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Abstract

For any operator A on a Hilbert space, let W(A), w(A) and w0(A) denote its numerical range, numerical
radius and the distance from the origin to the boundary of its numerical range, respectively. We prove that
if An = 0, then w(A) � (n − 1)w0(A), and, moreover, if A attains its numerical radius, then the following
are equivalent: (1) w(A) = (n − 1)w0(A), (2) A is unitarily equivalent to an operator of the form aAn ⊕ A′,
where a is a scalar satisfying |a| = 2w0(A), An is the n-by-n matrix

⎡
⎢⎢⎢⎢⎣

0 1 · · · 1

0
. . .

...

. . . 1
0

⎤
⎥⎥⎥⎥⎦

and A′ is some other operator, and (3) W(A) = bW(An) for some scalar b.
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0. Introduction

Let A be a bounded linear operator on a complex Hilbert space H . The numerical range and
numerical radius of A are, by definition,

W(A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
and

w(A) = sup{|z| : z ∈ W(A)},
respectively, where 〈·, ·〉 and ‖ · ‖ denote the inner product and its associated norm in H . It is
known that W(A) is a bounded convex subset of the plane. When H is finite dimensional, it is
even compact. Its closure W(A) contains σ(A), the spectrum of A. For its other properties, the
reader may consult [7, Chapter 22] or [5].

Assume that A is nilpotent, say, An = 0 for some n � 1. Then 0 is in σ(A) and hence in W(A).
In the following, we will show that if A is nonzero, then 0 is actually in the interior of W(A) (cf.
Corollary 1.2). To estimate the extent to which 0 belongs to this interior, we define the quantity

w0(A) ≡ dist(0, �W(A)) = inf{|z| : z ∈ �W(A)}.
Thus w0(A) is the radius of the largest closed circular disc centered at the origin which is contained
in W(A). We show in Theorem 1.1 that the inequality w(A) � (n − 1)w0(A) holds and, moreover,
if A attains its numerical radius, that is, if there is a unit vector x in H with |〈Ax, x〉| = w(A), then
the following conditions are equivalent: (1) w(A) = (n − 1)w0(A), (2) A is unitarily equivalent
to an operator of the form aAn ⊕ A′, where a is a scalar satisfying |a| = 2w0(A), An is the n-by-n
matrix⎡

⎢⎢⎢⎢⎣

0 1 · · · 1

0
. . .

...

. . . 1
0

⎤
⎥⎥⎥⎥⎦

and A′ is some other operator, and (3) W(A) = bW(An) for some scalar b. This shows the
prominent role the matrix An plays in this regard. We investigate its numerical range detailedly
in Lemma 1.3. For example, it is shown that w(An) = (n − 1)/2, w0(An) = 1/2 (for n � 2),
and the boundary of W(An) contains one line segment (for n � 3). In Section 2, we consider an
analogous inequality by Caston et al. [1, Lemma 2.6] in the opposite situation when 0 is not in the
interior of the numerical range of an n-by-n matrix A. In this case, the inequality w(A) � nr(A)

holds, where r(A) is the spectral radius of A. This, together with a characterization of those A’s
for which w(A) = nr(A) is true, is given in Theorem 2.1.

Results in this paper are analogous to the ones in [6,10] relating the numerical radius and
norm of a nilpotent operator. Indeed, it is shown therein that if A is nilpotent with An = 0
(n � 1), then w(A) � ‖A‖ cos(π/(n + 1)) and, moreover, if A attains its numerical radius and
w(A) = ‖A‖ cos(π/(n + 1)), then A is unitarily equivalent to ‖A‖Jn ⊕ A′ for some operator A′,
where Jn denotes the n-by-n Jordan block⎡

⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎥⎦ .
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In our situation, the role of Jn is played by An and 2An + In in Theorems 1.1 and 2.1,
respectively.

1. Nilpotent operators

We start with the following main result of this paper.

Theorem 1.1. Let A be an operator on H with An = 0 (n � 1).

