjdÞ ¼
X
z2Z

PðwjzÞPðzjdÞy ð6Þ

where P(w|z) denotes the topic-conditional probability of

a term conditioned on the unobserved topic, and P(z|d)

denotes a document-specific probability distribution over

the latent variable space; that is, considering a vector ~d
in latent variable space, P(z|d) denotes the weight of the

latent variable z of the document d. Hence, a vector is

mapped from the term space to latent space and its size

is reduced from |W| to |Z|.

PLSA model fitting (training)

A PLSA model is parameterized by P(w|z) and P(z|d)

which are estimated by fitting P(w, d) to a training corpus

D with known W(w, d). The fitting process is obtained by

maximizing the log-likelihood function L given below41:

L ¼
X
w2d

X
d2D

W ðw; dÞ log Pðw; dÞ ð7Þ

The parameters of a PLSA model, P(w|z) and P(z|d), are

estimated using the iterative Expectation-Maximization

(EM) algorithm by maximizing the log-likelihood function

L. P(w|z) and P(z|d) are initialized by random values in

(0,1)-range. Then, the EM procedure iterates between the

E-step and the M-step. In the E-step, the probability that a

term w in a particular document d explained by the class

corresponding to z, is estimated as

Pðzjw; dÞ ¼ Pðz;w; dÞ
Pðw; dÞ ð8Þ

Pðz;w; dÞ ¼ PðdÞPðzjdÞPðwjzÞz ð9Þ

Using Eqs. (6), (8), and (9), we can get

Pðzjw; dÞ ¼ PðdÞPðzjdÞPðwjzÞ
PðdÞPz 0 Pðwjz 0ÞPðz 0jdÞ

¼ PðwjzÞPðzjdÞP
z 0 Pðwjz 0ÞPðz 0jdÞ

ð10Þ

In the M-step, we calculate

Pðw j zÞ ¼
P

d W ðw; dÞPðzjw; dÞP
w 0
P

d W ðw 0; dÞPðzjw 0; dÞ
Pðz j dÞ ¼

P
w W ðw; dÞPðzjw; dÞP

z 0
P

w W ðw; dÞPðz 0jw; dÞ
ð11Þ

where parameters P(w|z) and P(z|d) are re-estimated to

maximize L.

PLSA model testing

After training, the estimated P(w|z) parameters are

used to estimate P(z|q) for a new (test) document q

through a folding-in process.41 In the folding-in process,

EM procedure runs in a similar manner to the training

stage. The E-step is identical but the M-step keeps all the

P(w|z) constant and only recalculates P(z|q). Usually, a

very small number of iterations of the EM algorithm are

sufficient for folding-in process.

Feature reduction by PLSA

We apply PLSA not only for feature reduction but also

for gapped-dipeptide semantic relation extraction. Vectors

are mapped from the gapped-dipeptide space to the latent

semantic space. This will lead to improvement in learning

performance and efficiency. Though it is not easy to

determine an appropriate reduced feature size of PLSA, it

can be approximated by the reduced feature size of LSA.

To determine the reduced feature size of LSA, we calculate

singular values of LSA and sort them in a decreasing

order. Then, the reduced feature size of LSA equals to n if

the n-th largest singular value is close to zero.

yIt is assumed that the distribution of terms given a class is conditionally inde-

pendent of the document, that is, P(w|z,d) 5 P(w|z). {This equation is derived from according to the Figure 1(a) of Hofmann.39

Protein Subcellular Localization Prediction

PROTEINS 697



The system architecture of PSLDoc

Prediction of PSL can be treated as a multiclass classi-

fication problem. For multiclass classification, the 1-v-r

SVM model has demonstrated a good classification per-

formance.27 For each class i, we construct a 1-v-r (Ci

versus non-Ci) binary classifier. PSLDoc consists of five

1-v-r SVM classifiers corresponding to five localization

sites in Gram-negative bacteria. Input features for all

binary classifiers are the same. The SVM program

LIBSVM42 is used in PSLDoc, and it can generate proba-

bility estimates that are used for determining the confi-

dence levels of classifications.43 For all classifiers, we use

the Radial Basis Function kernel, and tune the cost (c)

and gamma (g) parameters optimized by 10-fold crossva-

lidation on the training data set.

Given a protein, PSLDoc performs the following steps:

1. Use PSI-BLAST to generate PSSM of the protein.

2. Generate the feature vector of the protein, where each

feature is defined as TFPSSM corresponding to a

gapped-dipeptide.

3. Perform PLSA to generate a reduced feature vector,

which will be input to each 1-v-r classifier.

4. Run five 1-v-r SVM classifiers.

In the training stage of PSLDoc, to train PLSA model

with different topic sizes and the SVM classifiers, pro-

teins with known localization sites are used to estimate

P(w|z) and P(z|d), and the reduced vectors are used to

determine the c and g parameters of the RBF kernel of

each classifier. In the testing stage of PSLDoc, Step 3

of PSLDoc performs PLSA folding-in process on trained

P(w|z). Step 4 of PSLDoc is performed on the trained

SVM classifiers. The localization site of the protein

is predicted as the class with the highest probability

(probi: the confidence of the query protein predicted as

class i; 0 � probi � 1) generated from the five 1-v-r clas-

sifiers. The system architecture of PSLDoc is shown in

Figure 2.

