

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 429 (2008) 716-726

www.elsevier.com/locate/laa

Numerical ranges of nilpotent operators

Hwa-Long Gau^{a,*,1}, Pei Yuan Wu^{b,2}

^a Department of Mathematics, National Central University, Chungli 32001, Taiwan ^b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

> Received 1 February 2008; accepted 31 March 2008 Available online 16 May 2008 Submitted by C.-K. Li

Abstract

For any operator A on a Hilbert space, let W(A), w(A) and $w_0(A)$ denote its numerical range, numerical radius and the distance from the origin to the boundary of its numerical range, respectively. We prove that if $A^n = 0$, then $w(A) \leq (n - 1)w_0(A)$, and, moreover, if A attains its numerical radius, then the following are equivalent: (1) $w(A) = (n - 1)w_0(A)$, (2) A is unitarily equivalent to an operator of the form $aA_n \oplus A'$, where a is a scalar satisfying $|a| = 2w_0(A)$, A_n is the n-by-n matrix

Γ0	1	• • •	17
	0	·.	:
		·	1
L			0

and A' is some other operator, and (3) $W(A) = bW(A_n)$ for some scalar *b*. © 2008 Elsevier Inc. All rights reserved.

AMS classification: 47A12; 15A60

Keywords: Numerical range; Numerical radius; Nilpotent operator

0024-3795/\$ - see front matter $_{\odot}$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.03.029

^{*} Corresponding author.

E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).

¹ Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-008-006.

² Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-009-013-MY3 and by the MOE-ATU.

0. Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The *numerical range* and *numerical radius* of A are, by definition,

$$W(A) = \{ \langle Ax, x \rangle : x \in H, ||x|| = 1 \}$$

and

$$w(A) = \sup\{|z| : z \in W(A)\},\$$

respectively, where $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ denote the inner product and its associated norm in *H*. It is known that W(A) is a bounded convex subset of the plane. When *H* is finite dimensional, it is even compact. Its closure $\overline{W(A)}$ contains $\sigma(A)$, the spectrum of *A*. For its other properties, the reader may consult [7, Chapter 22] or [5].

Assume that A is *nilpotent*, say, $A^n = 0$ for some $n \ge 1$. Then 0 is in $\sigma(A)$ and hence in $\overline{W(A)}$. In the following, we will show that if A is nonzero, then 0 is actually in the interior of W(A) (cf. Corollary 1.2). To estimate the extent to which 0 belongs to this interior, we define the quantity

$$w_0(A) \equiv \operatorname{dist}(0, \partial W(A)) = \inf\{|z| : z \in \partial W(A)\}$$

Thus $w_0(A)$ is the radius of the largest closed circular disc centered at the origin which is contained in $\overline{W(A)}$. We show in Theorem 1.1 that the inequality $w(A) \leq (n-1)w_0(A)$ holds and, moreover, if *A attains its numerical radius*, that is, if there is a unit vector *x* in *H* with $|\langle Ax, x \rangle| = w(A)$, then the following conditions are equivalent: (1) $w(A) = (n-1)w_0(A)$, (2) *A* is unitarily equivalent to an operator of the form $aA_n \oplus A'$, where *a* is a scalar satisfying $|a| = 2w_0(A)$, A_n is the *n*-by-*n* matrix

Γ0	1	•••	1]
	0	·.	:
		·	1
L			0

and A' is some other operator, and (3) $W(A) = bW(A_n)$ for some scalar *b*. This shows the prominent role the matrix A_n plays in this regard. We investigate its numerical range detailedly in Lemma 1.3. For example, it is shown that $w(A_n) = (n - 1)/2$, $w_0(A_n) = 1/2$ (for $n \ge 2$), and the boundary of $W(A_n)$ contains one line segment (for $n \ge 3$). In Section 2, we consider an analogous inequality by Caston et al. [1, Lemma 2.6] in the opposite situation when 0 is not in the interior of the numerical range of an *n*-by-*n* matrix *A*. In this case, the inequality $w(A) \le nr(A)$ holds, where r(A) is the spectral radius of *A*. This, together with a characterization of those *A*'s for which w(A) = nr(A) is true, is given in Theorem 2.1.

