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Identification of Time-Varying Autoregressive
Systems Using Maximum a Posteriori Estimation

Tesheng Hsiao, Member, IEEE

Abstract—Time-varying systems and nonstationary signals
arise naturally in many engineering applications, such as speech,
biomedical, and seismic signal processing. Thus, identification
of the time-varying parameters is of crucial importance in the
analysis and synthesis of these systems. The present time-varying
system identification techniques require either demanding com-
putation power to draw a large amount of samples (Monte
Carlo-based methods) or a wise selection of basis functions
(basis expansion methods). In this paper, the identification of
time-varying autoregressive systems is investigated. It is formu-
lated as a Bayesian inference problem with constraints on the
conditional and prior probabilities of the time-varying parame-
ters. These constraints can be set without further knowledge about
the physical system. In addition, only a few hyper parameters
need tuning for better performance. Based on these probabilistic
constraints, an iterative algorithm is proposed to evaluate the
maximum a posteriori estimates of the parameters. The proposed
method is computationally efficient since random sampling is no
longer required. Simulation results show that it is able to esti-
mate the time-varying parameters reasonably well and a balance
between the bias and variance of the estimation is achieved by
adjusting the hyperparameters. Moreover, simulation results
indicate that the proposed method outperforms the particle filter
in terms of estimation errors and computational efficiency.

Index Terms—Maximum a posteriori estimation, time-varying
autoregressive model, time-varying system identification.

I. INTRODUCTION

P ARAMETRIC representations of time-varying systems
and nonstationary signals are encountered frequently in

various engineering applications. For example, the transitions
between phonemes in speech can be modeled as time-varying
autoregressive-moving-average (TV-ARMA) systems [1];
the joint effects of multipath fading channels and Doppler
shifts in spread-spectrum communications are characterized
by time-varying autoregressive (TVAR) systems [2]; in the
study of seismic structural damage, the earthquake time his-
tories are generated by TVAR models [3]; the event-related
synchronization/desynchronization (ERS/ERD) of alpha waves
of electroencephalogram (EEG) is nonstationary and is repre-
sented by a TVAR model [4]. Thus, the need for identifying the
time-varying system parameters arises naturally in these areas.
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System identification is the process of estimating parameters
from the input and output data. However, most system iden-
tification techniques are developed for linear time-invariant
(LTI) cases [5], [6] whereas there are relatively few studies on
time-varying system identification.

The present time-varying system identification techniques
can be classified into three categories. The first class of tech-
niques is a natural extension of the well-known recursive
algorithms, such as the recursive least square (RLS) algorithm.
It takes advantage of the self-tuning properties of adaptive
filters to estimate time-varying parameters. Since adaptive
filters are designed for the purpose of online parameter esti-
mation [7], the instantaneous value of each parameter can be
identified based on the most recent input–output data, while
the “old” data are discarded by incorporating the “forgetting
factor” into the adaptive algorithms. Nishiyama proposed an

optimization method to find out the “best” forgetting factor
[8]. Carlos and Bershad analyzed the statistical behavior of
the finite precision least mean square (LMS) adaptive filter for
identification of a time-varying system [9]. However, adaptive
filters can only trace “slowly-varying” parameters. For rapidly
changing parameters, the performance is unsatisfactory.

In general, the identification of LTI systems’ parame-
ters is formulated as an overdetermined problem. Then, the
least-square solution is the optimal estimate of the parameters
in the sense of minimum residual energy. However, if the pa-
rameters vary with time, the problem becomes underdetermined
and it is much more difficult to find out the “best” solution.
The second class of time-varying system identification tech-
niques resolves the underdetermined problem by expanding
the time-varying parameters as a linear combination of a set
of basis functions. Consequently, the unknown variables to
the identification problem are transformed from a larger set of
time-varying parameters into a smaller set of constant coeffi-
cients of the basis functions. Hence, the problem is solvable.

