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A method is presented for accurately determining the natural frequencies of plates having V-notches
along their edges. It is based on the Ritz method and utilizes two sets of admissible functions
simultaneously, which are (1) algebraic polynomials from a mathematically complete set of functions,
and (2) corner functions duplicating the boundary conditions along the edges of the notch, and
describing the stress singularities at its sharp vertex exactly. The method is demonstrated for free,
square plates with a single V-notch. The effects of corner functions on the convergence of solutions are
shown through comprehensive convergence studies. The corner functions accelerate convergence of
results significantly. Accurate numerical results for free vibration frequencies and nodal patterns are
tabulated for V-notched square plates having notch angle « = 5° or 30° at different locations and with
various notch depths. These are the first known frequency and nodal pattern results available in the
published literature for rectangular plates with V-notches.
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1. Introduction

Plates are widely used as structural elements throughout
engineering designs. Their vibrational behavior is of great interest,
especially the free vibration characteristics (natural frequencies
and their corresponding mode shapes). At least 2000 research
papers have been published on this topic. In his monograph on the
subject, Leissa [1] summarized the methods of analysis and
numerical results found in 500 references on the free vibration of
plates published before 1967. Since then, research and publication
on this subject has been at an increasing rate.

Among all the possible shapes of plates (rectangular, circular,
triangular, trapezoidal, etc.), the rectangular plate is of the
greatest importance and interest in vibration analysis. Approxi-
mately half of the 500 papers and reports described in Leissa’s
monograph were devoted to rectangular plates, and this appears
to be the case also for the numerous subsequent publications on
plate vibrations. There have been some vibration analyses of
rectangular plates having interior cutouts or holes (e.g., rectan-
gular or circular), and cracks or slits (internal or external). But, the
writers have found no publications that consider the effects of an
edge V-notch (Fig. 1). Such notches can appear, perhaps cut
intentionally in the plate for clearance or other reasons. The
interesting questions arise “What is the effect of an edge V-notch
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on plate frequencies and mode shapes? Can a shallow notch cause
significant changes in them?”

The present work demonstrates a method for analyzing the
free vibrations of plates with V-notches. It is presented in detail
for rectangular plates having a single V-notch, although it can be
used straightforwardly for other shapes of plates and in situations
where there is more than one V-notch on the periphery. The
method uses two types of functions simultaneously to describe
the transverse displacement of the plate during its vibrations: (1)
algebraic polynomials, which can form a complete set of
functions, and (2) corner functions, which duplicate the boundary
conditions along the edges of the notch, and describe the stress
singularities at its sharp vertex exactly. These two sets of
functions are used with the well-known Ritz method to obtain
accurate frequencies and mode shapes. The stress singularities at
sharp corners were first investigated by Williams [2], who
demonstrated the singularities and their strengths, and also
found the corresponding displacement eigenfunctions. These
eigenfunctions, which we call “corner functions”, were used,
along with suitable polynomials, to obtain accurate vibration
frequencies and mode shapes for sectorial plates [3] and circular
plates with V-notches [4].

The Ritz method is more suitable than a traditional finite
element approach for determining the natural frequencies and
mode shapes of thin plates with V-notches. The geometry of the
plate shown in Fig. 2 is quite simple, so that the area integration
used in the Ritz method is easy to set up. Based on the classical
thin plate theory, a finite element approach needs C! type
elements that are much more complicated than C° type elements
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Fig. 1. Rectangular plate with an edge V-notch.

a

Fig. 2. Dimensions and coordinates for a V-notched plate.

and are usually unavailable in a commercial finite element
computer program. If the first-order shear deformation plate
theory is used to analyze a thin plate problem in a finite element
approach, then the shear locking problem can be anticipated.

The analysis method for rectangular plates with edge V-
notches is laid out in the present work for arbitrary edge
constraints (i.e., clamped, simply supported or free). It is
demonstrated here by obtaining extensive results for frequencies
and mode shapes of free, square plates having various notch
angles (o), depths (d) and locations (c), described in Fig. 2. The
excellent accuracy of the results is shown by several tables of
convergence studies.

