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Distributed Optimal Power Flow With Discrete
Control Variables of Large Distributed Power Systems

Ch’i-Hsin Lin and Shin-Yeu Lin

Abstract—In this paper, we propose a distributed algorithm to
solve the yet explored distributed optimal power flow problem
with discrete control variables of large distributed power systems.
The proposed algorithm consists of two distinguished features: 1)
a distributed algorithm for solving continuous distributed optimal
power flow to serve as a core technique in the framework of ordinal
optimization (OO) strategy, and 2) implementing the OO strategy
in a distributed power system to select a good enough discrete
control variable solution. We have tested the proposed algorithm
for several cases on the IEEE 118-bus and Tai Power 244-bus
systems using a 4-PC network. The test results demonstrate the
validity, robustness, and excellent computational efficiency of the
proposed distributed algorithm in getting a good enough feasible
solution.

Index Terms—Discrete control variables, distributed computa-
tion, distributed optimal power flow, nonlinear programming, or-
dinal optimization.

NOMENCLATURE

Due to involved notations, in this section we illustrate those
frequently appear throughout the paper, and the rest will be il-
lustrated in the context.

Total number of subsystems.

Vector of continuous variables
consisting of real and reactive
power generations and bus
complex voltage corresponding to
subsystem .

Vector of continuous variables of
the overall system.

Objective function of subsystem .

Objective function of the overall
system.

Index set of subsystems
connecting with subsystem
.
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Vector of complex voltage on the
boundary buses of subsystem ,
which connects with subsystem .

, .

–dimensional vector of
discrete control variables, such
as switching shunt capacitor
banks and transformer taps, etc.,
corresponding to subsystem .

–dimensional discrete control
variables of the overall system
and .

Solution space of for
subsystem .

Solution space of .

Real and reactive power balance
equations of subsystem .

Inequality constraints in
subsystem , such as security
limits on voltage magnitude, real
power line flows and real and
reactive power generation limits.

Vector of continuous variables in
the general CDOPF shown in (3)
corresponding to subsystem .

.

Continuous variables on the
boundary buses of subsystem ,
which connects with subsystem .

.

Equality constraints in the general
CDOPF (3).

represents
the equality constraints on the
boundary buses of subsystem
but involving .

.

Partition of .
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Inequality constraints in the
general CDOPF (3).

Continuous version of
corresponding to subsystem .

.

Optimal .

I. INTRODUCTION

A LTHOUGH the optimal power flow (OPF) problem has a
long history in power system research [1]–[5], the study

of distributed OPF is introduced only recently. Kim and Baldick
proposed a course-grained distributed OPF algorithm in [6], and
they also compared three decomposition coordination methods
for implementing distributed OPF algorithms in [7]. Hur et al.
had evaluated the convergence rate of the auxiliary problem
principle for a distributed OPF algorithm in [8]. In a more re-
cent paper [9], Hur et al. considered the security limits for dis-
tributed OPF. Furthermore, Nogales et al. proposed a decompo-
sition algorithm for the multiarea OPF problem in [10]. Chang
and Lin proposed an MPBSG technique based parallel dual type
method for solving distributed OPF problems in [11], and sim-
ilar technique appeared in [12]. These excellent research works
had made distributed OPF possible; however, issues of handling
discrete control variables such as the switching shunt capacitor
banks and transformer taps in a large distributed power system
are not explored in the above mentioned papers.

Discrete control variables play an important role in central-
ized OPF and have been studied for years [13]–[16] including
more recent papers that use ordinal optimization (OO) approach
[17], simulated annealing (SA) method [18], genetic algorithm
(GA) [19], tabu search (TS) method, [20], and evolutionary pro-
gramming (EP) [21] as the solution techniques. The importance
of discrete control variables to distributed OPF remains as well.
Thus, distributed optimal power flow with discrete control
variables, which is abbreviated as DOPFD in this paper, of
large distributed power system is an important research topic to
pursue. DOPFD is a large dimension distributed combinatorial
optimization problem, which, in general, is computationally
intractable. Thus, the purpose of this paper is to propose a
computationally efficient distributed algorithm to solve the
DOPFD for a good enough solution. The proposed distributed
algorithm for DOPFD possesses two distinguished features:
1) a distributed algorithm for solving continuous distributed
OPF to serve as a core technique in the framework of OO
strategy, and 2) implementing the OO strategy [22], [23] in
a distributed power system to select a good enough discrete
control variable solution.