(a) The inequality w(A) � (n − 1)w0(A) holds.
(b) Assume that A attains its numerical radius. Then the following conditions are equivalent:

(1) w(A) = (n − 1)w0(A),

(2) A is unitarily equivalent to an operator of the form aAn ⊕ A′, where a is a scalar
satisfying |a| = 2w0(A) and A′ is some other operator, and

(3) W(A) = bW(An) for some scalar b.

An easy consequence of the preceding theorem is the following:

Corollary 1.2. If A is a nonzero nilpotent operator, then 0 belongs to the interior of W(A) and
�W(A) is a differentiable curve.

Proof. For the nonzero nilpotent A, we have w0(A) > 0 by Theorem 1.1(a) and hence 0 is in
the interior of W(A). On the other hand, since any nondifferentiable point λ on �W(A) must
be in the approximate point spectrum of A by [11, Theorem 2] and the latter is the singleton
{0} for the nilpotent A, we have λ = 0, which contradicts w0(A) > 0. Hence �W(A) must be
differentiable. �

We remark that the preceding corollary is not necessarily true for a nonzero quasinilpotent
operator A (σ(A) = {0}). Indeed, if A is the Volterra operator

(Af )(x) =
∫ x

0
f (t)dt for f in L2(0, 1),

then A is quasinilpotent and 0 is in the boundary of W(A) (cf. [7, pp. 98–99]).
To prove Theorem 1.1, we need a fuller understanding of the numerical range of An. This is

provided by the next lemma.

Lemma 1.3. (1) W(An) is symmetric with respect to the x-axis.
(2) w(An) = 〈Anx0, x0〉 = (n − 1)/2, where x0 = [1/

√
n · · · 1/

√
n]T.

(3) (−1/2)In � Re An � ((n − 1)/2)In.

(4) If n � 3, then �W(An) has exactly one line segment, which is on the line x = −1/2.

(5) For any point λ of �W(An) which is not on its line segment, the set {x ∈ Cn : 〈Anx, x〉 =
λ‖x‖2} is a subspace of dimension one.

(6) w0(An) = 1/2 for n � 2.

(7) A point λ with |λ| = 1/2 is in �W(An) (n � 3) if and only if λ = −1/2.

(8) The polynomial pAn(x, y, z) = det(xRe An + yImAn + zIn) is irreducible.
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Here Re X = (X + X∗)/2 and ImX = (X − X∗)/(2i) denote the real and imaginary parts of
a matrix X, respectively.

Note that pAn and W(An) are related by a result of Kippenhahn [8], the numerical range of
an n-by-n matrix A equals the convex hull of the real points (u/w, v/w) of the dual {[u, v, w] ∈
CP2 : ux + vy + wz = 0 is a tangent line of pA(x, y, z) = 0} of the curve pA = 0 in the complex
projective plane CP2.

To prove (4) of the preceding lemma, we need another result. For any n-by-n matrix A and real
θ , let L be the supporting line of the convex set W(A) perpendicular to the ray which emanates
from the origin and forms angle θ from the positive x-axis, and let d be the (signed) distance from
the origin to L. It is easily seen that d is the largest eigenvalue of Re (e−iθA), and a unit vector in
Cn is such that 〈Ax, x〉 belongs to �W(A) ∩ L if and only if Re (e−iθA)x = dx. From this, we
obtain the following lemma immediately.

Lemma 1.4. Let A be an n-by-n matrix. Then �W(A) has a line segment on x cos θ + y sin θ = d

if and only if d is the largest eigenvalue of Re (e−iθA) which has unit eigenvectors x1 and x2 such
that Im〈e−iθAx1, x1〉 /= Im〈e−iθAx2, x2〉.

Proof of Lemma 1.3. (1) This follows easily from the fact that An is a real matrix.
(2) Since

〈Anx0, x0〉 = (n − 1)
1√
n

1√
n

+ (n − 2)
1√
n

1√
n

+ · · · + 1√
n

1√
n

= 1

n
[(n − 1) + (n − 2) + · · · + 1]

= 1

2
(n − 1),

we have w(An) � (n − 1)/2. On the other hand, for any unit vector x = [x1 · · · xn]T, we deduce
from

|〈Anx, x〉| =
∣∣∣∣∣∣
∑
i<j

xj xi

∣∣∣∣∣∣ �
∑
i<j

|xi ||xj |

and

0 �
∑
i<j

(|xi | − |xj |)2 = (n − 1)
∑

i

|xi |2 − 2
∑
i<j

|xi ||xj |

= n − 1 − 2
∑
i<j

|xi ||xj |

that
∑

i<j |xi ||xj | � (n − 1)/2. Hence w(An) � (n − 1)/2 and thus w(An) = (n − 1)/2 as as-
serted.