The basis functions have significant effects on the smooth-
ness and variation speeds of the estimated parameters; however,
the selection of the basis functions is application dependent and
is not trivial. Commonly used basis functions include Legendre
polynomials which form an orthogonal set [1], prolate sphe-
roidal sequences that are the best approximation to bandlimited
functions [10], wavelet basis, which has a distinctive property of
multiresolution in both time and frequency domains [11], [12],
and discrete cosine transform (DCT) that is close to the optimal
Karhunen–Loeve transform [13]. Besides, regulation conditions
can be easily imposed on the Fourier basis by suppressing the
high-order harmonics [14]; the algebraic properties of the “com-
plete shifted polynomials” (such as Chebyshev, Legendre, and
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Laguerre polynomials) were investigated in [15] and an isomor-
phic matrix algebra-based method was proposed.

Additional constraints on the basis functions have been
considered by other researchers. For example, Tsatsanis and
Giannakis require linear independence of the “instantaneous
correlation” of the basis functions [16]. They proposed a
two-step method that estimates the correlations of the con-
stant coefficients first and then extracts the coefficients by the
subspace identification method. On the other hand, Kaipio
and Karjalainen proposed a principal-component-analysis
(PCA)-type approximation scheme to select the “optimal basis”
[4]. The mutual correlations of the coefficients are also taken
into account in their approach.

The basis expansion methods have been widely applied to
solve various engineering problems. Eom [13] expanded a
TVAR model over a set of DCT bases to analyze and classify
acoustic signatures of moving vehicles. The extrema points
of contours of planar shapes can be detected more accurately
by expanding the TVAR parameters of the contours over a set
of discrete Fourier transform (DFT) bases [14]. The accuracy
of classifying high-range resolution (HRR) radar signatures is
enhanced by means of TVAR models [17].

The last class of time-varying system identification tech-
niques is based on Monte Carlo methods [18], [19] or particle
filters [20]. The time-varying parameters are regarded as
random variables and a large number of samples of each
parameter are drawn with respect to the corresponding prob-
ability distributions. Then, the sample means are calculated
as approximations to the parameters. According to the law of
large numbers, the sample mean approximation approaches
the true parameter provided that the number of samples is
sufficiently large. Moreover, particle filters make it possible to
implement the Monte Carlo approximation online. The Monte
Carlo methods have the potential to solve the underdetermined
problem without worries about the selection of basis functions;
however, the computation power is very demanding and the
computation time increases dramatically as the length of data
increases.

There are still other time-varying system identification
methods that do not belong to any of the aforementioned
classes. For example, Bravo et al. proposed a set membership
method to estimate time-varying parameters with guaranteed
error bounds [21]. Gemez and Maravall explored the state space
representation of the autoregressive-integrated-moving-average
(ARIMA) models with missing observations. Then, Kalman
filters were applied to estimate, predict, and interpolate the
nonstationary data [22].

It can be seen from the previous discussion that each time-
varying system identification method has its own strength and
weakness. The advantages of adaptive filters are their solid and
well-developed theoretical foundations. Thus, the performance
and limits are predictable. However, the applications are re-
stricted to slowly varying systems. On the other hand, the basis
expansion approaches are able to trace rapidly changing param-
eters provided that appropriate basis functions are used. Unfor-
tunately, there is no systematic way to achieve this goal. The
Monte Carlo methods can also identify a wide range of classes
of time-varying parameters by adjusting the underlying proba-

bilistic assumptions. However, the algorithms tend to be com-
putationally inefficient, especially when the “acceptance rate”
of the Monte Carlo sampler is low [23].