In addition, we will implement the proposed distributed al-
gorithm in a real PC network to demonstrate its validity. Thus,
the contribution of this paper is that we not only propose a com-
putationally efficient distributed algorithm to solve the DOPFD
for a good enough solution but also implement it in a real com-
puter network.

Fig. 1. Example system formed by three interconnected subsystems.

This paper is organized in the following manner. In Section II,
we will state the considered DOPFD mathematically. In
Section III, we will present the proposed distributed algorithm
to solve the DOPFD for a good enough solution. In Section IV,
we will test the proposed distributed algorithm on the IEEE
118-bus and Tai Power (TP) 244-bus systems, which are arbi-
trarily partitioned into four subsystems, using a PC network.
Finally, we will draw a conclusion in Section V.

II. PROBLEM STATEMENT

The considered DOPFD problem can be stated in the
following:

subject to

(1)

where denotes the set of tie lines between the pair of sub-
systems and , denotes the set of pair subsystems consisting
by tie lines, denotes the real power flows over the tie
line from subsystem to subsystem measured at the end bus
in subsystem , which is indicated by the superscript in ;
and denote the lower and upper security power flow limit of

, respectively. A graphical illustration of , ,
and the tie line real power flows are shown in

Fig. 1. For example, , ,
, , , where

and furthermore,
, ; the tie line real power flows from

subsystem 1 to subsystem 3 are , , , and from subsystem
1 to subsystem 2 are , . We can transform the inequality
constraints (i.e., the security limits) on
the tie line real power flow into equality constraints and simple
inequality constraints as follows:

(2)
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where and denote the slack variables corresponding to
in subsystem .

III. DISTRIBUTED ALGORITHM FOR SOLVING THE DOPFD

The difficulties of the DOPFD are twofold. The first one is
for a given ,(1) is a large dimension continuous distributed
optimal power flow, which is abbreviated as CDOPF in this
paper; thus, to evaluate the performance of a , we need to
solve a CDOPF. The second one is the enormous size of ,
for example if there are , say 40, control variables in the whole
system and each one has , say four, possible discrete values,
then there are ( ) possible . Therefore, if we
employ the exhaustive search method to search the optimal
in , we need to solve more than continuous CDOPFs.
This is definitely computationally intractable not to mention the
difficulty in developing a distributed algorithm for solving the
CDOPF. Thus, to cope with the difficulty caused by the enor-
mous size of , we will employ the OO strategy to select a good
enough instead of optimal in and simultaneously solve
the CDOPF under this . To accomplish this task, we need to
1) propose a distributed algorithm for solving CDOPFs in the
framework of OO strategy and 2) implement the OO strategy in
a distributed power system to select a good enough . In the
following, we will present 1) first.

A. Distributed Algorithm for Solving the CDOPF

Since the CDOPF will appear in the OO strategy more than
once, we will use a more general expression to describe the
CDOPF.

The considered CDOPF can be stated in the following form:

subject to

(3)

in which we can partition into

such that involves only, while involves . Thus, we
may use the following to replace the equality constants in (3):

and (4)

Our approach for solving the CDOPF is a combination of
the successive quadratic programming (SQP) method with the
dual pseudo quasi Newton (DPQN) method [24], such that the
quadratic programming problem (QPP) induced in the SQP
method is solved by the DPQN method. The SQP method uses
the following iterations to solve (3):

(5)

where is the iteration index, is a positive step-size.