(3) We first show that −1/2 is the smallest eigenvalue of Re An. Indeed, since

Re An + 1

2
In =

⎡
⎢⎣

1/2 · · · 1/2
...

...

1/2 · · · 1/2

⎤
⎥⎦
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is of rank one, −1/2 is an eigenvalue of Re An of multiplicity n − 1. To prove that it is the smallest
one, let t < −1/2 and let x = [x1 · · · xn]T be a unit vector in Cn such that (Re An)x = tx. A sim-
ple computation shows that (1/2)

∑n
j=1 xj = (t + (1/2))xk for 1 � k � n. Since t + (1/2) < 0,

we obtain x1 = · · · = xn. These equalities then yield nxk/2 = (t + (1/2))xk or (t + (1/2) −
(n/2))xk = 0. Hence xk = 0 for all k. This shows that no such t can be an eigenvalue of Re An.
Thus (−1/2)In � Re An. On the other hand, since w(Re An) � w(An) = (n − 2)/2 by (2), the
inequality Re An � ((n − 2)/2)In follows.

(4) Note that x± = [1/2 ± i/2 − (1 ± i)/2 0 · · · 0]T are unit eigenvectors of Re An for the
smallest eigenvalue −1/2 with 〈Anx±, x±〉 = (−1/2) ± (1/4)i. Lemma 1.4 implies that �W(An)

contains a line segment on x = −1/2.
We next show that, for every real θ with e−iθ /= −1, the largest eigenvalue d of Re (e−iθAn)

has multiplicity one. Indeed, if dim ker(dIn − Re(e−iθAn)) � 2, then there is a nonzero vector x

of the form [x1 · · · xn−1 0]T in ker(dIn − Re(e−iθAn)). A simple computation shows that

dxk − 1

2
e−iθ

∑
j>k

xj − 1

2
eiθ

∑
j<k

xj = 0 for 1 � k � n − 1 (i)

and

1

2
eiθ

n−1∑
j=1

xj = 0.

The latter yields
∑

j xj = 0, which, together with the former gives, for k = 1,

dx1 − 1

2
e−iθ

n−1∑
j=2

xj =
(

d + 1

2
e−iθ

)
x1 = 0.

Since Re
[

0 e−iθ

0 0

]
is a submatrix of Re (e−iθAn), its maximum eigenvalue 1/2 is less than or

equal to the maximum eigenvalue d of Re (e−iθAn). Thus, in particular, d + (e−iθ /2) /= 0. We
obtain from above that x1 = 0. The equality in (i) for k = 2 then gives

dx2 − 1

2
e−iθ

n−1∑
j=3

xj =
(

d + 1

2
e−iθ

)
x2 = 0

and hence x2 = 0. Proceeding successively with the remaining equalities in (i), we obtain xk = 0
for all k, which contradicts our assumption on x. This proves our assertion. In particular, it follows
from Lemma 1.4 that �W(An) has no line segment other than the one on x = −1/2.

(5) We may assume that n � 3. By the remarks preceding Lemma 1.4, for the given λ, there is
a real θ for which Re (e−iθλ) is the largest eigenvalue of Re (e−iθAn) whose eigenvectors x are
exactly those satisfying 〈Anx, x〉 = λ‖x‖2. Hence {x ∈ Cn : 〈Anx, x〉 = λ‖x‖2} is a subspace of
dimension one from the proof of (4).

(6) We need only consider n � 3. In this case, the boundary of W(An) contains a line segment

on x = −1/2 by (4). Hence, obviously, w0(An) � 1/2. On the other hand, since
[

0 1
0 0

]
is a

submatrix of An, we have

W

([
0 1
0 0

])
=

{
z ∈ C : |z| � 1

2

}
⊆ W(An).