Data sets

To evaluate the performance of PSLDoc, we utilize a

benchmark data set of proteins from Gram-negative

bacteria with single localization that have been used in

previous works.12,11 It consists of 1444 proteins with

experimentally determined localizations, referred to as

PS1444.15 Table I lists the distribution of localization sites

of the data set.

To analyze the performance of PSLDoc under the

effect of sequence homology information, we further

classify each protein in PS1444 into two data sets, the

high- or low-homology data sets based on whether or

not the protein’s highest sequence identity of all-against-

all alignment by ClustalW is greater than an identity

threshold of 30%. The high-homology data set, referred

to as PSHigh783, consists of 783 proteins and the low-

homology set, referred to as PSLow661, consists of 661

proteins. The three data sets are available at http://bio-

cluster.iis.sinica.edu.tw/~bioapp/PSLDoc/DataSet.htm.

Evaluation measures

To evaluate the performance of our method, we follow

the same measures used in previous works1,10,11,13 for

comparison with other approaches. These measures

include accuracy (Acc), precision, recall, Matthew’s corre-

lation coefficient (MCC)44 for five localization sites, and

the overall accuracy defined in Eqs. (12)–(16) below:

Acci ¼ TPi=Ni ð12Þ

Figure 2
System architecture of PSLDoc based on 1-v-r SVM models using reduced/

transformed feature vectors.
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Precisioni ¼ TPi=ðTPi þ FPiÞ ð13Þ

Recalli ¼ TPi=ðTPi þ FNiÞ ð14Þ

MCCi ¼ ðTPiÞðTNiÞ� ðFPiÞðFNiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPi þ FNiÞðTPi þ FPiÞðTNi þ FPiÞðTNi þ FNiÞ
p

ð15Þ

Acc¼
Xl

i¼1

TPi

,Xl

i¼1

Ni; ð16Þ

where l 5 5 is the number of localization sites, and TPi,

TNi, FPi, FNi, and Ni are the number of true positives,

true negatives, false positives, false negatives, and proteins

in localization site i, respectively. MCC considers both

under- and over-predictions, and takes range from –1 to

1, where MCC 5 1 indicates a perfect prediction; MCC

5 0 indicates a completely random assignment; and

MCC 5 21 indicates a perfectly reverse correlation. The

Acci is the same as Recalli because Ni equals to the sum

of TPi and FNi. We will use Acci or Recalli interchange-

ably in the experiments depending on which method is

compared.

Five simple PSL prediction methods

To evaluate the benefit of each step in our document

classification method, we propose two simple prediction

methods: 1NN_TFIDF and 1NN_TFPSSM, which consist

of different parts of PSLDoc. To further analyze the effect

of the PSSM information generated from databases of

different sizes, we propose two methods based on PSI-

BLAST: 1NN_PSI-BLASTps and 1NN_PSI-BLASTnr. In

addition, we also construct a homology search method,

1NN_ClustalW, which is similar to Yu et al.’s for compar-

ison with PSLDoc.

1NN_TFIDF

1NN_TFIDF solely incorporates protein encoding

scheme, the gapped-dipeptides of PSLDoc. The remain-

ing steps are the same as the baseline system. That is,

terms are weighted according to the TFIDF weighting

scheme, and a query protein is predicted by 1-NN

method based on cosine similarity.

1NN_TFPSSM

1NN_TFPSSM incorporates two parts of PSLDoc, the

gapped-dipeptide encoding scheme and the TFPSSM

weighting scheme. It predicts a query protein using 1-

NN method based on cosine similarity.

1NN_PSI-BLASTps

1NN_PSI-BLASTps performs two PSI-BLAST searches,

one of which for generating a PSSM and the other for

searching the most similar protein using the PSSM gener-

ated in the previous step. First, for each query protein,

PSI-BLAST search is performed against the training data

and its parameters are the same as those in PSLDoc.

Then, 1NN_PSI-BLASTps performs a one-run PSI-BLAST

search (i.e., j 5 1)§ against the training data using the

obtained PSSM.} Finally, the localization site of the pro-

tein with the highest e-value is assigned as the predicted

localization for the query protein. In a five-fold cross-vali-

dation, the PSSM information used in 1NN_PSI-BLASTps

is generated from a small database which consists of

�1155 (5144434/5) sequences from PS1444.

1NN_PSI-BLASTnr

Although 1NN_PSI-BLASTps utilizes the PSSM infor-

mation, the source database used is not as large as that

of 1NN_TFIDF and PSLDoc. For fair comparison with

1NN_TFIDF and PSLDoc, we construct 1NN_PSI-

BLASTnr, which uses PSSM generated from the NCBI nr

database. The only difference between 1NN_PSI-BLASTnr

and 1NN_PSI-BLASTps is the size of the databases

searched in the first step, and the remaining steps are all

the same, including the generation of PSSM, followed by

performing a second PSI-BLAST search, and lastly, the

prediction of the localization site of the query protein.

1NN_ClustalW

1NN_ClustalW differs from Yu et al.’s method only in

the pairwise sequence alignment algorithm used, that is,

ClustalW in the former and ALIGN in the latter. For a

query protein, we calculate its pairwise sequence identi-

ties with the remaining proteins by performing 1-against-

others pairwise sequence alignment. Then, the localiza-

tion site of the query protein is predicted by the 1-NN

method based on pairwise sequence identity, that is, its

localization site is assigned as that of the protein whose

pairwise sequence identity is highest.

Table I
Number of Proteins in Different Localization Sites

Localization sites No.