Results in this paper are analogous to the ones in [6,10] relating the numerical radius and norm of a nilpotent operator. Indeed, it is shown therein that if A is nilpotent with $A^n = 0$ $(n \ge 1)$, then $w(A) \le ||A|| \cos(\pi/(n+1))$ and, moreover, if A attains its numerical radius and $w(A) = ||A|| \cos(\pi/(n+1))$, then A is unitarily equivalent to $||A||J_n \oplus A'$ for some operator A', where J_n denotes the *n*-by-*n* Jordan block

$$\begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & & 0 \end{bmatrix}.$$

In our situation, the role of J_n is played by A_n and $2A_n + I_n$ in Theorems 1.1 and 2.1, respectively.

1. Nilpotent operators

We start with the following main result of this paper.

Theorem 1.1. Let A be an operator on H with $A^n = 0$ $(n \ge 1)$.

- (a) The inequality $w(A) \leq (n-1)w_0(A)$ holds.
- (b) Assume that A attains its numerical radius. Then the following conditions are equivalent:
 - (1) $w(A) = (n-1)w_0(A)$,
 - (2) A is unitarily equivalent to an operator of the form $aA_n \oplus A'$, where a is a scalar satisfying $|a| = 2w_0(A)$ and A' is some other operator, and
 - (3) $W(A) = bW(A_n)$ for some scalar b.

An easy consequence of the preceding theorem is the following:

Corollary 1.2. If A is a nonzero nilpotent operator, then 0 belongs to the interior of W(A) and $\partial W(A)$ is a differentiable curve.

Proof. For the nonzero nilpotent *A*, we have $w_0(A) > 0$ by Theorem 1.1(a) and hence 0 is in the interior of W(A). On the other hand, since any nondifferentiable point λ on $\partial W(A)$ must be in the approximate point spectrum of *A* by [11, Theorem 2] and the latter is the singleton {0} for the nilpotent *A*, we have $\lambda = 0$, which contradicts $w_0(A) > 0$. Hence $\partial W(A)$ must be differentiable. \Box

We remark that the preceding corollary is not necessarily true for a nonzero quasinilpotent operator $A(\sigma(A) = \{0\})$. Indeed, if A is the Volterra operator

$$(Af)(x) = \int_0^x f(t)dt$$
 for f in $L^2(0, 1)$,

then A is quasinilpotent and 0 is in the boundary of W(A) (cf. [7, pp. 98–99]).

To prove Theorem 1.1, we need a fuller understanding of the numerical range of A_n . This is provided by the next lemma.

Lemma 1.3. (1) $W(A_n)$ is symmetric with respect to the x-axis.

- (2) $w(A_n) = \langle A_n x_0, x_0 \rangle = (n-1)/2$, where $x_0 = [1/\sqrt{n} \cdots 1/\sqrt{n}]^{\mathrm{T}}$.
- (3) $(-1/2)I_n \leq \text{Re } A_n \leq ((n-1)/2)I_n$.
- (4) If $n \ge 3$, then $\partial W(A_n)$ has exactly one line segment, which is on the line x = -1/2.
- (5) For any point λ of $\partial W(A_n)$ which is not on its line segment, the set $\{x \in \mathbb{C}^n : \langle A_n x, x \rangle = \lambda ||x||^2\}$ is a subspace of dimension one.
- (6) $w_0(A_n) = 1/2$ for $n \ge 2$.
- (7) A point λ with $|\lambda| = 1/2$ is in $\partial W(A_n)$ $(n \ge 3)$ if and only if $\lambda = -1/2$.
- (8) The polynomial $p_{A_n}(x, y, z) = \det(x \operatorname{Re} A_n + y \operatorname{Im} A_n + z I_n)$ is irreducible.

718

Here Re $X = (X + X^*)/2$ and Im $X = (X - X^*)/(2i)$ denote the *real* and *imaginary parts* of a matrix X, respectively.

Note that p_{A_n} and $W(A_n)$ are related by a result of Kippenhahn [8], the numerical range of an *n*-by-*n* matrix *A* equals the convex hull of the real points (u/w, v/w) of the dual $\{[u, v, w] \in \mathbb{CP}^2 : ux + vy + wz = 0 \text{ is a tangent line of } p_A(x, y, z) = 0\}$ of the curve $p_A = 0$ in the complex projective plane \mathbb{CP}^2 .

To prove (4) of the preceding lemma, we need another result. For any *n*-by-*n* matrix *A* and real θ , let *L* be the supporting line of the convex set W(A) perpendicular to the ray which emanates from the origin and forms angle θ from the positive *x*-axis, and let *d* be the (signed) distance from the origin to *L*. It is easily seen that *d* is the largest eigenvalue of Re ($e^{-i\theta}A$), and a unit vector in \mathbb{C}^n is such that $\langle Ax, x \rangle$ belongs to $\partial W(A) \cap L$ if and only if Re ($e^{-i\theta}A$)x = dx. From this, we obtain the following lemma immediately.