Therefore, w0(An) � 1/2. Our assertion follows.
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(7) Let λ in �W(An) be such that |λ| = 1/2. Since{
z ∈ C : |z| � 1

2

}
= W(A2) ⊆ W(A3) ⊆ W(An),

the point λ is also in �W(A3). Hence if θ = arg λ, then Re (e−iθλ) = 1/2 is the largest eigenvalue
of Re (e−iθA3). Therefore,

0 = det

⎡
⎣ 1/2 −e−iθ /2 −e−iθ /2

−eiθ /2 1/2 −e−iθ /2
−eiθ /2 −eiθ /2 1/2

⎤
⎦

= −(1/8)(2 + eiθ + e−iθ )

= −(1 + Re eiθ )/4,

which yields eiθ = −1 or λ = eiθ /2 = −1/2.
(8) Assume that pAn(x, y, z) = ∏m

j=1 pj (x, y, z), where the pj ’s are irreducible homogeneous
polynomials in x, y and z with real coefficients. As shown in (1), the eigenvalues of ReAn are
(n − 1)/2 and −1/2, the latter with multiplicity n − 1. Hence the roots of pAn(1, 0, z) = 0 are
−(n − 1)/2 and 1/2 (of multiplicity n − 1). We may assume, for convenience, that p1(1, 0, −(n −
1)/2) = 0 and let q = ∏m

j=2 pj . Then the only root of q(1, 0, z) = 0 is 1/2. Hence if � is the
convex hull of the real points of the dual of the curve q(x, y, z) = 0, then by duality the only
vertical supporting line of � is x = −1/2. This implies that � can only be contained in the line
x = −1/2. Dually, this says that q(x, y, z) = ∏

j (−(1/2)x + ajy + z) for some real aj ’s. From

zn = pAn(1, i, z) = p1(1, i, z)q(1, i, z)

= p1(1, i, z)

m∏
j=1

(−(1/2) + aj i + z),

we reach a contradiction. This proves the irreducibility of pAn . �
Some of the assertions in Lemma 1.3 can be proved from results in [2, Section 3,3, Section 3]

on properties of pA and W(A) for more general nilpotent Toeplitz matrices A. In particular, the
irreducibility of pAn in (8) follows from [2, Theorem 3.2] and the existence of a line segment on
�W(An) in (4) from [3, Theorem 3]. Our proofs are more direct.

Another result which we need is the following:

Proposition 1.5. Assume that An = 0 (n � 1). Then W(A) ⊆ W(An) if and only if Re A �
(−1/2)I.

The proof of this is based on the one for the corresponding numerical range containment for a
nilpotent contraction and the Jordan block.

Lemma 1.6. The operator A on H is a contraction with An = 0 (n � 1) if and only if A is power
dilated to Jn ⊕ · · · ⊕ Jn, that is, there is an isometry V from H to Cn ⊕ · · · ⊕ Cn such that
Ak = V ∗(Jn ⊕ · · · ⊕ Jn)

kV for all k � 1, where the number of summands is dim ran(I − A∗A).

This can be proved by modifying the arguments for [7, Solution 152]. It was essentially
reproduced in [10].
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Proof of Proposition 1.5. Since Re An � (−1/2)In as proved in Lemma 1.3(3), the necessity of
our assertion is obvious. For the converse, assume that Re A � (−1/2)I and let B = A(I + A)−1.
For any vector x, if y = (I + A)−1x, then we have

‖x‖2 − ‖Bx‖2 = 〈x, x〉 − 〈A(I + A)−1x, A(I + A)−1x〉
= 〈(I + A)y, (I + A)y〉 − 〈Ay, Ay〉
= 〈y, y〉 + 〈Ay, y〉 + 〈y, Ay〉
= 〈(I + 2Re A)y, y〉 � 0,

showing that B is a contraction. We also have Bn = 0. Lemma 1.6 then yields the power dilation
of B to Jn ⊕ · · · ⊕ Jn. Since

A = B(I − B)−1 = B + B2 + · · · + Bn−1

and

An = Jn + J 2
n + · · · + J n−1

n ,

we obtain the dilation of A to An ⊕ · · · ⊕ An. Thus W(A) ⊆ W(An) as asserted. �
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (a) To show that w(A) � (n − 1)w0(A), we represent A as⎡
⎢⎢⎢⎢⎣

0 A12 · · · A1n

0
. . .