A novel TVAR system identification method is proposed
in this paper. The identification problem is formulated in a
Bayesian inference framework which evaluates the posterior
probability of the parameters, conditioning on the output data.
Unlike Monte Carlo-based approaches, the proposed method
searches the maximum of the posterior probability successively
along each coordinate axis of the parameter space in an efficient
way. Therefore, the time-consuming random sampling process
of the Monte Carlo-based methods is avoided. Simulation
studies at the end of this paper demonstrate the advantages
of the proposed method over the particle filter in terms of
computational efficiency and estimation accuracy. Compared
with the basis expansion approaches, the proposed method can
be easily and quickly implemented since additional constraints
in the Bayesian inference framework are imposed “naturally”
to facilitate the computation. Moreover, only a few hyperpa-
rameters need tuning in order to achieve a balance between the
bias and variance of the estimation.

This paper is organized as follows. The formulation of the
TVAR system identification problem as well as the probabilistic
assumptions is presented in Section II. The iterative proce-
dure for maximizing the posterior probability is proposed in
Section III. Simulations are conducted in Section IV. Section V
concludes this paper.

II. PROBLEM FORMULATION

A. TVAR Systems and Assumptions

An th order time-varying autoregressive system can be ex-
pressed as follows:

(1)

where is the output sequence and is the process
noise. is assumed to be a zero mean Gaussian distributed
white noise with variance for all . ’s are the system
parameters to be estimated.

Suppose that the order is known and a set of -point
output data
has been collected. System identification concerns the problem
of estimating the parameters , , and

from the set of output data. Unfortunately,
solving (1) for all ’s directly is difficult, if not impossible,
since it is an underdetermined problem; moreover, the process
noise and its variance are unknown.

There are two ways to tackle the underdetermined problem.
One is to reduce the number of unknown variables while the
other is to impose more constraints on the parameters. Basis
expansion approaches belong to the former. If the parameters

’s are expanded over a set of basis functions, the unknown
variables of the identification problem are reduced to a smaller
set of constant coefficients of the basis functions. However, dif-
ferent basis functions result in different estimates of the param-
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eters and the selection of the “optimal” basis functions is not
trivial.

On the other hand, additional constraints can be explicitly
imposed on the parameters ’s. To set up these additional
constraints, each is treated as a random variable. Then,
Bayesian inference provides a framework for imposing con-
straints on random variables in the form of conditional distri-
butions and prior distributions [24], [25]. The posterior proba-
bility derived from Bayes’s theorem [24] is a candidate of the
optimum criterion for the choice of the best estimates of ’s.
In order not to cause confusion about the notations in use, from
now on, let denote a random variable while is the in-
stance of that satisfies (1) (i.e., holds the true value
of the TVAR system’s parameter), given the set of output data

.
Since all ’s are random variables, their probability dis-

tributions, either joint probabilities or conditional probabilities,
need to be specified as parts of the Bayesian inference frame-
work. If the differences of ’s at two consecutive time steps
do not vary significantly (i.e.,

is not too large), it is rea-

sonable to assume that stays in an “equal-sized” neigh-
borhood of for all . Therefore, the following assumptions
are made:

(2)

(3)

(4)

where denotes the Gaussian distribution with mean
and variance . denotes that and

are independent. ’s and ’s in (2) and (3) are parameters of
Gaussian distributions. ’s are also regarded as random vari-
ables and are endowed with their own probability distributions.
Detailed discussions will be given in the remainder of this sec-
tion.

Remarks:
1) Equations (2) and (3) assume that is around .

The smaller is, the more likely that is close to
. These assumptions are not very restrictive because

no direction preference of is implied by (2) and
(3) (i.e., may be either larger or smaller than

with equal probability). Hence, the fast variation of
is allowed under these assumptions. However, these

assumptions do require that all ’s,
vary in a “uniform” way (i.e., ), because the

variances in (2) and (3) are the same for all .
2) It is arguable that the independency assumption of (4) is

valid since intercorrelations among parameters may be sig-
nificant in some physical systems. However, the assump-
tion of (4) considerably simplifies the Bayesian inference
and results in an elegant algorithm. In addition, simulations
in Section IV show that even though the parameters are in-
tercorrelated, the algorithm based on the independency as-
sumption of (4) still yields a satisfactory result.