Cytoplasmic (CP) 278
Inner membrane (IM) 309
Periplasmic (PP) 276
Outer membrane (OM) 391
Extracellular (EC) 190
All sites 1444

§The parameters of e-vlaue are ignored because we want to find the most similar

protein instead of constructing a PSSM.

}Please refer to the last example on blastpgp’s document for how to save a PSSM

and perform PSI-BLAST search from the PSSM (http://biowulf.nih.gov/apps/blast/

doc/blastpgp.html).
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Experiment design

We conduct the following experiments to evaluate the

benefit of each step in our document classification model

where the gapped distance upper bound, l, ranges from

3 to 15. We follow the same validation procedures for

the performance measurement as those of the other

approaches.5,12 All experiments are carried out in five-

fold cross-validation, that is, the data is equally divided

into five parts. In each run, four folds are used for train-

ing and the remaining fold is used for testing. All

reported results are average over the five folds. We have

conducted the following six experiments:

Experiment 1: comparison between 1NN_TFIDF
and 1NN_TFPSSM on the PS1444, PSHigh783,
and PSLow661 data sets

The purpose of this experiment is to evaluate the benefit

of using the TFPSSM weighting scheme because the simple

1NN prediction method can reflect the relation between

performance and weighting schemes avoiding the effect

of the prediction algorithm. The distribution of benefit

among 1444 protein sequences is further analyzed by com-

paring their performance on PSHigh783 and PSLow661.

Experiment 2: comparison among 1NN_TFPSSM,
1NN_ClustalW, 1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr
on the PSHigh783 and PSLow661 data sets

To compare the effect of utilizing PSSM, we compare

the performance of 1NN_TFPSSM, 1NN_ClustalW,

1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr. 1NN_Clus-

talW is based on a pairwise sequence alignment in which

no PSSM information is incorporated. We further ana-

lyze the relationship between the effect of PSSM and the

size of databases used in the construction of PSSM.

Compared with 1NN_PSI-BLASTps, both 1NN_TFPSSM

and 1NN_PSI-BLASTnr incorporate a larger database for

PSSM construction. Finally, the comparison between

1NN_TFPSSM and 1NN_PSI-BLASTnr serves to highlight

the benefit of gapped-dipeptide encoding scheme.

Experiment 3: comparison between PSLDoc
and PSLDoc-PLSA on the PS1444 data set

PSLDoc-PLSA represents PSLDoc without PLSA, which

simply applies SVM on the original feature vectors. The

overall accuracies of PSLDoc and PSLDoc-PLSA are com-

pared to evaluate the benefit of PLSA feature reduction

for SVM learning.

Experiment 4: comparison among PSLDoc, 1NN_TFPSSM,
and 1NN_ClustalW on the PSHigh783 and PSLow661
data sets

Using the PSHigh783 data set, we can verify whether

PSLDoc can replace 1NN_ClustalW. Using PSLow661,

we can investigate whether PSLDoc can improve

1NN_TFPSSM by applying PLSA and SVM classification.

Hence, we could determine whether PSLDoc is suitable

for both high- and low-homology data sets.

Experiment 5: comparison among PSLDoc, HYBRID
and PSORTb v.2.0 on the PS1444 data set

We compare the performance of PSLDoc, HYBRID,

and PSORTb v.2.0. Besides, we also assess the perform-

ance of PSLDoc using a three-way data split procedure,45

which is commonly used in machine learning to prevent

overestimation of the performance. The data set is ran-

domly divided into three disjoint sets, that is, a training

set for classifier learning, a validation set for feature

selection and parameter tuning, and a test set for per-

formance evaluation. Hence, for each run in the original

five-fold cross-validation, we divide the training data set

into four distinct sets: three for training, one for valida-

tion. Then, we select the gapped distance upper bound

and PLSA reduced feature size based on the validation

set instead of the test set. Then PSLDoc performance is

evaluated under the selected parameters in the original

five-fold cross-validation.

Experiment 6: PSLDoc under different prediction
thresholds versus PSORTb v.2.0 on the PS1444 data set

The precision and recall of PSLDoc is evaluated under

different prediction thresholds to compare with PSORTb

v.2.0.

RESULTS AND DISCUSSION

Experimental results

Experiment 1: the benefit of using the TFPSSM
weighting scheme

The overall accuracy of 1NN_TFIDF and 1NN_TFPSSM

for each gapped distance are shown in Figure 3. The high-

est overall accuracy of 1NN_TFPSSM is 89.47% when l

Figure 3
Overall accuracy of 1NN_TFIDF and 1NN_TFPSSM with respect to maximum

allowed gapped distances on the PS1444 data set.
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equals 4, 5, and 13 and it is considerably higher than the

best 1NN_TFIDF score 74.38% when l equals to 4. There-

fore, adopting the TFPSSM weighting scheme significantly

improves the performance of 1NN_TFIDF.

The performance of 1NN_TFIDF and 1NN_TFPSSM

in the high- and low-homology data sets is shown in

Table II. 1NN_TFPSSM dramatically improves the per-

formance of 1NN_TFIDF by about 26% in overall accu-

racy on PSLow661. Hence, the incorporation of PSSM

information into the weighting scheme is useful for

improving performance due to insufficient sequence in-

formation in the low-homology data set.