...

. . . An−1,n

0

⎤
⎥⎥⎥⎥⎦

on H = ker A ⊕ (ker A2 
 ker A) ⊕ · · · ⊕ (H 
 ker An−1). Let

A′ =

⎡
⎢⎢⎢⎢⎣

0 ‖A12‖ · · · ‖A1n‖
0

. . .
...

. . . ‖An−1,n‖
0

⎤
⎥⎥⎥⎥⎦

and, for any unit vector x = [x1 · · · xn]T in H , let x′ = [‖x1‖ · · · ‖xn‖]T. We have

|〈Ax, x〉| � 〈A′x′, x′〉 (ii)

� max{‖Aij‖ : 1 � i < j � n}〈Anx
′, x′〉 (iii)

� 2w0(A)w(An) (iv)

= (n − 1)w0(A), (v)

where the inequality in (iv) follows from the facts that
[

0 Aij

0 0

]
dilates to A and thus

{
z ∈ C : |z| � 1

2
‖Aij‖

}
= W

([
0 Aij

0 0

])
⊆ W(A)

(cf. [13, Theorem 2.1]), and the equality in (v) is by Lemma 1.3 (2). The inequality w(A) �
(n − 1)w0(A) follows.
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(b) To prove (1) ⇒ (2), assume that w(A) = (n − 1)w0(A). Represent A as in (a) and let
x = [x1 · · · xn]T be a unit vector in H such that 〈Ax, x〉 = w(A)eiθ for some real θ . Replacing
A by e−iθA, we may assume that 〈Ax, x〉 = w(A). Then 〈Ax, x〉 = (n − 1)w0(A) implies that
the inequalities in (ii), (iii) and (iv) are actually equalities. The one from (ii) yields∑

i<j

〈Aijxj , xi〉 =
∑
i<j

‖Aij‖‖xj‖‖xi‖,

which in turn implies that 〈Aijxj , xi〉 = ‖Aijxj‖‖xi‖ = ‖Aij‖‖xj‖‖xi‖ for all i < j . Thus
Aijxj = aij xi for some scalar aij . On the other hand, the equalities from (iii) and (iv) yield
‖Aij‖ = 2w0(A) for all i < j and 〈Anx

′, x′〉 = w(An). By Lemma 1.3(2) and (5), the latter
implies that ‖xj‖ = 1/

√
n for all j . Hence

1

n
aij = aij‖xi‖2 = 〈Aijxj , xi〉 = ‖Aij‖‖xj‖‖xi‖

= 1

n
‖Aij‖ = 2

n
w0(A)

and therefore Aijxj = 2w0(A)xi for all i < j . If ej = [0 · · · 0
√

nxj

j th
0 · · · 0]T in H for

1 � j � n, then {e1, . . . , en} forms an orthonormal set in H . Let M be the subspace generated
by the ej ’s. We check that M is a reducing subspace of A with A|M unitarily equivalent to
2w0(A)An. Indeed, we have

Aej = √
n[A1j xj · · · Aj−1,j xj 0 · · · 0]T

= 2
√

nw0(A)[x1 · · · xj−1 0 · · · 0]T

= 2w0(A)(e1 + · · · + ej−1)

for all j , which shows that M is invariant under A. On the other hand, we also have

A∗ei = √
n[0 · · · 0 A∗

i,i+1xi · · · A∗
inxi]T.

Note that, for any contraction T (‖T ‖ � 1) and vectors x and y with ‖x‖ = ‖y‖, T x = y and
T ∗y = x are equivalent. (This is essentially due to B. Sz.-Nagy and can be proved as in [12,
Proposition I.3.1]) Applying it to (Aij /‖Aij‖)xj = xi yields (A∗

ij /‖Aij‖)xi = xj or A∗
ij xi =

2w0(A)xj for i < j . Thus

A∗ei = 2
√

nw0(A)[0 · · · 0 xi+1 · · · xn]T

= 2w0(A)(ei+1 + · · · + en)

for all i and hence M is invariant under A∗. This proves that M reduces A. Since

〈Aej , ei〉 = 2w0(A)(〈e1, ei〉 + · · · + 〈ej−1, ei〉)
=

{
0 if j � i,

2w0(A) if i < j,

we have the unitary equivalence of A|M and [〈Aej , ei〉]ni,j=1 = 2w0(A)An. Hence A is unitarily
equivalent to 2w0(A)An ⊕ A′ for some A′. This proves (2).