Lemma 1.4. Let A be an n-by-n matrix. Then $\partial W(A)$ has a line segment on $x \cos \theta + y \sin \theta = d$ if and only if d is the largest eigenvalue of Re ($e^{-i\theta}A$) which has unit eigenvectors x_1 and x_2 such that Im $\langle e^{-i\theta}Ax_1, x_1 \rangle \neq \text{Im} \langle e^{-i\theta}Ax_2, x_2 \rangle$.

Proof of Lemma 1.3. (1) This follows easily from the fact that A_n is a real matrix.

(2) Since

$$\langle A_n x_0, x_0 \rangle = (n-1) \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} + (n-2) \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$$

= $\frac{1}{n} [(n-1) + (n-2) + \dots + 1]$
= $\frac{1}{2} (n-1),$

we have $w(A_n) \ge (n-1)/2$. On the other hand, for any unit vector $x = [x_1 \cdots x_n]^T$, we deduce from

$$|\langle A_n x, x \rangle| = \left| \sum_{i < j} x_j \overline{x_i} \right| \leq \sum_{i < j} |x_i| |x_j|$$

and

$$0 \leq \sum_{i < j} (|x_i| - |x_j|)^2 = (n-1) \sum_i |x_i|^2 - 2 \sum_{i < j} |x_i| |x_j|$$
$$= n - 1 - 2 \sum_{i < j} |x_i| |x_j|$$

that $\sum_{i < j} |x_i| |x_j| \leq (n-1)/2$. Hence $w(A_n) \leq (n-1)/2$ and thus $w(A_n) = (n-1)/2$ as asserted.

(3) We first show that -1/2 is the smallest eigenvalue of Re A_n . Indeed, since

Re
$$A_n + \frac{1}{2}I_n = \begin{bmatrix} 1/2 & \cdots & 1/2 \\ \vdots & & \vdots \\ 1/2 & \cdots & 1/2 \end{bmatrix}$$

is of rank one, -1/2 is an eigenvalue of Re A_n of multiplicity n - 1. To prove that it is the smallest one, let t < -1/2 and let $x = [x_1 \cdots x_n]^T$ be a unit vector in \mathbb{C}^n such that (Re A_n)x = tx. A simple computation shows that $(1/2) \sum_{j=1}^n x_j = (t + (1/2))x_k$ for $1 \le k \le n$. Since t + (1/2) < 0, we obtain $x_1 = \cdots = x_n$. These equalities then yield $nx_k/2 = (t + (1/2))x_k$ or $(t + (1/2) - (n/2))x_k = 0$. Hence $x_k = 0$ for all k. This shows that no such t can be an eigenvalue of Re A_n . Thus $(-1/2)I_n \le \text{Re } A_n$. On the other hand, since $w(\text{Re } A_n) \le w(A_n) = (n - 2)/2$ by (2), the inequality Re $A_n \le ((n - 2)/2)I_n$ follows.

(4) Note that $x_{\pm} = [1/2 \pm i/2 - (1 \pm i)/2 \ 0 \cdots \ 0]^{T}$ are unit eigenvectors of Re A_n for the smallest eigenvalue -1/2 with $\langle A_n x_{\pm}, x_{\pm} \rangle = (-1/2) \pm (1/4)i$. Lemma 1.4 implies that $\partial W(A_n)$ contains a line segment on x = -1/2.

We next show that, for every real θ with $e^{-i\theta} \neq -1$, the largest eigenvalue d of Re $(e^{-i\theta}A_n)$ has multiplicity one. Indeed, if dim ker $(dI_n - \text{Re}(e^{-i\theta}A_n)) \ge 2$, then there is a nonzero vector x of the form $[x_1 \cdots x_{n-1} 0]^T$ in ker $(dI_n - \text{Re}(e^{-i\theta}A_n))$. A simple computation shows that

$$dx_k - \frac{1}{2}e^{-i\theta}\sum_{j>k}x_j - \frac{1}{2}e^{i\theta}\sum_{j(i)$$

and

$$\frac{1}{2}\mathrm{e}^{\mathrm{i}\theta}\sum_{j=1}^{n-1}x_j=0.$$

The latter yields $\sum_{j} x_j = 0$, which, together with the former gives, for k = 1,

$$dx_1 - \frac{1}{2}e^{-i\theta}\sum_{j=2}^{n-1}x_j = \left(d + \frac{1}{2}e^{-i\theta}\right)x_1 = 0.$$