Experiment 2: the effect of incorporating PSSM
information and gapped-dipeptide encoding scheme

Table III shows the performance of 1NN_TFPSSM,

1NN_ClustalW, 1NN_PSI-BLASTps, and 1NN_PSI-

BLASTnr on the PSHigh783 and PSLow661 data sets. The

overall accuracy on the PSHigh783 data set is very simi-

lar for all methods. However, for the PSLow661 data set,

1NN_ClustalW, 1NN_PSI-BLASTps, and 1NN_PSI-

BLASTnr attain 42.97%, 57.94%, and 66.57%, respec-

tively, in overall accuracy. This result reveals that better

performance can be achieved when a larger database is

used in constructing PSSM. This also lends support to

our assumption that incorporating more information

into PSSM is more effective for the prediction of proteins

with low sequence identity to the training set. Most nota-

bly, 1NN_TFPSSM outperforms 1NN_PSI-BLASTnr by

12.86% in overall accuracy. This suggests that the incor-

poration of PSSM based on gapped-dipeptide encoding

scheme significantly improves the predictive performance,

especially for proteins of low sequence identity.

Experiment 3: the benefit of PLSA feature reduction

Determine the reduced size of PLSA. The size of PLSA is

determined by LSA singular values. Figure 4 shows the

singular values in decreasing order on different gapped

distances upper bound data sets.

The 40th largest singular value is close to zero in Fig-

ure 4, but in the inset the 160th largest singular value is

close to zero. Hence, the reduced feature size of PLSA is

set to 40, 80, and 160. However, we do not test larger

PLSA reduced size or one-by-one PLSA reduced size in

Table II
Comparison of 1NN_TFIDF and 1NN_TFPSSM on the PSHigh783 and PSLow661 Data Sets

Loc. sites

PSHigh783 PSLow661

1NN_TFPSSM 1NN_TFIDF 1NN_TFPSSM 1NN_TFIDF

Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

CP 94.20 0.96 71.01 0.74 83.25 0.77 41.15 0.36
IM 99.31 0.99 98.62 0.89 82.93 0.82 84.15 0.48
PP 95.86 0.94 86.21 0.89 74.05 0.63 38.17 0.46
OM 99.66 0.99 95.88 0.95 85.00 0.82 66.00 0.48
EC 96.99 0.96 92.48 0.91 57.89 0.51 28.07 0.26
Overall 97.96 — 91.83 — 79.43 — 53.86 —

Table III
Comparison of 1NN_TFPSSM, 1NN_ClustalW, 1NN_PSI-BLASTps, and 1NN_PSI-BLASTnr for the PSHigh783 and PSLow661 Data Sets

Loc. sites

1NN_TFPSSM 1NN_ClustalW 1NN_PSI-BLASTps 1NN_PSI-BLASTnr

Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

PSHigh783
CP 94.20 0.96 91.3 0.90 88.41 0.92 86.96 0.90
IM 99.31 0.99 97.93 0.97 99.31 0.98 99.31 0.98
PP 95.86 0.94 93.1 0.93 93.79 0.93 92.41 0.91
OM 99.66 0.99 99.66 0.99 99.66 0.99 99.66 0.99
EC 96.99 0.96 99.25 0.99 98.50 0.98 98.50 0.98
Overall 97.96 — 97.32 — 97.32 — 96.93 —

PSLow661
CP 83.25 0.77 39.23 0.23 36.84 0.40 55.50 0.53
IM 82.93 0.82 46.95 0.33 68.29 0.57 75.00 0.66
PP 74.05 0.63 41.98 0.44 59.54 0.51 64.12 0.54
OM 85.00 0.82 45.00 0.47 87.00 0.57 87.00 0.66
EC 57.89 0.51 43.86 0.10 50.88 0.37 52.63 0.45
Overall 79.43 — 42.97 — 57.94 — 66.57 —
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consideration of the training efficiency and avoidance of

data overfitting.

For one PLSA reduced size, the training and testing

procedures of PSLDoc take 1.5 h and about 2–3 minutes

for all gapped distances, respectively. However, PSLDoc-PLSA
takes about 180 and 1.4 hours in training and testing, re-

spectively. Figure 5 shows the performance of PSLDoc-PLSA
and PSLDoc, where PSLDoc_Fx denotes PSLDoc with

PLSA reduced size x.

The highest overall accuracy among all gapped distan-

ces of PSLDoc_F40, PSLDoc_F80, and PSLDoc_F160 is

92.31%, 93.01%, and 92.52%, respectively, which is 0.83%,

1.52%, and 1.04% better than that of PSLDoc-PLSA.

Using PLSA not only improves learning efficiency but

also performance. In the following experiments, PSLDoc

takes the gapped distance 13 and PLSA at reduced

size 80.

Experiment 4: the benefit of SVM and PLSA
feature reduction

Table IV shows the performance of PSLDoc,

1NN_TFPSSM, and 1NN_ClustalW on PSHigh783 and

PSLow661. The overall accuracy of 1NN_ClustalW on

PSHigh783 (97.32%) is very similar to that of Yu et al.’s

(97.7%). 1NN_TFPSSM and PSLDoc perform better than

1NN_ClustalW on PSHigh783. On the other hand,

PSLDoc improves 1NN_TFPSSM on PSLow661 by 7.41%

because of the nonlinear SVM classification and PLSA

feature reduction and extraction. This shows that

PSLDoc is suitable for both the high- and low-homology

data sets.