For (2)⇒ (3), we may assume thatA = An ⊕ A′ withw0(A)=1/2. Then, obviously,W(An) ⊆
W(A). We now check that Re A′ � (−1/2)I or, equivalently, W(A′) ⊆ {z ∈ C : Re z � −1/2}.
Assume otherwise that there is some z0 in W(A′) with Re z0 < −1/2. If [z1, z1] is the vertical
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line segment on �W(An), then the triangular region �z0z1z1 is contained in W(A). Let z2 be a
point in �z0z1z1 which is on the x-axis. Then �z2z1z1 is also contained in W(A). If � is the con-
vex hull of the set �z2z1z1 ∪ W(An), then � ⊆ W(A) and dist(0, ��) > 1/2 by Lemma 1.3(7).
Thus w0(A) = dist(0, �W(A)) > 1/2, contradicting our assumption. Hence Re A′ � (−1/2)I as
asserted. Therefore, Re A = Re An ⊕ Re A′ � (−1/2)I by Lemma 1.3 (3). Proposition 1.5 then
implies that W(A) ⊆ W(An). Thus W(A) = W(An), which proves (3).

The implication (3) ⇒ (1) is an easy consequence of Lemma 1.3 (2) and (6). �

2. Numerical and spectral radii

In this section, we consider a situation which is opposite to the nilpotent case, namely, we
consider an n-by-n matrix A with 0 not in the interior of its numerical range. Under this condition,
[1, Lemma 2.6] says that w(A) � nr(A) holds, where r(A) = max{|z| : z ∈ σ(A)} is the spectral
radius of A. This inequality resembles in appearance the one we have had in Section 1, namely,
w(A) � (n − 1)w0(A) for A satisfying An = 0. As the following theorem shows, the resemblance
extends even to the equality case.

Theorem 2.1. Let A be an n-by-n matrix with 0 /∈ IntW(A).

(a) The inequality w(A) � nr(A) holds.
(b) The following conditions are equivalent:

(1) w(A) = nr(A),

(2) A is unitarily equivalent to aBn for some a in C, where Bn is the n-by-n matrix
⎡
⎢⎢⎢⎢⎣

1 2 · · · 2

1
. . .

...

. . . 2
1

⎤
⎥⎥⎥⎥⎦

and
(3) W(A) = aW(Bn) for some a in C.

Here Bn = 2An + In plays the role of An in Theorem 1.1. (a) is from [1, Lemma 2.6]. We
include its proof below for completeness. (b) depends on the numerical range analogue of the
Perron–Frobenius theorem for nonnegative matrices. Our reference is [9].

For a complex matrix A = [aij ]ni,j=1, we use |A| to denote the matrix [|aij |]ni,j=1. If A =
[aij ]ni,j=1 and B = [bij ]ni,j=1 are real matrices, then A � B (or B � A) means that aij � bij for
all i and j . Similar notations extend to vectors.

Proof of Theorem 2.1. (a) Since 0 is not in IntW(A), we may assume, after a suitable rotation,
that Re A � 0 and also

A =
⎡
⎢⎣

a11 · · · a1n

. . .
...