2. Analysis

The thin plate under consideration is a rectangular plate with a
V-notch whose vertex (notch) angle is « as shown in Fig. 2. In the
Ritz method, the maximum strain energy (Viax) and the
maximum Kkinetic energy (Tnax) for a plate vibrating harmonically
with amplitude W(x, y) and circular frequency « are the area
integrals [1]:

D
Vinax = j/ A[(W,xx + W,yy)2 -2(1 - U)(W,xxw,yy - (W,xy)z)] dA,
(1a)

2
Tmax:%//lqw2 dA. (1b)

where D, v and p are the flexural rigidity of the plate, Poisson’s
ratio and mass per unit area, respectively; and the subscript
comma denotes partial differentiation with respect to the
coordinates defined by the variables after the comma. The
vibration frequencies of the plate are obtained by minimizing
the energy functional

1= Vmax - Tmax- (2)

The admissible functions of the Ritz method must satisfy the
essential (i.e., geometrical) boundary conditions of the problem
under consideration. For a rectangular plate with a V-notch shown
in Fig. 2, the area integrations in Eqs. (1a and b) are easy to
perform in the Cartesian coordinate system. The admissible
functions for the transverse displacement are assumed as the
sum of two sets of functions:

W(x,y) = xy"(x — a)"(y — b)I[Wp(X.y) + W(r, 0)], (3)

where W, (x, y) consists of algebraic polynomials and is expressed
as

-1 J-1
Wpy)= > > apx'y (4)
i=0,1j=0,1
and W(r, 0) consists of corner functions that accurately describe
the singular behaviors at the vertex of a V-notch and also satisfy
the natural boundary conditions (i.e., zero bending moment and
effective shear force along the two edges of the V-notch).

In Eq. (3) lis 0,1 or 2, depending upon whether the edge x =0
is free, simply supported or clamped, respectively. Similarly,
choosing m, n and q either 0, 1 or 2 will result in the other edges
being free, simply supported or clamped.

Following the solution procedure given in Williams [2], which
showed the stress singularities occurring at the tip of a V-notch
when «<180°, one can find the corner functions W, for a corner
with two free edges expressed as

S 1|72 sin[(A, — 1)f/2] _
W2, (r,0) =t [4"/1 Sl +71)ﬁ/2] cos(/n + 1)0 + cos(/n 1)0},

(5a)

A gt [F2008[(Zn = DB/2] . - e }
Wa T 0)=r [—"71 cosiGn T 1f/2] sin(Z, + 1)0 + sin(4, — 1)0|,

(5b)

where 71 = (2;+1)(v-1), y2 = —Aa(v=1)+3+v, 71 = (o + D - 1),
Jy = —Jn(o = 1)+ 3 4+, f=2n—a and 2, and 1,, respectively, are
roots of the equations

Sin(nff) = ;—;Ezn sin (6a)
and

. 1—v. .
sin(Zpf) = — 3 sin . (6b)

Egs. (5a) and (5b) were developed by taking advantage of the
symmetry of the corner with two free edges. The superscripts “A”
and “S” in Egs. (5a) and (5b) denote antisymmetric and symmetric
corner functions, respectively. Accordingly, W(r, 0) in Eq. (3) may
be expressed as

N K
We(r,0) =" baWe,(r,0) + Y W4T, 0). (7)
n=1 k=1

The (r, 0) coordinate system is that shown in Fig. 2, where the
origin (O) of the coordinate system is at the vertex of the V-notch,
and the V-notch is symmetrical with respect to 60 = 0. If the
corners A and B in Fig. 2 are the intersections of two free edges, no
corner functions are needed at these points because these two
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Table 1
Convergence of frequency parameters wa?,/p/D for a free square plate

Mode no. Leissa [5] Filipich and Rosales [6] Order of polynomial (I x J) in present solution