Since $\operatorname{Re}\begin{bmatrix}0 & e^{-i\theta}\\0 & 0\end{bmatrix}$ is a submatrix of $\operatorname{Re}(e^{-i\theta}A_n)$, its maximum eigenvalue 1/2 is less than or equal to the maximum eigenvalue d of $\operatorname{Re}(e^{-i\theta}A_n)$. Thus, in particular, $d + (e^{-i\theta}/2) \neq 0$. We obtain from above that $x_1 = 0$. The equality in (i) for k = 2 then gives

$$dx_2 - \frac{1}{2}e^{-i\theta}\sum_{j=3}^{n-1}x_j = \left(d + \frac{1}{2}e^{-i\theta}\right)x_2 = 0$$

and hence $x_2 = 0$. Proceeding successively with the remaining equalities in (i), we obtain $x_k = 0$ for all k, which contradicts our assumption on x. This proves our assertion. In particular, it follows from Lemma 1.4 that $\partial W(A_n)$ has no line segment other than the one on x = -1/2.

(5) We may assume that $n \ge 3$. By the remarks preceding Lemma 1.4, for the given λ , there is a real θ for which Re ($e^{-i\theta}\lambda$) is the largest eigenvalue of Re ($e^{-i\theta}A_n$) whose eigenvectors x are exactly those satisfying $\langle A_n x, x \rangle = \lambda ||x||^2$. Hence $\{x \in \mathbb{C}^n : \langle A_n x, x \rangle = \lambda ||x||^2\}$ is a subspace of dimension one from the proof of (4).

(6) We need only consider $n \ge 3$. In this case, the boundary of $W(A_n)$ contains a line segment on x = -1/2 by (4). Hence, obviously, $w_0(A_n) \le 1/2$. On the other hand, since $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is a submatrix of A_n , we have

$$W\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right) = \left\{z \in \mathbb{C} : |z| \leq \frac{1}{2}\right\} \subseteq W(A_n).$$

Therefore, $w_0(A_n) \ge 1/2$. Our assertion follows.

(7) Let λ in $\partial W(A_n)$ be such that $|\lambda| = 1/2$. Since

$$\left\{z \in \mathbb{C} : |z| \leqslant \frac{1}{2}\right\} = W(A_2) \subseteq W(A_3) \subseteq W(A_n),$$

the point λ is also in $\partial W(A_3)$. Hence if $\theta = \arg \lambda$, then Re $(e^{-i\theta}\lambda) = 1/2$ is the largest eigenvalue of Re $(e^{-i\theta}A_3)$. Therefore,

$$0 = \det \begin{bmatrix} 1/2 & -e^{-i\theta}/2 & -e^{-i\theta}/2 \\ -e^{i\theta}/2 & 1/2 & -e^{-i\theta}/2 \\ -e^{i\theta}/2 & -e^{i\theta}/2 & 1/2 \end{bmatrix}$$
$$= -(1/8)(2 + e^{i\theta} + e^{-i\theta})$$
$$= -(1 + \operatorname{Re} e^{i\theta})/4,$$

which yields $e^{i\theta} = -1$ or $\lambda = e^{i\theta}/2 = -1/2$.

(8) Assume that $p_{A_n}(x, y, z) = \prod_{j=1}^m p_j(x, y, z)$, where the p_j 's are irreducible homogeneous polynomials in x, y and z with real coefficients. As shown in (1), the eigenvalues of Re A_n are (n-1)/2 and -1/2, the latter with multiplicity n-1. Hence the roots of $p_{A_n}(1, 0, z) = 0$ are -(n-1)/2 and 1/2 (of multiplicity n-1). We may assume, for convenience, that $p_1(1, 0, -(n-1)/2) = 0$ and let $q = \prod_{j=2}^m p_j$. Then the only root of q(1, 0, z) = 0 is 1/2. Hence if Δ is the convex hull of the real points of the dual of the curve q(x, y, z) = 0, then by duality the only vertical supporting line of Δ is x = -1/2. This implies that Δ can only be contained in the line x = -1/2. Dually, this says that $q(x, y, z) = \prod_j (-(1/2)x + a_jy + z)$ for some real a_j 's. From

$$z^{n} = p_{A_{n}}(1, i, z) = p_{1}(1, i, z)q(1, i, z)$$
$$= p_{1}(1, i, z)\prod_{j=1}^{m}(-(1/2) + a_{j}i + z),$$

we reach a contradiction. This proves the irreducibility of p_{A_n} .