The in (5) is the optimal
solution of the following QPP:

subject to

(6)

For the sake of notation simplicity, we drop the arguments in

the functions , , , and . As indicated above, the QPP in
(6) will be solved by the DPQN method. Therefore, the DPQN
method is an inner loop of the SQP method. That means most
of the computations of the proposed distributed algorithm for
solving the CDOPF lie in the DPQN method, because the SQP
method simply updates , by (5) once ,

is obtained.
Instead of solving (6) directly, the DPQN method solves the

dual problem of (6) as stated in the following.
Let denote the Lagrange multiplier vector associated with

the equality constrains of the overall system in (6) and let de-
note the subvector of associated with the equality constraints

corresponding to subsystem . We partition into ,

such that and associate with the equality constraints

and
, respectively. Then the dual problem of (6) can be stated as

follows[25]:

(7)

where the dual function is defined by (8) at the bottom of
the page, in which we have put the inequality constraints in (6)
as the domain of , denoted by and defined by

(9)

The DPQN method uses the following iterations to solve the
dual problem (7):

(10)

where is the iteration index, and is a positive step-size.
The is obtained from solving
the following linear equations:

(11)

where denotes the gradient of with respect to ;
the block diagonal matrix is an ap-
proximate Hessian of the dual function without consid-
ering the constraints , and this is the reason why we
name (10)–(11) as the dual pseudo quasi-Newton method. The

(8)
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formulae for calculating and are described below.
The th diagonal block submatrix of denoted by is given
by [25]

(12)

where (13)

(14)

(15)

(16)

and the matrix in (13)–(16) is defined by the following:

(17)

in which the matrix is an identity matrix with dimensions of
, and is a small positive real number to make

positive definite. Note that in (13)–(16), we do not consider the
constraint . Since is block diagonal, we can decom-
pose (11) into the following:

(18)

where . Clearly, is a
negative definite matrix for every , so is . Con-
sequently, in (10) obtained from solving (18) is an as-
sent direction of at . We can partition into

which can be computed by the following

[25]:

(19)

(20)

in which , , is the optimal solution of the min-
imization problem on the RHS of (8). Thus to compute
using (19) and (20), we need to solve the minimization problem
on the RHS of (8) first as stated in the following. The constraint

set in (9) can be expressed as , where

and
. Though not that trivial, the objective function of the min-

imization problem on the RHS of (8) is separable as illustrated
below. The coupling between subsystems is the last term inside
the big bracket in (8). We define as the subvector of asso-
ciated with the constraint ,

which is part of that in-

volves . Thus , and the last term inside the
big bracket in (8) regarding subsystem can be rewritten as

(21)

The relationship between , , , , and can
be illustrated by the aid of Fig. 2.

In this figure, each boundary bus is associated with the
equality constraint, Lagrange multiplier and the variable;

Fig. 2. Relationship between � , � , �� , �� , �� , and �� .

however, due to space limitation, we only mark necessary
notations. Thus, we have ; ,
where , and ;

, where and ;
, where and

. Therefore, the complicating
variables in (21) is , , which do not belong to
subsystem . However, taking the summation outside the big
bracket in (8), , into account and suitably rearranging
terms, we can rewrite ,
where the term inside the parenthesis is the last term in
(21), as , where denotes
the Lagrange multiplier vector associated with the equality
constraints in subsystem but involving the variables
in subsystem ; for example, in Fig. 2, and

. Therefore, after such rearrangement, the
minimization problem on the RHS of (8) is separable and can
be decomposed into the following independent minimization
subproblems: For

(22)

Once the optimal solution of (22), , is obtained for all
, we can calculate by (19) and (20). Subsequently,

can be solved from (18).
Remark 1: As indicated previously, is an ascent direc-

tion for the dual function at . Thus if the step-size
is determined by the Armijo’s rule [24] or is a small enough
constant, the DPQN method (10) and (18) will converge. Sim-
ilarly, is a descent direction of the objective function

at , which is true because typical
for OPF such as total generation cost or total system losses

is locally convex, thus if the step-size is determined by
the Armijo’s rule [24] or is a small enough constant, the SQP
method (5) and (6) will converge. Since Armijo’s rule is a cen-
tralized step-size determination rule, for the sake of implemen-
tation in distributed computer network, we had better employ
a constant step-size. Based on our extensive simulation experi-
ences, 0.9 is a good choice of small enough constant for both

and .