3x3 4x4 5x5 6 x 6 7x7 8x8 9x9 10x 10
1 13.49 13.47 14.20 13.66 13.66 13.47 13.47 13.47 13.47 13.47
2 19.79 19.61 22.45 22.45 19.73 19.73 19.60 19.60 19.60 19.60
3 24.43 24.28 30.59 30.59 24.54 24.54 24.27 24.27 24.27 24.27
4 35.02 34.82 41.57 39.23 35.61 35.29 34.81 34.80 34.80 34.80
5 35.02 34.82 41.57 39.23 35.61 35.29 34.81 34.80 34.80 34.80

corner angles are less than 180° and all stresses are zero there
during the vibration. The relations between (x, y) and (r, 0)
coordinates are

r=[x-0®+(-y+b-d?"? (8a)

0 =tan"'[(x — ¢)/(—y + b — d)], (8b)

where b, ¢ and d are defined in Fig. 2.

Substituting Egs. (3), (4) and (6a and b) into Egs. (1a and b) and
(2) and minimizing the functional 1T with respect to the
undetermined coefficients a; b, and ¢ yields Ix] + N + K
algebraic linear equations for those undetermined coefficients,
which results in an eigenvalue problem with the eigenvalues
related to the natural frequencies of plate. To accurately solve the
eigenvalue problem, variables with 128-bit precision (with
approximately 34 decimal digit accuracy) were used in the
developed computer program. However, one should recognize
that as the number of functions is large, the matrices may become
ill-conditioned, which causes numerical difficulties in accurately
solving the eigenvalue problem.

3. Convergence studies

The Ritz method always provides upper-bound solutions for
vibration frequencies, and the upper-bound solutions will con-
verge to the exact solution as the number of admissible functions
is sufficiently large and if the used admissible functions are from a
mathematically complete set of functions. Convergence studies
were carried out for completely free square plates with different
notch depths and notch angles to verify the accuracy of the
solutions and demonstrate the effects of corner functions on the
solutions. The free plate uses [=m=n=q =0 in Eq. (3). For
simplicity, the same numbers of symmetric and antisymmetric
corner functions (N=K in Eq. (7)) were used. The numerical
results for the first five nondimensional frequency parameters
wa?+/p/D, where a is a side length of the plate shown in Fig. 2, are
given in the following tables for free, square plates with Poisson’s
ratio equal to 0.3. A V-notch was taken at c/a = 0.5. Notably, the
first three rigid-body modes (zero frequencies) are not shown.

For comparison, Table 1 shows the convergence study of
nondimensional frequency parameters for an intact (no notch)
square plate, in which no corner functions were needed. The
results do converge as upper bounds to the solutions, exact to the
four significant figures shown as the number of admissible
polynomial functions (I x J) increases from 3 x 3 to 8 x 8. Notably,
the frequencies for the 4th and 5th modes are exactly the same,
which are repeated eigenvalues in this eigenvalue problem when
b/a = 1. The present results agree well with those determined by
Leissa [5], who used 6 x 6 beam functions as admissible functions
in the Ritz method. Since the beam functions may not form a
complete set of functions, the converged results of Leissa [5] are
larger than the present ones. Table 1 also shows that frequencies
obtained by Filipich and Rosales [6], who utilized a whole element

method, are slightly less accurate than the converged values of the
present method, the latter being exact to four digits. Table 1
establishes the accuracy of the computer program developed in
the present study for the solutions without corner functions.

To further demonstrate the accuracy of the method using
polynomials and corner functions as admissible functions, a
convergence study was performed for a square plate with a very
shallow V-notch (d/b = 0.03) having large notch angle « = 170°
that causes weak stress singularities at the vertex of the notch.
The admissible functions of polynomials, which form a complete
set of functions, are expected to give convergent results without
numerical difficulties. Table 2 summarizes the convergence of
frequency parameters wa?,/p/D by using polynomials and corner
functions as admissible functions. As expected, the polynomial
admissible functions give good convergent results. Adding corner
functions into the admissible functions only slightly accelerates
the convergence of the numerical solutions for this very shallow,
wide angle notch.