Although additional constraints are imposed on ’s by
(2)–(4), new parameters ’s and ’s are introduced. Since
there is no clue about the values or ranges of ’s, they are as-
sumed to be random variables and, thus, a hierarchical struc-
ture of random variables is established [24]. The probability
distributions of ’s, called the prior distributions, reflect the
designer’s subjective belief in ’s and are somewhat arbitrary.
For example, the Jeffrey’s prior is said to be noninformative,
representing a lack of prior knowledge about ’s. On the other
hand, conjugate priors simplify the mathematical expression of
the posterior probability density function [24].

It will be clearer later that the subsequent derivations become
much easier if the prior distributions are assigned to ’s, in-
stead of ’s. It is assumed that has a conjugate prior dis-
tribution of Gaussian distribution (i.e., the Gamma distribution)

(5)

where , , , and are the Gamma
function.

Again, new parameters ’s and ’s are introduced in (5).
They are called hyperparameters because they are parameters
of the prior distributions. We can construct a new layer of hi-
erarchy for ’s and ’s by treating them as random variables
and assign probability distributions to them. This will, in turn,
introduce more hyperparameters in the distributions of ’s and

’s. The same procedure can be repeated as many times as we
want since there is no limit on the number of hierarchies that can
be built in the Bayesian framework; however, there is no benefit
in using a complicated hierarchic structure. Therefore, ’s and

’s will not be modeled as random variables. Instead, specific
values will be assigned to them.

Similarly, is treated as a random variable and is as-
sumed to be Gamma distributed, i.e.,

(6)

where the hyperparameters and will be assigned specific
values.

Equations (5) and (6) assign prior distributions to
and , respectively; however, the relationship among these
random variables in terms of joint probabilities or conditional
probabilities remains unspecified. It is reasonable to assume
that and are mutually independent. Thus, we have

(7)

(8)

The parameters ’s introduced in (3) are the means of
’s. Since we have assumed that the variances of

conditioning on are the same for all , the values of
’s can be inferred from and/or . In order not to

introduce more parameters into the probabilistic assumptions,
’s are assumed to be deterministic parameters whose values

will be determined later.
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Remark: Equations (2)–(8) constitute the additional con-
straints that are imposed on the TVAR system’s parameters.
Then the posterior probability of conditioning on
will be derived from these constraints and serve as an optimum
criterion for the evaluation of the best estimate of . Note
that it is possible to make other sets of assumptions other
than (2)–(8). For example, Godsill and Clapp assumed that
the process noise is nonstationary and the conditional
distribution of its variance satisfies the following [20]:

(9)

where . In addition, the conditional distri-
butions of parameters are assumed to be

where . The hyperparameters , , and are con-
stants with prespecified values. In comparison with (6), (9) takes
into account the nonstationary property of the process noise.
However, more random variables (i.e., ’s), are introduced,
resulting in a more complicated algorithm and more demanding
computation.

B. Posterior Probability

First, the following vector notations are defined for easy ref-
erence later:

where denotes a diagonal matrix whose diagonal ele-
ments are listed inside the parentheses. In addition, and
denote the true and estimated values of , , respec-
tively. Similarly, and denote the true and estimated values
of , respectively.

In this subsection, we are going to derive the posterior prob-
ability density function based on the TVAR system (1)
and assumptions of (2)–(8). Then, the optimal estimate of will
be the one that maximizes the posterior probability .

The posterior probability density function can be
marginalized from , which by Bayes’s the-
orem is

(10)

According to the assumption of (8) and the fact that is
white noise, the first term on the right-hand side of (10) is

Equations (2)–(4), (7), and (8) give the expression of the
second term on the right side of (10)

Assumptions about the prior distributions [(6) and (8)] yield
the following expression of the third term on the right-hand side
of (10):

Therefore, (10) becomes
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Marginalizing this density function (i.e., integrating out
and ’s), gives the desired posterior probability density func-
tion . Namely

The integrations are carried out by repeatedly applying inte-
gration by parts. By straightforward calculation, the posterior
probability density function is

(11)

where

(12)
and

(13)

and . The hyperparameters
and ’s are chosen such that , for

in order to facilitate the maximization process later [see
the remark after (18)].