Experiment 5: comparison of PSLDoc, HYBRID,
and PSORTb v.2.0

Table V shows the performance of PSLDoc, HYBRID,

and PSORTb v2.0 on PS1444. PSLDoc achieves the best

Figure 4
Singular values in decreasing order of each gapped distance. The inset shows singular values without first largest one for detailed representation.

Figure 5
Overall accuracy of PSLDoc_F40, PSLDoc_F80, PSLDoc_F160, and

PSLDoc-PLSA with respect to gapped distance on the PS1444 data set.
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performance of 93.01%, better than HYBIRD of 91.6%

and PSORTb of 82.6%.

Experiment 6: PSLDoc under different prediction
thresholds versus PSORTb v.2.0 on the PS1444 data set

Prediction confidence. The probability estimated by

LIBSVM is used for determining the confidence levels of

classifications. The class with the largest probability is

chosen as the final predicted class. The confidence of the

final predicted class, prediction confidence,32 could be

defined as the value of the largest probability minus the

second largest probability. Figure 6 shows the relationship

between accuracy and prediction confidence. For proteins

with prediction confidence in the range 0.9–1, the predic-

tion accuracy is near 100% (99.12%).

Prediction threshold. Gardy et al. suggested that when a

prediction system is unable to generate a confident

prediction, the program outputs a result of ‘‘Unknown’’

because biologists usually prefer correct predictions (high

precision) over prediction coverage (recall).12 To provide

prediction results with higher precision, we determine a

prediction threshold to filter out prediction results with

low confidence. That is, the SVM classifier predicts

results only when the prediction confidence is above the

threshold, otherwise the SVM classifier will output

Unknown.12,13 The recall and precision for each predic-

tion threshold are shown in Figure 7.

Table VI shows the performance of PSLDoc under dif-

ferent prediction thresholds. Setting the prediction

threshold to 0.7, PSLDoc achieves slightly better recall

than PSORTb v.2.0 (83.66% vs. 82.6%), whereas the pre-

cision of PSLDoc is better than PSORTb v.2.0 (97.89%

vs. 95.8%). In addition, when the prediction threshold is

set to 0.3, PSLDoc achieves comparable precision to

PSORTb v.2.0 (95.77% vs. 95.8%), and PSLDoc’s recall is

much better than that of PSORTb v.2.0 (89.27% vs.

82.6%).

DISCUSSION

In PLSA, we associate proteins and gapped-dipeptides

with topics. Through analyzing the trained PLSA model

with P(w|z) and P(z|d) for gapped-dipeptide w, topic z

and protein d, gapped-dipeptide signatures in proteins

with different localization sites are discovered for the

PS1444 data set. Some of these signatures have been

reported in the literature as motifs critical for stability or

localization. We also discuss the problem of polysemy

and solve it through the PLSA model.

Gapped-dipeptide signatures for
Gram-negative bacteria localization sites

In Figure 8, we show the distribution of topic versus

protein as visualized by P(z|d) for topic z [ Z and pro-

Table V
Comparison of PSLDoc, HYBRID, and PSORTb v.2.0 on the PS1444 Data Sets

Loc. sites

PSLDoc HYBRID PSORTb v.2.0

Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

CP 94.96 (94.24) 0.91 (0.91) 95.00 0.89 70.10 0.77
IM 93.20 (93.53) 0.94 (0.94) 90.60 0.92 92.60 0.92
PP 89.13 (89.13) 0.87 (0.85) 88.80 0.84 69.20 0.78
OM 95.65 (95.14) 0.95 (0.94) 95.10 0.93 94.90 0.95
EC 90.00 (87.37) 0.87 (0.86) 85.30 0.87 78.90 0.86
Overall 93.01 (92.45) — 91.60 — 82.60 —

The PSLDoc performance of incorporating a three-way data split procedure is indicated in the parentheses.

Table IV
Comparison of PSLDoc, 1NN_TFPSSM, and 1NN_ClustalW for the PSHigh783 and PSLow661 Data Sets

Loc. sites

PSHigh783 PSLow661

PSLDoc 1NN_TFPSSM 1NN_ClustalW PSLDoc 1NN_TFPSSM 1NN_ClustalW

Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

CP 95.65 0.96 94.20 0.96 91.3 0.89 94.74 0.88 83.25 0.77 39.23 0.23
IM 99.31 0.99 99.31 0.99 97.93 0.97 87.80 0.88 82.93 0.82 46.95 0.33
PP 95.17 0.94 95.86 0.94 93.1 0.93 82.44 0.78 74.05 0.63 41.98 0.44
OM 99.66 0.99 99.66 0.99 99.66 0.99 84.00 0.84 85.00 0.82 45.00 0.47
EC 98.50 0.98 96.99 0.96 99.25 0.99 70.18 0.65 57.89 0.51 43.86 0.10
Overall 98.21 — 97.96 — 97.32 — 86.84 — 79.43 — 42.97 —
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tein d [ D. In the figure, the size of topic (|Z|) is set to

80 according to the conclusion from Experiment 2.

To find site-topic preference, we then cluster proteins

according to their localization sites for examining preferred

topics for each localization site. The site-topic preference of

the topic z for a localization site l is calculated by averaging

P(z|d), where d (a protein) belongs to l class (i.e., d has

localization site l.) The site-topic preference over topics per

localization site is shown in Figure 9. We can observe from

the figure that topics can be divided into five groups such

that each group ‘‘prefers’’ a specific localization site.