Tables 3-5 list the convergence of frequency parameters
wa®/p/D for free, square plates with a V-notch having two
different notch angles (« = 5° or 30°) and depths (d/b = 0.1 or 0.5).
The V-notch is much sharper than that considered in Table 2; and
the corner functions are expected to have significant effects on the
convergence of the solutions. In these cases under study, the
admissible algebraic polynomials used alone give solutions with
very slow convergence, especially for the case with a sharper
(¢ = 5°) or deeper (d/b = 0.5) notch. Supplementing the admis-
sible functions with corner functions significantly accelerates the
convergence of the solutions.

In the case of the plate having a deep (d/b = 0.5), sharp (« = 5°)
notch, Table 5 shows that the addition of corner functions is
extremely important to obtain accurate frequencies. The accuracy
of numerical results are dramatically improved by adding only
one symmetric and antisymmetric corner functions that result in
the singularities of moments at the vertex of the V-notch. For the
first four frequencies shown, more accurate (i.e. better conver-
gent) frequencies are obtained using only nine algebraic poly-
nomial terms (3x3) and 10 corner functions (K= N =5),
resulting in an eigenvalue (frequency) determinant of order 19,
than in the largest (9 x 9) polynomial solution with no corner
functions. In the latter case one has a determinant of order 81.

There are two main reasons for the corner functions having
such dramatic effects on the convergence of the numerical
solutions. One is that the corner functions appropriately describe
the singular behaviors of bending moments and transverse shear
forces around the tip of the notch. Another is that the corner
functions clearly and explicitly indicate the existence of the V-
notch in the problems under consideration. When only the
polynomial admissible functions are used in the Ritz method,
the recognition of the existence of the V-notch is only through the
integration domain. As the notch angle or the notch depth
becomes smaller, the resulting integration domain is only slightly
different from that without a V-notch. Thus, the corner functions
satisfying the free edge conditions along the edges of a V-notch
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Table 2
Convergence of frequency parameters wa®,/p/D for a free square plate with a V-notch (c/a = 0.5, d/b = 0.03, o« = 170°)

Mode no. No. of corner functions (K and N) Order of polynomial (I x J) in W,
3x3 4x4 5x5 6 x 6 7x7 8x8 9x9
1 0 14.17 13.64 13.64 13.44 13.44 13.44 13.44
1 1417 13.62 13.61 13.44 13.44 13.44 13.44
2 14.17 13.60 13.59 13.44 13.44 13.44 13.44
3 14.10 13.60 13.51 13.44 13.44 13.44 13.44
2 0 22.87 22.87 20.05 20.05 19.91 19.91 19.91
1 21.91 21.85 20.03 20.03 19.91 19.91 19.91
2 21.86 20.98 20.03 20.03 19.91 19.91 19.91
3 20.26 20.18 20.03 20.02 19.91 19.91 19.91
3 1] 30.57 30.57 24.51 24.51 24.22 24.22 24.22
1 28.95 28.85 24.46 24.46 24.22 24.22 24.21
2 28.94 26.19 24.46 24.45 24.22 24.22 24.21
3 28.94 25.28 24.42 24.38 24.22 24.22 24.21
4 0 41.42 39.05 35.56 35.21 34.75 34.74 34.74
1 40.43 38.44 35.50 35.21 34.74 34.74 34.74
2 40.04 37.88 35.45 35.20 34.74 34.74 34.74
3 39.44 35.71 35.43 34.93 34.74 34.74 34.74
5 0 41.86 39.62 35.82 35.52 34.98 34.97 34.97
1 41.32 38.48 35.65 35.35 34.97 34.97 34.97
2 40.42 38.40 35.57 35.35 34.97 34.97 34.97
3 40.42 37.28 35.44 35.30 34.97 34.97 34.97
Table 3

Convergence of frequency parameters wa?./p/D for a free square plate with a V-notch (c/a = 0.5, d/b = 0.1, « = 30°)