Some of the assertions in Lemma 1.3 can be proved from results in [2, Section 3,3, Section 3] on properties of p_A and W(A) for more general nilpotent Toeplitz matrices A. In particular, the irreducibility of p_{A_n} in (8) follows from [2, Theorem 3.2] and the existence of a line segment on $\partial W(A_n)$ in (4) from [3, Theorem 3]. Our proofs are more direct.

Another result which we need is the following:

Proposition 1.5. Assume that $A^n = 0$ $(n \ge 1)$. Then $W(A) \subseteq W(A_n)$ if and only if $\operatorname{Re} A \ge (-1/2)I$.

The proof of this is based on the one for the corresponding numerical range containment for a nilpotent contraction and the Jordan block.

Lemma 1.6. The operator A on H is a contraction with $A^n = 0$ ($n \ge 1$) if and only if A is power dilated to $J_n \oplus \cdots \oplus J_n$, that is, there is an isometry V from H to $\mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n$ such that $A^k = V^*(J_n \oplus \cdots \oplus J_n)^k V$ for all $k \ge 1$, where the number of summands is dim ran $(I - A^*A)$.

This can be proved by modifying the arguments for [7, Solution 152]. It was essentially reproduced in [10].

Proof of Proposition 1.5. Since Re $A_n \ge (-1/2)I_n$ as proved in Lemma 1.3(3), the necessity of our assertion is obvious. For the converse, assume that Re $A \ge (-1/2)I$ and let $B = A(I + A)^{-1}$. For any vector x, if $y = (I + A)^{-1}x$, then we have

$$\|x\|^{2} - \|Bx\|^{2} = \langle x, x \rangle - \langle A(I+A)^{-1}x, A(I+A)^{-1}x \rangle$$

= $\langle (I+A)y, (I+A)y \rangle - \langle Ay, Ay \rangle$
= $\langle y, y \rangle + \langle Ay, y \rangle + \langle y, Ay \rangle$
= $\langle (I+2\operatorname{Re} A)y, y \rangle \ge 0,$

showing that *B* is a contraction. We also have $B^n = 0$. Lemma 1.6 then yields the power dilation of *B* to $J_n \oplus \cdots \oplus J_n$. Since

$$A = B(I - B)^{-1} = B + B^{2} + \dots + B^{n-1}$$

and

$$A_n = J_n + J_n^2 + \dots + J_n^{n-1},$$

we obtain the dilation of A to $A_n \oplus \cdots \oplus A_n$. Thus $W(A) \subseteq W(A_n)$ as asserted. \Box We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (a) To show that $w(A) \leq (n-1)w_0(A)$, we represent A as

$$\begin{bmatrix} 0 & A_{12} & \cdots & A_{1n} \\ & 0 & \ddots & \vdots \\ & & \ddots & A_{n-1,n} \\ & & & 0 \end{bmatrix}$$

on $H = \ker A \oplus (\ker A^2 \ominus \ker A) \oplus \cdots \oplus (H \ominus \ker A^{n-1})$. Let

$$A' = \begin{bmatrix} 0 & \|A_{12}\| & \cdots & \|A_{1n}\| \\ & 0 & \ddots & \vdots \\ & & \ddots & \|A_{n-1,n}\| \\ & & & 0 \end{bmatrix}$$

and, for any unit vector $x = [x_1 \cdots x_n]^T$ in H, let $x' = [||x_1|| \cdots ||x_n||]^T$. We have

$$|\langle Ax, x\rangle| \leqslant \langle A'x', x'\rangle \tag{ii}$$

$$\leq \max\{\|A_{ij}\| : 1 \leq i < j \leq n\} \langle A_n x', x' \rangle$$
(iii)

$$\leqslant 2w_0(A)w(A_n) \tag{iv}$$

$$= (n-1)w_0(A),$$
 (v)

where the inequality in (iv) follows from the facts that $\begin{bmatrix} 0 & A_{ij} \\ 0 & 0 \end{bmatrix}$ dilates to A and thus

$$\left\{z \in \mathbb{C} : |z| \leqslant \frac{1}{2} \|A_{ij}\|\right\} = \overline{W\left(\begin{bmatrix} 0 & A_{ij} \\ 0 & 0 \end{bmatrix}\right)} \subseteq \overline{W(A)}$$

(cf. [13, Theorem 2.1]), and the equality in (v) is by Lemma 1.3 (2). The inequality $w(A) \leq (n-1)w_0(A)$ follows.