Various optimum criteria can be established based on the pos-
terior probability . For example, the conditional expected
value is known to be the minimum variance estimate of

. On the other hand, the maximizer of is another optimal
estimate of in the sense that it holds the most likely value of

conditioning on the output data. The maximum a posteriori
estimate will be investigated in the next section.

Remark: Stability of the estimated system is not guaranteed
under current problem setting and assumptions. Actually, the
notion of stability of time-varying systems is very subtle. It
cannot be easily checked from its parameters or instantaneous
pole locations. The condition that all poles reside inside the unit
circle at each time step does not guarantee stability of the linear
time-varying system. Detailed discussions about the stability of
time-varying systems can be found in [26].

III. MAXIMUM a Posteriori ESTIMATION

A. Iterative Update of the MAP Estimate

It is well known that the conditional expected value
is the minimum variance estimate of given . However,
the closed form of this conditional mean is not available in
view of the complicated structure of the posterior probability

(11)–(13). Many researchers have applied the Monte
Carlo method or its variants to evaluate the conditional mean
numerically. However, drawing a large amount of samples of ,
which is a necessary step for all Monte Carlo-based methods,
from complicated density functions such as (11)–(13) is time
consuming. Its efficiency deteriorates as the length of data
increases. To get rid of the inefficient sampling process, this
paper evaluates the maximum a posteriori (MAP) estimate
of .

The MAP estimate, denoted by , is the maximizer of
the posterior probability density function (i.e.

). The reason to choose as an estimate of

is that it is the most likely value of given the observed output
. Since maximizes , the first derivative of

must vanish at , i.e.,

and

(14)
Equation (14) consists of nonlinear equations and it

is intractable to solve these equations simultaneously to obtain
. Instead, an iterative procedure is proposed that manipu-

lates one variable at a time and lets all of the others hold their
values from the previous iteration. Suppose that
is obtained as an approximation of at the th iteration.
Then, the elements of are updated one by one into .
For each update, only one variable in one equation of (14) needs
to be taken care of; hence, the complexity of the problem is re-
duced. The procedure goes on iteratively in a way that drives

to the local maximum of as approaches infinity.
For easy reference, let us define the permutation function

which permutes in the order that is
updated, namely

Let denote the th element of . It is clear
from the definition of that . Besides, let

be a subvector of
for .

Suppose that at the th iteration, is going to be updated
for some , . in (11)–(13) is rewritten as a function of
that single variable . Hence (13) becomes

(15)
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where and for

(see the equation shown at the bottom of the page).
Equation (12) becomes

(16)

where

and

Note that if , and are not well defined.
But in this case, is independent of (12) and be-
comes a constant with respect to . In other words

Thus, define whenever
.

Substituting (15) and (16) into (14), we have

(17)

for and .
By straightforward calculation, (17) is equivalent to

(18)

In (18), the subscript and the time index of , ,
, , and are dropped in order for a simple expres-

sion. Note that the left-hand side of (18) is a third-order polyno-
mial. At least one of its three roots must be real and these roots
can be found analytically without applying numerical methods;
thus, the calculation of the roots can be accomplished efficiently.

Remark: Now it is clear to see why we choose and
such that . By doing so, the
maximization process is reduced to the problem of solving the
roots of a third-order polynomial. Otherwise, time-consuming
numerical methods would be required to find out the maximizer
of and the resulting algorithm loses its computational
efficiency.

Let , be the real solutions to (18) at the th
iteration. If

(19)

then take as an estimate of . The maximization process of
(19) just compares, at most, three values and picks up the largest
one. Therefore, it can be done very quickly.

At each iteration, (18) and (19) are solved successively for
and . When is updated,

other random variables , and hold their
most recent values. The operations performed at each iteration
are summarized in Algorithm I.
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Algorithm I: MAP estimate

Given hyperparameters , , and , , let
be the estimate of obtained at the th iteration.