Mode no. No. of corner functions (K and N) Order of polynomial (I x J) in W,
3x3 4x4 5x5 6x6 7x7 8x8 9x9
1 0 14.18 13.64 13.64 13.45 13.45 13.45 13.45
3 13.73 13.47 13.47 13.30 13.30 13.30 13.30
5 13.54 13.46 13.39 13.30 13.30 13.30 13.30
7 13.50 13.42 13.31 13.30 13.30 / /
2 0 22.55 22.55 19.81 19.81 19.67 19.67 19.67
3 20.92 20.88 19.63 19.63 19.52 19.52 19.52
5 20.61 19.88 19.62 19.62 19.52 19.52 19.52
7 19.66 19.66 19.62 19.54 19.52 / /
3 0 30.56 30.56 24.51 24.51 2423 2423 2423
3 28.77 27.97 2431 24.31 24.06 24.06 24.06
5 26.26 24.44 24.25 24.25 24.06 24.06 24.06
7 24.35 24.33 2418 2414 24.06 / /
4 0 41.48 39.11 35.54 35.20 34.73 34.72 34.72
3 39.17 36.24 34.88 34.63 3417 34.16 34.16
5 37.16 35.14 34.85 34.44 3417 34.16 34.16
7 35.56 34.84 34.79 34.21 3417 / /
5 0 41.70 39.37 35.70 35.38 34.88 34.87 34.87
3 39.42 37.82 35.09 34.77 34.42 34.42 34.41
5 38.25 36.15 34.99 34.74 34.42 34.41 34.41
7 36.49 35.16 34.84 34.71 34.41 / /

Note: “/” denotes no data available because of matrix ill-conditioning.

definitely help the formulation in the Ritz method in realizing the number of admissible functions not very large. Without showing
existence of the V-notch. the results, ill-conditioning also occurs when only the set of

Table 3 displays that adding the corner functions into the polynomial functions with I and J larger than 15 is used. The ill-
admissible polynomials may yield ill-conditioned matrices at the conditioning is due to numerical roundoff errors. When the
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Table 4
Convergence of frequency parameters wa?./p/D for a free square plate with a V-notch (c/a = 0.5, d/b = 0.5, o = 30°)

Mode no. No. of corner functions (K and N) Order of polynomial (I x J) in W,
3x3 4x4 5x5 6x6 7x7 8x8 9x9
1 0 13.72 13.09 13.09 12.80 12.80 12.72 12.72
1 9.228 8.953 8.843 8.792 8.791 8.778 8.778
5 8.808 8.773 8.759 8.726 8.725 8.725 8.725
10 8.739 8.727 8.727 8.725 8.725 8.725 8.725
15 8.734 8.726 8.726 8.725 8.725 8.725 8.725
2 0 23.35 23.32 20.33 20.32 19.98 19.98 19.76
1 17.79 17.72 16.86 16.86 16.80 16.80 16.78
5 17.00 16.95 16.80 16.80 16.76 16.76 16.76
10 16.82 16.80 16.77 16.76 16.76 16.76 16.76
15 16.81 16.79 16.76 16.76 16.76 16.76 16.76
3 0 30.18 30.11 23.89 23.88 23.30 23.30 23.07
1 25.72 25.54 2219 22.18 22.04 22.04 22.03
5 2414 23.36 22.17 22.16 22.01 22.01 22.01
10 2217 2217 22.03 22.01 22.01 22.01 22.01
15 2212 2212 22.02 22.01 22.01 22.01 22.01
4 0 40.41 37.48 34.23 33.45 33.11 32.90 32.90
1 29.99 29.06 27.65 27.25 2713 27.06 27.06
5 28.73 27.46 27.35 27.14 27.01 26.99 26.99
10 27.24 27.14 27.12 26.99 26.99 26.99 26.99
15 2713 27.08 27.02 26.99 26.99 26.99 26.99
5 0 44.28 41.79 37.49 37.19 36.30 36.29 36.07
1 41.56 39.66 35.74 35.51 35.09 35.09 35.08
5 38.83 36.87 35.60 35.37 34.99 34.98 34.98
10 36.02 35.53 35.18 35.07 34.98 34.98 34.98
15 35.82 35.24 35.00 34.99 34.98 34.98 34.98
Table 5