(b) To prove (1) \Rightarrow (2), assume that $w(A) = (n-1)w_0(A)$. Represent A as in (a) and let $x = [x_1 \cdots x_n]^T$ be a unit vector in H such that $\langle Ax, x \rangle = w(A)e^{i\theta}$ for some real θ . Replacing A by $e^{-i\theta}A$, we may assume that $\langle Ax, x \rangle = w(A)$. Then $\langle Ax, x \rangle = (n-1)w_0(A)$ implies that the inequalities in (ii), (iii) and (iv) are actually equalities. The one from (ii) yields

$$\sum_{i < j} \langle A_{ij} x_j, x_i \rangle = \sum_{i < j} \|A_{ij}\| \|x_j\| \|x_i\|,$$

which in turn implies that $\langle A_{ij}x_j, x_i \rangle = ||A_{ij}x_j|| ||x_i|| = ||A_{ij}|| ||x_j|| ||x_i||$ for all i < j. Thus $A_{ij}x_j = a_{ij}x_i$ for some scalar a_{ij} . On the other hand, the equalities from (iii) and (iv) yield $||A_{ij}|| = 2w_0(A)$ for all i < j and $\langle A_nx', x' \rangle = w(A_n)$. By Lemma 1.3(2) and (5), the latter implies that $||x_j|| = 1/\sqrt{n}$ for all j. Hence

$$\frac{1}{n}a_{ij} = a_{ij} \|x_i\|^2 = \langle A_{ij}x_j, x_i \rangle = \|A_{ij}\| \|x_j\| \|x_i\|$$
$$= \frac{1}{n} \|A_{ij}\| = \frac{2}{n} w_0(A)$$

and therefore $A_{ij}x_j = 2w_0(A)x_i$ for all i < j. If $e_j = [0 \cdots 0 \sqrt{n}x_j \ 0 \cdots 0]^T$ in H for _{jth}

 $1 \leq j \leq n$, then $\{e_1, \ldots, e_n\}$ forms an orthonormal set in H. Let M be the subspace generated by the e_j 's. We check that M is a reducing subspace of A with A|M unitarily equivalent to $2w_0(A)A_n$. Indeed, we have

$$Ae_{j} = \sqrt{n} [A_{1j}x_{j} \cdots A_{j-1,j}x_{j} \ 0 \cdots \ 0]^{\mathrm{T}}$$

= $2\sqrt{n}w_{0}(A)[x_{1} \cdots x_{j-1} \ 0 \cdots \ 0]^{\mathrm{T}}$
= $2w_{0}(A)(e_{1} + \cdots + e_{j-1})$

for all j, which shows that M is invariant under A. On the other hand, we also have

$$A^*e_i = \sqrt{n}[0 \cdots 0 A^*_{i,i+1}x_i \cdots A^*_{in}x_i]^{\mathrm{T}}.$$

Note that, for any contraction $T (||T|| \le 1)$ and vectors x and y with ||x|| = ||y||, Tx = y and $T^*y = x$ are equivalent. (This is essentially due to B. Sz.-Nagy and can be proved as in [12, Proposition I.3.1]) Applying it to $(A_{ij}/||A_{ij}||)x_j = x_i$ yields $(A_{ij}^*/||A_{ij}||)x_i = x_j$ or $A_{ij}^*x_i = 2w_0(A)x_j$ for i < j. Thus

$$A^* e_i = 2\sqrt{n}w_0(A)[0 \cdots 0 x_{i+1} \cdots x_n]^T$$

= 2w_0(A)(e_{i+1} + \dots + e_n)

for all i and hence M is invariant under A^* . This proves that M reduces A. Since

$$\langle Ae_j, e_i \rangle = 2w_0(A)(\langle e_1, e_i \rangle + \dots + \langle e_{j-1}, e_i \rangle)$$

$$= \begin{cases} 0 & \text{if } j \leq i, \\ 2w_0(A) & \text{if } i < j, \end{cases}$$

we have the unitary equivalence of A|M and $[\langle Ae_j, e_i \rangle]_{i,j=1}^n = 2w_0(A)A_n$. Hence A is unitarily equivalent to $2w_0(A)A_n \oplus A'$ for some A'. This proves (2).