LIN AND LIN: DISTRIBUTED OPTIMAL POWER FLOW WITH DISCRETE CONTROL VARIABLES 1387

1) Complete Decomposition and Parallel Computation (Re-
solving the Difficulty Caused by Large Dimension): All the
computation formulae in the SQP and DPQN methods (5), (10),
(13)–(16), (18)–(20), and (22) are decoupled and can be carried
out independently and in parallel. This property resolves the dif-
ficulty caused by large dimensionality of CDOPF.

2) Required Data Communication: As indicated previously,
all the computation formulae in the SQP and DPQN methods
are decoupled, however there are data communications required
in performing (14)–(16), (20) and (22). Specifically, to prepare

in (18), we need to perform (13)–(16) in subsystem ; while
preparing in (14)–(16), we require the data of or ,

, from subsystems , because
involves . Similar situations occur to computing
in (20), in which we need from subsystem the data
to prepare and , and the data to perform (20).
In addition, to obtain from solving (22), we need the data

, and , from subsystems . However, to

prepare the just mentioned data in subsystem , we need

the data from subsystem . Fortunately, the data required
in subsystem from subsystems (subsystem ) are
only those on the boundary buses. Therefore, the burden of data
communication is very light. This indicates that the proposed
distributed algorithm for solving CDOPF is very suitable for
implementation in a distributed computer network.

3) Convergence Determination and Synchronization of Dis-
tributed Computation: Regarding convergence determination,
we assign a subsystem namely the root subsystem to monitor
the convergence of the SQP and DPQN methods in the dis-
tributed computer network. Following is the distributed algo-
rithmic steps for solving CDOPF in each subsystem , and the
steps for determining the convergence will be executed in the
root subsystem only, which will be indicated specifically. Re-
garding the synchronization in each algorithmic step, we employ
the concept of asynchronous synchronization, which implies the
computations of an algorithmic step will start only when all
the required data from the connecting subsystems are
received.

4) Distributed Algorithm I for Subsystem : Now we are
ready to state the distributed algorithmic steps for subsystem
to solve the CDOPF (3).

Step 0) Initially guess and ; set , .

Step 1) Calculate the values of , , , ; send
to subsystem for every .

Step 2) Once receiving from all subsystems .
calculate , , (i.e., , ), and

(by (13)–(16)); send to subsystem for every .

Step 3) Once receiving from all subsystems ,
go to Step 4.

Step 4) Send to subsystem for every .

Note: The reason why we send and to subsystem

for every in separate steps is because is constant
for the whole DPQN method in iteration of the SQP method,

while varies for each iteration of the DPQN method as
can be seen in Step 10.

Step 5) Once receiving all , , obtain from
solving the th minimization subproblem in (22).

Step 6) Send to subsystem for every .

Step 7) Once all are received, calculate
by (19) and (20).

Step 8) Solve from (18).

Step 9) If , send a signal to the root subsystem
to inform the convergence of the DPQN method in this
subsystem and go to Step 11 if or go
to Step 12 if . If , go to
Step 10.

Step 10) Update by (10) with an experienced
step-size , set and return to Step 4.

Step 11 (for root subsystem only) Once receiving the signal
indicating the convergence of the DPQN method from all
subsystems, send a convergence signal of the DPQN method to
subsystem for all .

Step 12) Once receiving the convergence signal of the DPQN
method from the root subsystem, set . If

, send a signal to the root subsystem to inform
the convergence of the SQP method in this subsystem and
wait for further convergence signal from the root subsystem;
otherwise, update by (5) with an experienced
step-size , set and return to Step 1.

Step 13 (for root subsystem only) Once receiving the signal
indicating the convergence of the SQP method from all
subsystems, send a signal to all subsystems to continue the
algorithmic steps in Distributed Algorithm II, which will be
presented later.