Convergence of frequency parameters wa?/p/D for a free square plate with a V-notch (c/a = 0.5, d/b = 0.5, « = 5°)

Mode no. No. of corner functions (K and N) Order of polynomial (I xJ) in W,
3x3 4x4 5x5 6 x 6 7x7 8x8 9x9
1 0 14.12 13.57 13.57 13.38 13.38 13.38 13.38
1 8.882 8.646 8.542 8.501 8.500 8.493 8.493
5 8.409 8.368 8.353 8.323 8.323 8.322 8.322
10 8.335 8.323 8.323 8.322 8.322 8.322 8.322
15 8.331 8.322 8.322 8.322 8.322 8.322 8.322
2 0 22.56 22.56 19.80 19.80 19.65 19.65 19.65
1 15.96 15.89 15.25 15.25 15.20 15.20 15.19
5 15.54 15.33 15.15 15.14 15.11 5.11 15.11
10 15.18 15.14 15.11 15.11 15.11 15.11 15.11
15 15.16 15.14 15.11 15.11 15.11 15.11 15.11
3 0 30.53 30.53 24.44 24.44 2414 2414 2414
1 25.90 25.24 22.20 22.20 22.02 22.02 22.02
5 24.00 23.52 2213 2213 21.97 21.97 21.97
10 2212 2212 21.99 21.98 21.97 21.97 21.97
15 22.07 22.07 21.97 21.97 21.97 21.97 21.97
4 0 41.37 38.95 35.39 35.02 34.56 34.55 34.55
1 26.09 26.03 24.54 2418 2413 24.07 24.07
5 24.76 2412 24.03 23.82 23.77 23.74 23.74
10 23.99 23.84 23.81 23.74 23.74 23.73 23.73
15 23.83 23.80 23.76 23.73 23.73 23.73 23.73
5 0 41.88 39.52 35.81 35.49 34.95 34.94 34.93
1 38.60 36.98 33.11 32.88 32.49 32.49 32.49
5 35.94 34.99 32.90 32.67 32.33 32.32 32.32
10 33.14 32.86 32.68 32.49 32.33 32.32 32.32
15 32.92 32.61 32.34 3233 32.32 32.32 32.32
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variables in a computer program are defined with less decimal
digit accuracy, the ill-conditioning will occur at smaller number of
admissible functions. It is known by many numerical analysts that
using orthogonal algebraic polynomials, instead of the ordinary
ones expressed in Eq. (4), may reduce ill-conditioning greatly. This
would complicate the present analysis significantly. Nevertheless,
results with good accuracy (four-digit convergence) were ob-
tained for Table 3, using the present method, before the ill-
conditioning occurred.

Table 6
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Tables 3-5 give some important findings. Comparing the
results of Table 4 with those of Table 3, one finds that more
corner functions are needed to get four-digit convergence
solutions for a plate with a deeper V-notch when the same
number of polynomial functions is used. Comparing the results of
Tables 4 and 5, one sees that more corner functions may not be
needed to get four-digit convergence solutions when the notch
angle changes from «=30° to 5°. Moreover, an incorrect
judgment on the convergent solutions may result if no corner

Frequency parameters wa?./p/D and nodal patterns for square plates with a V-notch at ¢/a = 0.5

o dlb Mode no.
1 2 3 4 5
0 ]
> <
(13.47) (19.60) (24.27) (34.80) (34.80)
5° 0.1 ! T ] U
(13.30) (19.43) (24.08) (34.19) (34.27)
0.3 0 ~ | w
DT
(11.58) (17.93) (22.88) (28.65) (32.53)
0.5
N \W{
(8.322) (15.11) (21.97) (23.73) (32.32)
" DA A
(13.30) (19.52) (24.06) (34.16) (34.41)
0.3 \/ \/
i
(11.59) (18.68) (22.81) (29.45) (33.76)
0.5 BYS w
(8.725) (16.76) (22.01) (26.99) (34.98)
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functions are involved in the admissible functions. For example, from
the first row data in Table 5, one may conclude incorrectly that the
converged value of wa?+/p/D is in the vicinity of 13.38, which is far
greater than the accurate, converged values given (8.322).