We say a topic z prefers a localization size l, if the cor-

responding site-topic preference is the largest of all local-

ization sites. For some topics preferring PP and EC

classes, the difference of the site-topic preference between

their own preferring site and other sites are not obvious

in Figure 9. This also reflects the relative poor perform-

ance of PSLDoc in PP and EC classes.

The distribution of topic versus gapped-dipeptide is

visualized by P(w|z) for gapped-dipeptide w [ W and

topic z [ Z as shown in Figure 10. In the figure, the size

of gapped-dipeptides (|W|) is set to 5600 (514 3 20 3
20) following the conclusion of Experiment 2.

To list gapped-dipeptides of interest, we select 10

preferred topics for each localization site according to

site-preference confidence, which is defined as the largest

site-topic preference minus the second largest site-topic

preference. For each topic, five most frequent gapped-

dipeptides are selected. We list the gapped-dipeptide

signatures of 10 preferred topics corresponding to each

of the localization sites in Table VII.

Gapped-dipeptide signatures reflecting
motifs relevant to protein localization sites

Interestingly, some of the signatures in Table VII found

by PSLDoc have been reported in the literature as motifs

critical for stability or localization. One example is

observed in the integral membrane (IM) proteins, in

which helix–helix interactions are stabilized by aromatic

residues.46 Specifically, the aromatic motif (WXXW or

W2W) is involved in the dimerization of transmembrane

(TM) domains by p–p interactions.46 Remarkably, one

preferred topic predicted for the IM class includes this

motif (W2W) among other signatures of aromatic resi-

dues. Another example is found in the outer membrane

(OM) class, where the C-terminal signature sequence is

recognized by the assembly factor, OMP85, regulating the

insertion and integration of OM proteins in the outer

membrane of gram-negative bacteria.47 The C-terminal

signature sequence contains a Phe (F) at the C-terminal

Figure 7
Overall accuracy of PSLDoc with respect to prediction confidence. The value

above the point denotes the corresponding prediction threshold.

Figure 6
Overall accuracy of PSLDoc with respect to prediction confidence. [x,y)

represents the prediction confidence is more than x but under y.

Table VI
Comparison of PSLDoc Under the Prediction Threshold 0.7, PSLDoc Under the Prediction Threshold 0.3 and PSORTb v.2.0

Loc. sites

PSLDoc_PreThr 5 0.7 PSLDoc_PreThr 5 0.3 PSORTb v.2.0

TP FP FN Pre. Rec. TP FP FN Pre. Rec. TP FP FN Pre. Rec.

CP 216 6 62 97.30 77.70 243 13 35 94.92 87.41 195 15 83 92.86 70.14
IM 273 3 36 98.91 88.35 285 6 24 97.94 92.23 286 14 23 95.33 92.56
PP 202 8 74 96.19 73.19 226 17 50 93.00 81.88 191 9 85 95.50 69.20
OM 366 2 25 99.46 93.61 372 6 19 98.41 95.14 371 10 20 97.38 94.88
EC 151 7 39 95.57 79.47 163 15 27 91.57 85.79 150 4 40 97.40 78.95
Total 1208 26 236 97.89 83.66 1289 57 155 95.77 89.27 1193 52 251 95.82 82.62
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position, preceded by a strong preference for a basic

amino acid (K, R).47 One of the preferred topics indeed

contains this motif (R0F.).

The above findings demonstrate the sensitivity of

PSLDoc for capturing gapped-dipeptide signatures rele-

vant to localization sites. Thus, the predicted signa-

Figure 9
Distribution of site-topic preference versus localization site. The 80 topics are

divided into five groups of 17, 13, 18, 20, and 12 topics that prefer CP, IM, PP,

OM, and EC, respectively.

Figure 8
Distribution of topic versus protein plotted as an image with its colormap,d where

the topics are sorted such that topics ‘‘preferring’’ (to be explained in the third

paragraph) the same localization site are grouped together. Each element P(z | d)

corresponds to a rectangular area in the image and its color is decided by the value.

Figure 10
Distribution of topic versus gapped-dipeptide.
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Table VII
Gapped-Dipeptide Signatures for Each Gram-Negative Bacteria Localization Site

Site Gapped-dipeptide signatures

CP E0E, K1I, K5V, K1V, D0E; L1H, L5H, L3H, H4L, H0L; A12C, A9C, A13C, A5C, A7C;
R3R, R6R, R2R, R0R, R9R; A6A, A13A, A7A, A10A, A11A; I0E, R6I, I3R, I3K, R6V;
H3H, H1H, H7H, H13H, H10H; H1M, H2M, H11M, M0H, H0M; A4E, E1E, A2E, V4E, A9E;
E4E, K6E, E6E, E3E, E0E

IM I2I, I3I, I0I, L0I, I0F; L7L, L4L, L10L, L3L, L6L; M3M, M2M, M0M, M8M, M6M;
V2I, V2V, V3I, V3V, I0V; T2F, T6F, F3F, T4F, T8F; A1A, A7L, A4A, A1C, A11L;
W3W, W0W, W2W, W6W, W4W; Y12L, Y1L, Y11L, L0Y, L1L; M2T, M3T, M10T, M4T, M0L;
F10P, F8P, F12P, F3P, F13P

PP A1A, A2A, A0A, A3A, M4A; M0H, W1Q, W1H, W1K, W5Q; P1E, P0E, E0P, P0K, E1P;
D0D, Q0D, D3D, D3Q, D11D; W0E, E4W, W11E, E0W, W13E; K3K, K0K, K2K, K1K, K7K;
A3A, A7A, A1P, A6R, A10R; P3N, N4P, N3P, N5P, N0P; H6G, G3M, H7D, G11H, H11G;
A10A, A11A, A6A, A12A, A3A