At the th iteration

For {

For {

Step 1) Calculate and in

.

Step 2) If ,

and go to Step 7)

else go to Steps 3)–7).

Step 3)

Step 4) Calculate and in

Step 5) Find , , the real solution(s)
to (18).

Step 6) Find in (19).

Step 7) }

}.

Algorithm I is a “coordinate climbing” maximization proce-
dure. moves toward the maximal point along each coordi-
nate axis of the parameter space. For each move, (19) guarantees
that reaches the maximal point along the axis of ; thus,

is nondecreasing as increases. This can be shown
easily as follows:

Since is nondecreasing and is upper
bounded, it follows that converges to the local
maximum of . Note that is the global maximum
of ; however, the proposed method only guarantees
reaching the local maximum.

B. Selection of the Hyperparameters

Algorithm I illustrates an iterative method to approximate the
MAP estimate asymptotically, given the prespecified hyperpa-
rameters , ’s, and ’s. This subsection explores the issue
of setting up these hyperparameters.

is the mean of (3). It is unknown and needs es-
timating. Therefore, is set as its maximum-likelihood esti-
mate . In other words, the first derivative of the log-likeli-
hood function , with respect to , must vanish at

. Here, is written explicitly as an argument of
to emphasize that it is the argument of the maximization.

The first derivative of the log-likelihood function is

Thus, . Since is unknown, it is replaced
by the estimated value at the th iteration. Then,
is updated along with .

Now consider the values of hyperparameters and ’s.
First, let us rewrite the TVAR system’s equation and

[i.e., (1), (12), and (13), respectively] in terms of the ma-
trix notations defined in Section II-B

(20)

(21)

(22)

where is an tridiagonal matrix

...
...

. . .
. . .

. . .
...

From (20)–(22), (14) is equivalent to

(23)
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Fig. 1. Second-order AR system. (a) Pole locations. (b) a (k). (c) y(k). (d) a (k).

where . and ,
, denote the MAP estimates of and ,

respectively.
Then, and ’s are chosen to simplify (23). Let

(24)

(25)

where is a positive real number which will be determined
later and

Define the parameter estimation error of and
to be

(26)

Substituting (24)–(26) into (23) and rearranging the equation,
we end up with

(27)
Combine (27) for all in a matrix form. Then

...
...

...
. . .

...

...
(28)

Equation (28) gives the error of the MAP estimate provided
that and ’s follow (24) and (25).

’s in (25) affecting the bias and variance of the estimated
parameters. This is because large leads to small (25),
which, in turn, introduces a “flat” distribution of (5). Con-
sequently, it is likely that is very small and, therefore,
is confined to a small neighborhood of . In other words,
the estimated parameters have a smooth fluctuation but are not
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Fig. 2. Estimated parameters at various iterations. Left column K = 0:13038 and K = 0:52606. Middle column K = 1:3038, K = 5:2606. In the
right column, K = 13:038 and K = 52:606. The solid line (-) indicates true parameters. The dashed line (--) indicates the 500th iteration. The dotted line (.)
represents the 1500th iteration and the dashed–dotted line (-.) is the 5000th iteration.

able to trace large variations of the true parameters. Hence, the
bias is large.

It is not easy to find “optimal” ’s that achieve multiple con-
flicting goals, such as fast convergence, small bias, and small
variance of estimation; however, (28) suggests the following
rule of thumb in selecting ’s. Namely choose ’s such that
the norm of the right-hand side of (28) is as small as possible.
The minimal 2-norm of takes place
whenever is the orthogonal projection of
in the direction of . Hence

(29)

Note that (29) is not an optimal choice of in any sense.
However, it is the author’s experience that such a choice gives
rise to satisfactory results. Simulations in the next section verify
this point of view.