4. Numerical results and discussion

Tables 6 and 7 display the nondimensional frequency para-
meters and corresponding nodal patterns (lines of zero vibration

Table 7

1261

displacement) of the first five nonzero frequency modes for free,
square plates with a V-notch at two different locations and having
different notch angles and notch depths. Poisson’s ratio is set
equal to 0.3. The results for a shallow notch (d/b = 0.1) were
obtained by using 9 x9 terms of polynomials along with 5
symmetric and antisymmetric corner functions, while the results
for d/b=0.3 or 0.5 were obtained by using 8 x8 terms of
polynomials and 15 symmetric and antisymmetric corner func-
tions. Convergence studies show that the results have at least
three-digit convergence.

Frequency parameters wa?./p/D and nodal patterns for square plates with a V-notch at ¢/a = 0.75

o dlb Mode no.
1 2 3 4 5
0 N
R (]
(13.47) (19.60) (24.27) (34.80) (34.80)
s o1 [T | | ] [
B o A
(13.37) (19.53) (24.21) (34.20) (34.67)
0.3 “ﬁ 0 [ |
T .
(12.15) (18.48) (22.87) (27.88) (34.09)
0.5 [ y /\E J
(8.778) (15.50) (21.25) (25.35) (33.60)
30° o1 J ] { | L/
[ C N A
(13.39) (19.57) (24.23) (34.20) (34.77)
0.3 \/] ( —\ \[]
(12.40) (18.75) (23.09) (28.57) (34.91)
0.5 \[ AT D~ }/
\/ - -
(9.714) (16.46) (21.91) (26.72) (35.02)
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It is interesting to observe how the frequency parameters
change with «, d/b and c/a. The frequency parameters, except
for those for the fifth modes for « = 30° and d/b = 0.5, signifi-
cantly decrease as the notch depth d/b increases for V-notched
square plates mainly because of significant reduction in the
flexural stiffness for larger d/b, without significant reduction in
mass. The decreasing frequencies relative to the frequencies of an
intact (no notch) plate are considerably different for different
modes. Interestingly, the frequency of the fifth mode for o« = 30°,
d/b=0.5 and c/a= 0.5 or 0.75 is larger than that of an intact
plate. The V-notched plates with c/a = 0.5 have larger decreasing
rates than those for c/a = 0.75 in the first and fifth modes. When
d/b = 0.5, the frequency parameters increase if « changes from 5°
to 30°. This trend is also generally observed with few exceptions in
the cases of d/b = 0.1 and 0.3. The frequency parameters for the
first and fifth modes increase as c/a changes from 0.5 to 0.75.

Before discussing the effects of «, d/b and c/a on the nodal patterns,
one may note that the nodal patterns of the fourth and fifth modes for
an intact square plate are shown differently in Table 6 than in Table 7.
The nodal patterns given in both tables are correct because the
frequencies for these two modes are identical. Mathematically, when
an eigenvalue problem has two repeated eigenvalues, any linear
combination of the corresponding eigenfunctions is also a possible
eigenfunction. Consequently, there are an infinite number of possible
combinations of the fourth and fifth mode shapes for an intact square
plate. The mode shapes given in these tables for the intact plate are
thus chosen because they are often seen in published literature and
they resemble those for a square plate with a shallow V-notch.