B. OO Theory-Based Distributed Algorithm to Solve DOPFD
for a Good Enough Solution

For real-time application purpose, we would rather obtain a
good enough solution within reasonable computation time than
get the optimal solution using incredibly long time. The OO
theory [22], [23] is a recently developed optimization technique
to solve hard optimization problems, such as the combinato-
rial optimization problem, for a good enough solution with high
probability using limited computation time. Based on the obser-
vation that the performance order of discrete solutions is likely
preserved even evaluated by a surrogate model, the OO theory
concludes the following: Suppose we simultaneously evaluate
a large set of alternatives very approximately and order them
according to the approximate evaluation. Then there is high
probability that we can find the actual good alternatives if we
limit ourselves to the top of the observed good choices.
According to this conclusion, we can quickly evaluate the es-
timated performances of all discrete solutions in the candidate
discrete solution set using a surrogate model and rank them to
select a set of top ranked solutions. Suppose we employ a more
refined surrogate model, there will be more actual good discrete
solutions contained in the selected set of top ranked solutions,
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however at the cost of more evaluation time for each discrete so-
lution. Therefore, if the size of the primitive discrete solution set
is huge, the above evaluation, ranking and selection process can
repeat for more than one stage, such that 1) the employed surro-
gate models will be refined stage by stage, and 2) the set of top
ranked solutions selected in one stage will serve as the candidate
solution set of next stage. In the final stage, the exact model will
be used to evaluate all discrete solutions of the largely trimmed
candidate solution set, and the resulted best discrete solution is
the good enough solution that we seek. Thus, comparing with
the exhaustive search method, in which the exact model is used
to evaluate every discrete solution, the proposed OO strategy is a
process to select a good enough from the enormous using
limited computation time. However, some ranking and selection
are centralized behaviors. Thus, we need to assign the root sub-
system, which is responsible for determining the convergence
of SQP and DPQN methods in Distributed Algorithm I, to carry
out this task. Consequently, our idea to carry out some central-
ized OO concept in a distributed power system is as follows.
Each subsystem will evaluate the estimated performances of

and send the evaluation results to the root subsystem. The
root subsystem will then rank and select a set of top ranked

based on the gathering estimated performances of
sent from all subsystems and send the subvector

of the selected to subsystem . Based on this idea, the
proposed distributed algorithm for solving DOPFD for a good
enough solution consists of three stages as described below.

1) Stage 1: There are two parts in this stage. The first part is
to reduce the size of the primitive candidate solution set, , to

based on the optimal solution of the CDOPF.
To achieve this, replacing the discrete in (1) by its con-

tinuous version and replacing the inequality constraints on
tie line real power flows by the transformed equality and simple
inequality constraints, (2), we obtain a CDOPF shown in the
following:

subject to

(23)

Note that the upper and lower bounds of is represented
by the maximum and minimum values of , respectively,
and these bounded constraints on are included in the
inequality constraints in (23). We define the
functions and

, and denote the
vector functions , and

, . We define
and denote the vector of slack variables , .
Setting , , , and

then we can use the Distributed Algorithm I
to solve the CDOPF, (23). It is worth noting that the optimal
objective value of (1) cannot compete with that of (23), because

the optimal for (1) is only a feasible solution of (23). Since
most of the objective functions considered in the OPF, such as
total generation cost and total system losses, are continuously
differentiable and locally convex, the neighboring discrete
control solutions of the continuous optimal solution, , of (23)
should consist of good enough discrete control solutions of (1).
Thus, we have reduced the size of candidate solution set, ,
to .

However, , for example , is still a very large number.
Thus, the second part of this stage is to further reduce the size

of the candidate solution set from to based on sen-
sitivity analysis, where , a faction of say , is prede-
termined. To achieve this, we proceed as follows. Since some
components of may already be very close to the closest dis-
crete values or the discrete steps of some discrete control vari-
ables are very small such as the transformer tap ratio, we can
fix those components of to their closest discrete values if
the corresponding deviations do not affect the optimal objec-
tive value of the CDOPF significantly. Thus, in the rest of this
stage, we will employ the sensitivity theory [25, Ch. 10, Sec.
10.7, p. 312] to find such components. The sensitivity theory
states that the sensitivity, or the gradient, of with respect to the

value change of the equality constraint function

equals the negative Lagrange multiplier, .
We let and denote the th component of and

, respectively, and define and

, where and denote
the closest discrete value on the right-hand side and left-hand
side of , respectively. The deviation (or )

will cause the value change on and . Then
the deviation of the overall optimal objective value of (23), ,
caused by the deviation (or ), denoted by

(or ) can be calculated based on
the above mentioned sensitivity theory and chain rule by