OM T1R, R3T, R1T, T5R, P0P; R0F, R4F, Y13R, R6F, R2F; N4N, N0N, N10N, N7N, F1N;
Q6Q, Q1Q, Q3Q, Q13Q, Q4Q; S0F, A3F, F0S, R9F, F7F; G0G, A0G, A1G, G1A, G3A;
N1Q, N1N, Q1Q, N12N, Q11V; W2N, N2W, N0W, D2W, N13W; Q5R, R1Q, Q1R, Q3R, R2Q;
Y1Y, Y0Y, Y5Y, Y4Y, Y12Y

EC S6S, S2S, T11T, S13S, T6S; G8G, G0G, G7G, G9G, G6G; T1T, T3T, T5T, T9T, T10T;
N10N, N9N, N13N, N11N, N12N; N1N, N3N, N4N, N11N, N1T; I5Y, Y12S, Y3S, Y9S, Y6I;
Q2N, N1Q, Q1Q, N3Q, Q7Q; K1S, S6S, S5S, S11M, S0S; S3G, G3G, G4S, G3S, G2G;
N0N, N12V, N4V, V12N, N9V

Figure 11
The amino acid compositions of single residues (A) and selected gapped-dipeptide signatures (B) in different localization sites.
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tures can provide important clues for further studies

of uncharacterized sequence motifs related to protein

localization.

Comparison of gapped-dipeptide signature
encoding and amino acid composition

Figure 11 shows the amino acid compositions of single

residues and gapped-dipeptide signatures for each local-

ization site, respectively. It is observed that the distribu-

tions of 20 amino acids calculated from single residues

and gapped-dipeptide signatures are quite different. The

distribution from single residues [Fig. 11(A)] has no

clear separation for some amino acids but the distribu-

tion from gapped-dipeptide signatures [Fig. 11(B)] has a

clear separation among five classes.

From Figure 11(A,B), it is observed that for some

amino acids, general amino acid composition bias have

an effect on the gapped-dipeptide signatures (e.g., CP: E;

IM: I, L; PP: P, K; OM: Y; EC: G, N). That is, amino

acids having high composition in a localization site tend

to also have high composition in gapped-dipeptide signa-

tures of the localization site. For example, there are rela-

tively high proportions for Ile and Leu in both single res-

idue and gapped-dipeptide signature compositions in IM

proteins. However, many amino acids have high compo-

sitions in at least two localization sites. Therefore, it is

difficult to predict localization site based on single resi-

due compositions. From the amino acid composition of

gapped-dipeptide signatures, we observe a clear separa-

tion among different localizations for several amino

acids, which are indistinguishable at the single residue

level (i.e., A, M, V, Q, S, H, W). Specifically, Met, Val,

and Trp have similar proportions across all five localiza-

tions in single residue composition. The small differences

in single amino acid composition for these residues are

amplified by examining the gapped-dipeptide signature

compositions and thus, they can be used for predicting

localization site in a discriminative manner. We further

analyze the correlation between single amino acid and

gapped-dipeptide signature compositions by the Pearson

correlation coefficient whose definition for a series of n

measurements of variables X and Y is as follows:

rxy ¼ n
P

xiyi �
P

xi
P

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

xi2 �
P

xið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

yi2 �
P

yið Þ2
q ð17Þ

The Pearson correlation coefficient (r) between the two

compositions (single residues vs. gapped dipeptide signa-

tures) for CP, IM, PP, OM, EC, and all localization sites

are 0.29, 0.50, 0.41, 0.07, 0.50, and 0.36, respectively. The

correlation for all localization sites is medium (in range

0.30–0.49).48

In summary, the gapped-dipeptide signatures predicted

by PSLDoc can (1) successfully capture the compositional

bias inherent at the single residue level, and (2) better

resolve ambiguity in discriminating amino acid composi-

tions for each localization site.

The physicochemical preference of gapped-
dipeptide signatures

To further analyze the physicochemical preference of

gapped-dipeptide signatures, each amino acid is classified

into one of the four groups: nonpolar (AIGLMV), polar

(CNPQST), charged (DEHKR), and aromatic (FYW).

Figure 12 shows the grouped amino acid compositions of

single residues and gapped-dipeptide signatures for each

localization class. The grouped amino acid composition

of single residues for each localization site has very simi-

lar preferences, but different preferences are observed for

gapped-dipeptide signature composition. For example, in

Figure 12(A), IM, PP, OM, and EC have similar distribu-

Figure 12
The amino acid compositions of single residues (A) and predicted gapped-

dipeptide signatures (B) for each protein class distinguished by the localization

site. Localization sites: CP, IM, PP, OM, and EC. Amino acid groups: N

(nonpolar: AIGLMV); P (polar: CNPQST); C (charged: DEHKR); and A

(aromatic: FYW).
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tion, but in Figure 12(B), each localization has distinct

distribution of grouped amino acid composition. This

also lends support to the second point in the previous

section, that gapped-dipeptide signature can better

resolve ambiguity in discriminating amino acid composi-

tions for each localization. Furthermore, our analysis

shows that the amino acid compositions of the predicted

gapped-dipeptide signatures exhibit some over-repre-

sented patterns for a particular compartment.