Tables 6 and 7 also reveal that the nodal patterns for the shallow
notch (d/b = 0.1), at first sight, look very similar to those for an intact
square plate (i.e., d/b = 0), respectively. However, if observing care-
fully, one can find some significant differences. A V-notch at c/a = 0.5
destroys the symmetry about the horizontal axis, and the notch at c/
a = 0.75 destroys the symmetry about all axes. The crossing nodal
lines for d/b = 0 may separate when a V-notch exists (i.e., the second
and fifth modes in Table 6 and the first and second modes in Table 7).
A straight nodal line for d/b = 0 may be distorted when a V-notch
exists (i.e., the horizontal nodal line of the first mode in Table 6 and
the diagonal nodal lines of the fourth and fifth modes in Table 7).

When d/b changes from 0.1 to 0.3 and to 0.5, the nodal patterns
change significantly. The curve veering and the distortion of the
straight nodal lines become more significant as « or d/b increases.
The almost closed nodal line in the third mode is destroyed
drastically when d/b changes from 0.1 to 0.3 to 0.5. Changing d/b
does not result in changes in modal order for similar nodal patterns.

Let us now return to a question asked in the Introduction to this
work: “Can a shallow notch cause significant changes in the plate
natural frequencies and mode shapes?” Looking at the results in
Tables 6 and 7 for a shallow notch having d/b = 0.1, one finds that
the maximum change in frequency from that of an intact plate (d/
b = 0), at least among the first five frequencies, is 1.8 percent. This
occurs in the fourth mode of the centrally notched (c/a = 0.5) plate
with o = 30° (Table 6). Looking at the nodal patterns for the shallow
notches in Tables 6 and 7, one sees that their changes from those of
the intact plate are small, except in some cases where the notch
causes lines to lose their symmetry, and separate instead of crossing.

5. Conclusions

This paper has presented a method to accurately determine the
natural frequencies of plates having V-notches along their edges.
This method is laid out in detail for rectangular plates

having a single V-notch. Using the Ritz method, convergence
of the numerical solutions is accelerated by supplementing
the regular polynomial admissible functions with the corner
functions that are the fundamental solutions of the bi-harmonic
plate equation, exactly satisfy the free boundary conditions
along the V-notch, and properly describe the bending
moment and shear force singularities at the neighborhood of
the tip of V-notch. The effects of the corner functions on
determining the frequencies of a plate were comprehensively
investigated through careful convergence studies for plates with
different notch depths and angles. When the notch angle («)
becomes smaller, the corner functions are necessary to achieve
accurate solutions.

Accurate numerical results and nodal patterns have been
tabulated for V-notched, completely free, square plates having
notch angle « = 5° or 30° at different locations and with various
notch depths. The numerical results shown are exact to at least
three significant figures. These are the first known frequency and
nodal pattern results available in the published literature. A deep
V-notch significantly alters the nondimensional frequency para-
meters and the nodal patterns of V-notched plates. But it is shown
that a shallow V-notch has only a small effect upon the vibration
frequencies and nodal patterns, in spite of the very high bending
stresses that arise in the vicinity of the vertex of the notch. The
reliable results shown here serves not only to improve the
understanding of the vibration behavior of a V-notched square
plate, but also as benchmark data against which other numerical
methods may be checked.

Although numerical results are given here only for V-notched
square plates with free boundary conditions, the methodology
used here can be easily extended to investigate the vibration
behavior of V-notched plates with different shapes and various
boundary conditions. It will be more challenging to apply the
present methodology to study the behaviors of a plate with a cut-
out because there will then be more than one corner having stress
singularities.

The present approach cannot be directly applied to solve
problems with a side crack. For this a special analysis
must be made. When « = 0 (a crack), the roots of Eqgs. (6a and
b) are J, or X, equal to n/2 and n=123,... . When 2, or
Jn are integers, the corresponding corner functions may depend
linearly on the polynomial admissible functions and cause
numerical difficulties in solving the resulting eigenvalue problem.
Furthermore, when /7, is not an integer, cos[/, — 1)8/2] and
cos[Z, + 1)8/2] in Eq. (5b) are equal to zero. Consequently, Eq.
(5b) cannot be directly used. How to apply a similar approach to
solve a problem with an edge crack will be investigated in another
paper.
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