Equation (29) requires the values of true parameters and
the process noise . Both of them are not available. Therefore,
they can be replaced by their respective estimated values as
follows:

where is the estimate of at the th iteration while
is the estimate of at the th iteration. How-

ever, it has been found that frequent updating of may de-
teriorate the performance. In this case, is updated every
iterations, where is sufficiently large such that has con-
verged within iterations.

IV. SIMULATIONS

In order to investigate the strengths and weaknesses of the
proposed method, it is desirable to compare the performance
of Algorithm I with those of other methods. However, it is be-
yond the scope of this paper to conduct a comprehensive test of
all kinds of time-varying system identification techniques. Sim-
ulations have been conducted to show that the RLS algorithm
(with forgetting factors) results in unsatisfactory performance in
the case of fast-varying systems while Algorithm I still works
properly; however, the comparisons with the RLS algorithm are
skipped in this paper due to the limited space. Instead, a particle
filter [27] is implemented in this section as a comparison of Al-
gorithm I. Particle filtering is chosen because it also belongs to
the category of stochastic methods; hence, the comparison can
be made on a fair basis. Both Algorithm I and the particle filter
are implemented by C++ language and executed on the same
personal computer (with a 3-GHz Pentium 4 CPU). The execu-
tion time and estimation errors of both methods are presented
for comparison.
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Fig. 3. Convergence of the estimation errors of a (k) as the algorithm iterates for various K . The solid line (-) represents K = 0:13038. The dashed line (--)
is K = 1:3038. The dotted line (.) is K = 13:038.

In this section, we consider a time-varying second-order AR
system

(30)

where is a zero mean white Gaussian noise with stan-
dard deviation . Let the system’s instantaneous poles
be . Let and

. Thus,
and . Note that in this case, and are
not independent, which violates the assumption of (4). However,
the simulation results show that the Algorithm I still yields sat-
isfactory estimation. The pole locations , parameters
and , and the output are shown in Fig. 1 for

.
If this system is regarded as time invariant, the least-square

estimates are and .
Clearly, the least-square estimates are not able to capture the
time-varying features of the AR system. Nevertheless, they can
serve as the initial guesses of Algorithm I and the particle filter.

Before implementing Algorithm I and the particle filter, we
explain why the Markov Chain Monte Carlo (MCMC) method
is not recommended in this case. A crucial step of the MCMC
method is to draw samples of the unknown parameters in a del-
icate way such that the probability distribution of these samples
asymptotically approaches the desired posterior probability.
However, it is not an easy task to design an efficient sampler
due to the complexity of (11)–(13). The Gibbs sampler [23]
is widely used in the case that the dimension of the parameter

space is high. Then, samples of each are drawn based on
the conditional probability proportional to [(15) and
(16)]. This can be achieved by drawing samples from (or

) directly and (or ) plays the role of the importance
function [28]. However, as the length of the data increases, the
high-probability regions of and diminish and do not
overlap, which makes the importance sampling inefficient. Due
to its low efficiency, the MCMC method will not be applied in
this section.

A. Simulation Results of Algorithm I

For simplicity, fixed-value ’s are used in this section. Three
sets of and are selected to investigate their effects on es-
timation errors. According to (29), and

. The values of the other two sets of and are
chosen to be the 10 and 1/10 times of the first set, respectively.
Then, Algorithm I is applied to estimate and for

. The results are shown in Fig. 2. The estima-
tion errors of and at nine selected time points for
various iterations are shown in Figs. 3 and 4, respectively. These
figures illustrate the convergence rate of Algorithm I.

It is clear from the simulation that larger and result in
smaller variations among the estimated parameters and slower
convergence rate. If and are too large, the estimated pa-
rameters are nearly constant for all . This observation coin-
cides with the discussion in Section III-B. It is also observed
that the values of ’s suggested by (29) yield satisfactory re-
sults in terms of bias and variance of the estimation (see the
middle column of Fig. 2).
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Fig. 4. Convergence of estimation errors of a (k) as the algorithm iterates for various K . The solid line (-) indicates K = 0:52606. The dashed line (--) is
K = 5:2606. The dotted line (.) is K = 52:606.