(24)

Smaller (or ) implies
that (or ) will affect very lightly. We let

and rank based on the values of
such that the smaller the latter, the higher

rank the former. Then, for each of the top ranked ,
we will fix the corresponding discrete control variable

at if or if

.
Now, since each of yet fixed discrete control variables

in subsystem can take two neighboring discrete values, there
are possible in subsystem , and we denote them
by , . Combination of the subsystem’s

results in possible . In other words,

we have possible from the overall system point
of view, thus we have further reduced the size of the candidate
solution set from to .
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2) Stage 2: In this stage, we will estimate the performance

of the obtained in Stage 1 using sensitivity model
and select the top ranked , say 50, .

To do so, we will compute the estimated deviation of the op-
timal objective value due to the deviation

for each of the in subsystem by

(25)

The reason that supports (25) is exactly the same as
that supports (24) except for being a vector, while

is a component. Then, subsystem will send the
pairs of to the root subsystem.

Now in the root subsystem, we label these pos-

sible as , and , the
subvector of corresponding to subsystem , is one of
the sent from subsystem . Due to the linear
property of the sensitivity theory [25, Ch. 10, Sec. 10.7, p.
312], we have , where

, is the subvector of
corresponding to subsystem , and is one of
the sent from subsystem . As indicated
previously, the optimal objective value of (1) is larger than
that of (23), because the optimal for (1) is only a feasible
solution for (23). Therefore, smaller implies
a smaller deviation of the optimal objective value of (23)
caused by the deviation . Thus, the root subsystem

will then rank these based on the corre-
sponding values of such that the with
smaller has higher rank. Subsequently, we
can pick the top ranked and relabel them as ,

. Then the root subsystem will send to subsystem
the corresponding subvectors , , for

every . Thus, we have further reduced the size of

the candidate solution set from to . In the meantime,
the root subsystem will inform each subsystem to proceed with
next stage.

3) Stage 3: In this stage, we will use the exact model to
evaluate the resulted in Stage 2, and the best one is
the good enough that we seek.

The exact model for evaluating the discrete control solutions
, obtained in Stage 2 is (1), but in which

the is replaced by the fixed and becomes a CDOPF.
Replacing the inequality constraints on tie line real power flows
by the transformed equality and simple inequality constraints
(2), the exact model will be the same as (23) except for substi-
tuting the continuous variables by the fixed . Using
the similar treatment as to (23), we can set ,

, and , where ,
and have been defined in the paragraph followed by (23).
Thus, we can use Steps 1–13 of the Distributed Algorithm I
to solve the resulted CDOPF. Note that we do not need Step
0 of Distributed Algorithm I, because the resulted operating
point from Stage 2 (that is the optimal solution of the CDOPF
(23), but in which is replaced by ) will be the ini-
tial operating point of this Stage. Thus we can proceed with

picking the best among as follows.
When receiving the corresponding subvectors of the discrete
control solutions resulted in Stage 2 from the root subsystem,
all subsystems will cooperate to solve the CDOPFs. We let

denote the
optimal solution of the CDOPF for the fixed . Once the

CDOPFs are solved, each subsystem will send the pairs of
to the root subsystem. The root sub-

system will calculate the objective value of the overall system
for the given by taking the sum .
We denote as the corresponding to the smallest

, among . Then the
, associated with the will be the good

enough solution that we seek.
Remark 2: Solving CDOPFs seems to be computa-

tionally very intensive. In fact, it is not, because each is
neighboring to , and the initial operating point resulted from
Stage 2 is already close to the solution. Therefore, in almost all
the CDOPFs, it takes only one iteration of the Distributed Al-
gorithm I excluding Step 0 to obtain the solution.