For (2) \Rightarrow (3), we may assume that $A = A_n \oplus A'$ with $w_0(A) = 1/2$. Then, obviously, $W(A_n) \subseteq W(A)$. We now check that $\operatorname{Re} A' \ge (-1/2)I$ or, equivalently, $W(A') \subseteq \{z \in \mathbb{C} : \operatorname{Re} z \ge -1/2\}$. Assume otherwise that there is some z_0 in W(A') with $\operatorname{Re} z_0 < -1/2$. If $[z_1, \overline{z_1}]$ is the vertical line segment on $\partial W(A_n)$, then the triangular region $\Delta z_0 z_1 \overline{z_1}$ is contained in W(A). Let z_2 be a point in $\Delta z_0 z_1 \overline{z_1}$ which is on the *x*-axis. Then $\Delta z_2 z_1 \overline{z_1}$ is also contained in W(A). If Δ is the convex hull of the set $\Delta z_2 z_1 \overline{z_1} \cup W(A_n)$, then $\Delta \subseteq W(A)$ and dist $(0, \partial \Delta) > 1/2$ by Lemma 1.3(7). Thus $w_0(A) = \text{dist}(0, \partial W(A)) > 1/2$, contradicting our assumption. Hence Re $A' \ge (-1/2)I$ as asserted. Therefore, Re $A = \text{Re } A_n \oplus \text{Re } A' \ge (-1/2)I$ by Lemma 1.3 (3). Proposition 1.5 then implies that $W(A) \subseteq W(A_n)$. Thus $W(A) = W(A_n)$, which proves (3).

The implication $(3) \Rightarrow (1)$ is an easy consequence of Lemma 1.3 (2) and (6). \Box

2. Numerical and spectral radii

In this section, we consider a situation which is opposite to the nilpotent case, namely, we consider an *n*-by-*n* matrix *A* with 0 not in the interior of its numerical range. Under this condition, [1, Lemma 2.6] says that $w(A) \leq nr(A)$ holds, where $r(A) = \max\{|z| : z \in \sigma(A)\}$ is the *spectral radius* of *A*. This inequality resembles in appearance the one we have had in Section 1, namely, $w(A) \leq (n-1)w_0(A)$ for *A* satisfying $A^n = 0$. As the following theorem shows, the resemblance extends even to the equality case.

Theorem 2.1. Let A be an n-by-n matrix with $0 \notin IntW(A)$.

- (a) The inequality $w(A) \leq nr(A)$ holds.
- (b) *The following conditions are equivalent*:
 - (1) w(A) = nr(A),
 - (2) A is unitarily equivalent to aB_n for some a in \mathbb{C} , where B_n is the n-by-n matrix
 - $\begin{bmatrix} 1 & 2 & \cdots & 2 \\ & 1 & \ddots & \vdots \\ & & \ddots & 2 \\ & & & 1 \end{bmatrix}$ and (3) $W(A) = aW(B_n)$ for some a in \mathbb{C} .

Here $B_n = 2A_n + I_n$ plays the role of A_n in Theorem 1.1. (a) is from [1, Lemma 2.6]. We include its proof below for completeness. (b) depends on the numerical range analogue of the Perron–Frobenius theorem for nonnegative matrices. Our reference is [9].

For a complex matrix $A = [a_{ij}]_{i,j=1}^n$, we use |A| to denote the matrix $[|a_{ij}|]_{i,j=1}^n$. If $A = [a_{ij}]_{i,j=1}^n$ and $B = [b_{ij}]_{i,j=1}^n$ are real matrices, then $A \preccurlyeq B$ (or $B \succcurlyeq A$) means that $a_{ij} \leqslant b_{ij}$ for all *i* and *j*. Similar notations extend to vectors.

Proof of Theorem 2.1. (a) Since 0 is not in IntW(A), we may assume, after a suitable rotation, that Re $A \ge 0$ and also

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}.$$

Since

$$\operatorname{Re}\begin{bmatrix} a_{ii} & a_{ij} \\ 0 & a_{jj} \end{bmatrix} = \begin{bmatrix} \operatorname{Re} a_{ii} & a_{ij}/2 \\ \overline{a_{ij}}/2 & \operatorname{Re} a_{jj} \end{bmatrix} \ge 0$$

for all i < j, we have $|a_{ij}|^2/4 \leq (\text{Re } a_{ii})(\text{Re } a_{jj})$ or $|a_{ij}| \leq 2|a_{ii}a_{jj}|^{1/2}$. It follows that $|A| \leq r(A)B_n$ and hence $w(A) \leq r(A)w(B_n)$ by [9, Corollary 3.6]. Since

$$w(B_n) = w(2A_n + I_n) = 2w(A_n) + 1 = 2 \cdot \frac{1}{2}(n-1) + 1 = n$$

by Lemma 1.3 (2), the asserted inequality follows.