TABLE I
SIMULATION RESULTS OF ALGORITHM I (AFTER 5000 ITERATIONS)

TABLE II
SIMULATION RESULTS OF THE PARTICLE FILTER

: Std denotes “standard deviation”

Simulation results are listed in Table I. The estimation error
is defined as , , 2. It can be seen that the

’s suggested by (29) result in the smallest errors.

B. Simulation Results of the Particle Filter

The particle filter implemented in this section consists of the
following steps.

Choose sample size and hyperparameters , , ,
2, and .

Given initial values of , , 2, and
.

For each , .

1) Draw samples of , , 2, and
.

2) Draw samples of , , 2;
.

3) .

4) Apply residual resampling if the effective sample size is
smaller than the prescribed threshold [29].

5) , , 2, and
.

6) The estimated parameter at time step is
, , 2.

The values of the hyperparameters are set to be the same as
those in the Algorithm I (i.e., , ,

, and corresponding to
and ) [(24) and (25)]. Note that uncertainty exists
in the estimates of the particle filter. Hence, for each sample size

, we run the particle filter ten times. The average execution
time for each run, and the mean and the standard deviation of
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Fig. 5. Estimated parameters for various sample sizes. Left column M = 1; 000. Middle column M = 10;000. Right column M = 100;000. Upper row a .
Lower row a . The solid line (-) represents true parameters. The dashed line (--) indicated estimated parameters. The dotted line (.) is the standard deviation of the
estimated parameters.

the estimation errors are listed in Table II. Fig. 5 shows the true
and estimated parameters.

C. Discussion

It can be seen from Table II that an increase of the sample size
reduces the variances of the estimation errors, but has minor ef-
fects on the average estimation errors. Comparing the results in
Tables I and II, we found that Algorithm I achieves smaller esti-
mation errors with less computation power. Moreover, the result
of Algorithm I is deterministic (i.e., the same MAP estimate is
obtained for every run provided that the same hyperparameters
are used). On the other hand, the particle filter can perform on-
line estimation of the parameters but the result is uncertain. A
large sample size reduces the uncertainties; however, more com-
putation power is required.

V. CONCLUSION

In this paper, the problem of identifying time-varying pa-
rameters of autoregressive (AR) systems was investigated. It
was formulated as a Bayesian inference problem with additional
constraints imposed on the parameters in the form of condi-
tional and prior probabilities. These constraints represent the
objective knowledge or the subjective belief about the physical
system; however, the conditional Gaussian distributions and the
corresponding conjugate priors arise naturally if little about the
system is revealed.

Based on the probabilistic assumptions, an efficient iterative
algorithm was proposed to evaluate the maximum a posteriori
(MAP) estimates of parameters. Simulation results showed that
the proposed method has satisfactory performance. Compared
with the particle filter, the proposed method achieved smaller
estimation errors with less computation power.

In this paper, the order of the AR system is assumed to be
known in advance. In reality, this information is usually not
available. Determining the order of the identified system is
called “model selection” in system identification literature. Cri-
teria, such as Akaike’s Information Criterion (AIC), Bayesian
Information Criterion (BIC), and final prediction error (FPE),
have been proposed for linear time-invariant systems [5], but
the model selection for time-varying systems remains an open
question. Although the order of the time-varying system can
be roughly estimated by the aforementioned criteria, assuming
temporarily that the system is time invariant, there is no guar-
antee that the correct model will be selected. Model selection
for time-varying systems will be a future research topic.

In addition to the AR model, there are many other parametric
representations of systems, such as ARX and ARMAX models
[5]. In these cases, the “amount of information” contained in the
input signal becomes an issue. If the information is not “rich”
enough, only parts of the system’s characteristics will be acti-
vated. However, a rigorous presentation of the identifiability of
the time-varying system and the relation to the properties of the
input–output signals requires more research effort in the future.
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