Gapped-dipeptide signatures predicted for CP, IM, and

EC classes have distinct preferences for different groups

of amino acids, possibly reflecting the physicochemical

constraints imposed by the environment of a subcellular

compartment. In particular, the signatures predicted for

IM has a high percentage of nonpolar amino acids

(60%) and no charged (0%) amino acids. This can be

explained in terms of the physicochemical properties of

the lipid bilayer, in which nonpolar amino acids are

favored in the transmembrane domains of IM proteins.49

In contrast, charged amino acids are disfavored due to

the penalty incurred in energy terms during the assembly

of IM proteins.50 CP and EC classes are found to con-

tain a high percentage of charged and polar amino acids,

respectively. The role of charged amino acids in the cyto-

plasm is probably related to pH homeostasis in which

they act as buffers, whereas secreted proteins in the EC

classes may require more polar amino acids for promot-

ing interactions in the solvent environment.51

Although gapped-dipeptide signatures are found,

PSLDoc performs training and testing procedures solely

based on the topics of the PLSA model. In addition, Hof-

mann41 also noted that PLSA can capture the semantic

meaning of words, in our case, the gapped-dipeptides.

This part will be discussed in the following section.

PSLDoc’s capability to solve the polysemy of
gapped-dipeptides

In document classification, a word with two different

meanings is called polyseme [e.g., ‘‘bank’’ means (i) an

organization that provides various financial services or

(ii) the side of a river]. Hofmann mentioned PLSA could

deal with polysemy and gave an example about the word

‘‘segment’’ [(i) an image region or (ii) a phonetic seg-

ment].41,52 Such a word w would have a high probabil-

ity in two different topics. The hidden topic variable,

P(w|z), associated with each word occurrence in a partic-

ular document is used to determine which particular

topic w is assigned to, depending on the context of the

document. Sivic et al.53 applied PLSA to images and dis-

cussed the polysemy on images. We discuss the polysemy

effect on gapped-dipeptides.

A gapped-dipeptide may prefer two localization sites,

e.g., ‘‘A6A’’ prefer CP and PP in Table VII. It is some-

times difficult to determine the localization site of a pro-

tein based on the weight of a polysemous gapped-dipep-

tide. PLSA can be used to remedy the polysemy effect of

a gapped-dipeptide by associating the gapped-dipeptide

with different topics. For example, ‘‘A6A’’ is among the

top five frequent dipeptides of Topic 73 in CP and Topic

6 in PP that their probabilities P(w|z) are sorted in a

decreasing order as shown in Table VIII.

For example, two proteins from PS1444 data set, che-

motaxis protein cheZ and Endoglucanase B,** contain

subsequences of the polysemous gapped-dipeptide ‘‘A6A.’’

They are in different classes, CP class and PP class,

respectively, and some of their relevant information is

listed in Table IX. Using the original vector space, the

two proteins have P{w 5 ‘‘A6A,’’ d44} 5 0.7001 and P{w

5 ‘‘A6A,’’ d680} 5 0.651, which differ slightly, and thus it

is difficult to distinguish them. However, using the poste-

rior probabilities of Topic 73 and Topic 6, given the dif-

ferent occurrences of ‘‘A6A’’ based on the PLSA reduced

vector space can distinguish the two proteins and deter-

mine their classes. That is, since (P{z73|w 5 ‘‘A6A,’’ d44},

P{z6|w 5 ‘‘A6A,’’ d44}) 5 (0.0794, 0.0) and (P{z73|w 5
‘‘A6A,’’ d680}, P{z6|w 5 ‘‘A6A,’’ d680}) 5 (0.0, 0.0596), and

Topics 73 and 6 are associated with different classes,

the proteins d44 and d680 can be distinguished to be in

CP and PP classes. This example demonstrates PLSA’s

capability to remedy the polysemy effect of gapped-

dipeptides.

CONCLUSION

We present a new PSL prediction method, PSLDoc,

based on gapped-dipeptides and PLSA, and demonstrate

that it is suitable for proteins of a wide range of sequence

homologies. PSLDoc extracts features from gapped-

dipeptides of various distances, where evolutionary infor-

mation from the PSSM is utilized to determine the

weighting of each gapped-dipeptide such that its per-

formance is comparable to the homology search method

in the high-homology data set. These features are further

reduced by PLSA and incorporated as input vectors for

SVM classifiers. PSLDoc performs very well in low-

homology data set with overall accuracy of 86.84%. It

Table VIII
‘‘A6A’’ is Among the Top Five Frequent Gapped-Dipeptides of Topic 73 and Topic

6, Where Gapped-Dipeptides Are Arranged to the Decreasing Order of P(w|z)

Topic 73 Topic 6

A6A A10A
A13A A11A
A7A A6A
A10A A12A
A11A A3A

**Chemotaxis protein cheZ and Endoglucanase B are 44th and 680th proteins in

PS1444, respectively. We use d44 and d680 to denote them for ease.
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can also achieve very high precision by using a flexible

prediction threshold. Experiments show PSLDoc per-

forms better than some of the current methods in overall

accuracy by 1.51%. Because of the generality of this

method, it can be extended to other species or multiple

localization sites in the future. Through analyzing the

amino acid composition of gapped-dipeptide signatures,

there is a relationship between the amino acid group and

localization sites. For future work, we will incorporate

the amino acid groups with gapped-dipeptides to design

a new representation of terms for predicting protein sub-

cellular localization.
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