(b) We first prove (1) \Rightarrow (2). Let $w \equiv w(A) = nr(A)$ and $B'_n = r(A)B_n$. From the proof in (a), we have $w = w(B'_n)$. Let x be a unit vector in \mathbb{C}^n such that $|\langle Ax, x \rangle| = w$. Since

 $w = |\langle Ax, x \rangle| \leqslant \langle |A||x|, |x|\rangle \leqslant \langle B'_n |x|, |x|\rangle \leqslant w,$

the inequalities here are actually equalities. In particular, we have $\langle B'_n | x |, |x| \rangle = w$. Hence $|x| = [1/\sqrt{n} \cdots 1/\sqrt{n}]^T$ by Lemma 1.3 (5) and (2). Since $\langle (B'_n - |A|)|x|, |x| \rangle = 0$ and $B'_n - |A| \ge 0$ (from (a)), we infer that $|A| = B'_n$. Let $x = [x_1 \cdots x_n]^T$ and $D = \text{diag}(|x_1|/x_1, \dots, |x_n|/x_n)$. If $\lambda = \langle Ax, x \rangle / w$, then

$$\left\langle \frac{1}{\lambda} DAD^{-1}|x|, |x| \right\rangle = \frac{1}{\lambda} \langle Ax, x \rangle = w = \langle B'_n|x|, |x| \rangle.$$

Since $|(1/\lambda)DAD^{-1}| = |A| = B'_n$, we infer, by taking into account the fact that $|x| = [1/\sqrt{n} \cdots 1/\sqrt{n}]^T$, that $(1/\lambda)DAD^{-1} = B'_n$ or

$$A = \lambda D^{-1} B'_n D = \lambda r(A) D^{-1} B_n D,$$

which proves (2).

Since $(2) \Rightarrow (3)$ is trivial, to complete the proof we need only show $(3) \Rightarrow (1)$. If (3) holds, then

$$w(A) = |a|w(B_n) = n|a|$$

as proved in (a). Note that $p_{A_n}(x, y, z) = p_{B_n}(x/2, y/2, z - (x/2))$ for all x, y and z. The irreducibility of p_{A_n} (by Lemma 1.3 (8)) implies that of p_{B_n} and also of $p_{B'_n}$, where $B'_n = aB_n$. Since $W(A) = W(B'_n)$, we infer from [4, Corollary 2.4] that $p_A = p_{B'_n}$. Hence $\sigma(A) = \sigma(B'_n) = \{a\}$. In particular, this gives r(A) = |a|. Thus w(A) = nr(A) as asserted. \Box

We remark that the above proof for $(1) \Rightarrow (2)$ is modeled after that of [9, Lemma 3.8].

Acknowledgement

We thank the (anonymous) referee for prompting us to a deeper probing of the conditions in Theorem 1.1, which results in a vast improvement, and also for reminding us of the Refs. [2,6].

References

- L. Caston, M. Savova, I. Spitkovsky, N. Zobin, On eigenvalues and boundary curvature of the numerical range, Linear Algebra Appl. 322 (2001) 129–140.
- [2] M.-T. Chien, H. Nakazato, Boundary generating curves of the *c*-numerical range, Linear Algebra Appl. 294 (1999) 67–84.
- [3] M.-T. Chien, H. Nakazato, Flat portions on the boundary of the numerical range of certain Toeplitz matrices, Linear and Multilinear Algebra 56 (2008) 143–162.

- [4] H.-L. Gau, P.Y. Wu, Companion matrices: reducibility, numerical ranges and similarity to contractions, Linear Algebra Appl. 383 (2004) 127–142.
- [5] K. Gustafson, D.K.M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
- [6] U. Haagerup, P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992) 371–379.
- [7] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer, New York, 1982.
- [8] R. Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr. 6 (1951) 193–228., English translation: P.F. Zachlin, M.E. Hochstenbach, On the numerical range of a matrix, Linear and Multilinear Algebra 56 (2008) 185–225.
- [9] C.-K. Li, B.-S. Tam, P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002) 1–23.
- [10] C. Pop, On a result of Haagerup and de la Harpe, Rev. Roumaine Math. Pures Appl. 43 (1998) 869-871.
- [11] B. Sims, On a connection between the numerical range and spectrum of an operator on a Hilbert space, J. London Math. Soc. 8 (1974) 57–59.
- [12] B. Sz-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam, 1970.
- [13] S.-H. Tso, P.Y. Wu, Matricial ranges of quadratic operators, Rocky Mountain J. Math. 29 (1999) 1139–1152.