ann

⎤
⎥⎦ .
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Since

Re

[
aii aij

0 ajj

]
=

[
Re aii aij /2
aij /2 Re ajj

]
� 0

for all i < j , we have |aij |2/4 � (Re aii)(Re ajj ) or |aij | � 2|aiiajj |1/2. It follows that |A|�
r(A)Bn and hence w(A) � r(A)w(Bn) by [9, Corollary 3.6]. Since

w(Bn) = w(2An + In) = 2w(An) + 1 = 2 · 1

2
(n − 1) + 1 = n

by Lemma 1.3 (2), the asserted inequality follows.
(b) We first prove (1) ⇒ (2). Let w ≡ w(A) = nr(A) and B ′

n = r(A)Bn. From the proof in
(a), we have w = w(B ′

n). Let x be a unit vector in Cn such that |〈Ax, x〉| = w. Since

w = |〈Ax, x〉| � 〈|A||x|, |x|〉 � 〈B ′
n|x|, |x|〉 � w,

the inequalities here are actually equalities. In particular, we have 〈B ′
n|x|, |x|〉 = w. Hence |x| =

[1/
√

n · · · 1/
√

n]T by Lemma 1.3 (5) and (2). Since 〈(B ′
n − |A|)|x|, |x|〉 = 0 and B ′

n − |A|�0
(from (a)), we infer that |A| = B ′

n. Let x = [x1 · · · xn]T and D = diag(|x1|/x1, . . . , |xn|/xn). If
λ = 〈Ax, x〉/w, then〈

1

λ
DAD−1|x|, |x|

〉
= 1

λ
〈Ax, x〉 = w = 〈B ′

n|x|, |x|〉.

Since |(1/λ)DAD−1| = |A| = B ′
n, we infer, by taking into account the fact that |x| = [1/

√
n · · ·

1/
√

n]T, that (1/λ)DAD−1 = B ′
n or

A = λD−1B ′
nD = λr(A)D−1BnD,

which proves (2).
Since (2) ⇒ (3) is trivial, to complete the proof we need only show (3) ⇒ (1). If (3) holds,

then

w(A) = |a|w(Bn) = n|a|
as proved in (a). Note that pAn(x, y, z) = pBn(x/2, y/2, z − (x/2)) for all x, y and z. The irre-
ducibility of pAn (by Lemma 1.3 (8)) implies that of pBn and also of pB ′

n
, where B ′

n = aBn. Since
W(A) = W(B ′

n), we infer from [4, Corollary 2.4] that pA = pB ′
n
. Hence σ(A) = σ(B ′

n) = {a}.
In particular, this gives r(A) = |a|. Thus w(A) = nr(A) as asserted. �

We remark that the above proof for (1) ⇒ (2) is modeled after that of [9, Lemma 3.8].

Acknowledgement

We thank the (anonymous) referee for prompting us to a deeper probing of the conditions in
Theorem 1.1, which results in a vast improvement, and also for reminding us of the Refs. [2,6].

References

[1] L. Caston, M. Savova, I. Spitkovsky, N. Zobin, On eigenvalues and boundary curvature of the numerical range,
Linear Algebra Appl. 322 (2001) 129–140.

[2] M.-T. Chien, H. Nakazato, Boundary generating curves of the c-numerical range, Linear Algebra Appl. 294 (1999)
67–84.

[3] M.-T. Chien, H. Nakazato, Flat portions on the boundary of the numerical range of certain Toeplitz matrices, Linear
and Multilinear Algebra 56 (2008) 143–162.



726 H.-L. Gau, P.Y. Wu / Linear Algebra and its Applications 429 (2008) 716–726

[4] H.-L. Gau, P.Y. Wu, Companion matrices: reducibility, numerical ranges and similarity to contractions, Linear
Algebra Appl. 383 (2004) 127–142.

[5] K. Gustafson, D.K.M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New
York, 1997.

[6] U. Haagerup, P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math.
Soc. 115 (1992) 371–379.

[7] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer, New York, 1982.
[8] R. Kippenhahn, Über den Wertevorrat einer Matrix,Math. Nachr. 6 (1951) 193–228., English translation: P.F. Zachlin,

M.E. Hochstenbach, On the numerical range of a matrix, Linear and Multilinear Algebra 56 (2008) 185–225.
[9] C.-K. Li, B.-S. Tam, P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002) 1–23.

[10] C. Pop, On a result of Haagerup and de la Harpe, Rev. Roumaine Math. Pures Appl. 43 (1998) 869–871.
[11] B. Sims, On a connection between the numerical range and spectrum of an operator on a Hilbert space, J. London

Math. Soc. 8 (1974) 57–59.
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