Remark 3: We say that a is feasible if the CDOPF re-
sulted by setting the in (1) to be the given has optimal
solution. Now, one of the conventional approaches to central-
ized OPF with discrete control variables is using an approxi-
mating technique to obtain an approximate discrete control so-
lution then rounding off to the closest discrete values. However,
arbitrarily rounding off may cause infeasibility problem as in-
dicated in [16]. Our approach can circumvent such undesirable
situation, because if there is at least one feasible among the

resulted in Stage 2, the good enough solution obtained in
Stage 3 must be a feasible one. In other words, we significantly
increase the probability of obtaining a good enough feasible so-
lution. For example, suppose half of the resulted in the
first part of Stage 1 are feasible. The probability of getting fea-
sible by arbitrarily rounding off is then 0.5. However, the
probability that the good enough obtained by our approach
is feasible is

the probability that none of the is feasible

Now we are ready to state the algorithmic steps of the dis-
tributed algorithm for each subsystem to solve DOPFD for a
good enough solution, and the steps executed only in the root
subsystem will be specifically indicated.

C. Distributed Algorithm II for Subsystem

Step 0 (for root subsystem only) Command all subsystems
to start.

Step 1) When receiving the command from the root subsystem,
perform the first part of Stage 1 using Distributed Algorithm I.

Step 2) When receiving the convergence signal of CDOPF
from the root subsystem, perform the second part of Stage
1, such that will be fixed at one side of the
closest discrete value. For the rest yet fixed components
of , we have possible , which are relabeled as

, . Compute by (25), where
as indicated in Stage 2. Send the
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pairs of , to the root
subsystem.

Step 3 (for root subsystem only) When receiving the pairs
of , from subsystem

for all , the root subsystem will pick the best

from the based on the sensitivity model
as stated in Stage 2. Relabel the picked as ,

and send , to subsystem
for all .

Step 4) Once receiving the subvectors ,
from the root subsystem, start to solve the CDOPFs
using Steps 1–13 of Distributed Algorithm I as stated in
Stage 3. Once the CDOPFs are solved, send the pairs
of , , to the root
subsystem.

Step 5 (for root subsystem only) When receiving the
pairs of , , from all
subsystems , the root subsystem will take the sum

for each , and based on
which pick the best as stated in Stage 3. Relabel the
best as and send to subsystem , for
all .

Step 6) Once receiving the good enough subvector
from the root subsystem, stop the algorithm and output the
solution .

IV. TEST RESULTS

In this section, we will demonstrate 1) the validity of Dis-
tributed Algorithm II by implementing it in a real PC network
and 2) the computational efficiency and the goodness of the
obtained good enough solutions by indirect comparisons with
existing centralized global searching techniques. (To our best
knowledge, there is no method dealing with the DOPFD con-
sidered in this paper so far, indirect comparison is all we can
do.)

We have implemented our Distributed Algorithm II in a
4-PC network to solve the DOPFD of the IEEE 118-bus and
TP 244-bus systems, both of which are arbitrarily partitioned
into four subsystems namely , , , and , , , ,
respectively. Each subsystem is associated with a PC. Some
details regarding number of buses, number of transmission lines
and number of generation buses in each subsystem are shown
in Table I. It should be noted that the values of conductance
of the transmission lines in the TP 244-bus system are much
higher than that of the IEEE 118-bus system on the average.
We consider two types of objective function: the minimum
total real power generation cost
and the minimum system losses , where
denotes the real power generation of generation bus , ,

and are cost coefficients, and denotes the real
power loss on transmission line . The set of pair subsys-
tems consisting of tie lines in the IEEE 118-bus and TP
244-bus systems denoted by and , respectively,
are and

. We

TABLE I
CONTENTS OF THE FOUR SUBSYSTEMS IN THE

IEEE 118-BUS AND TP 244-BUS SYSTEMS

TABLE II
TWO SETS OF DISCRETE CONTROL VARIABLES IN EACH SUBSYSTEM

OF THE IEEE 118-BUS AND TP 244-BUS SYSTEM

TABLE III
FINAL OBJECTIVE VALUE OBTAINED BY AND THE CONSUMED CPU
TIME OF THE DISTRIBUTED ALGORITHM II IMPLEMENTED IN 4-PC

NETWORK, THE CORRESPONDING CENTRALIZED VERSION, THE

CENTRALIZED GA, AND CENTRALIZED TS METHOD IMPLEMENTED

IN SINGLE PC FOR THE EIGHT CASES

assume each switching capacitor is equipped with four capac-
itor banks, and the capacity of a bank is 14 MVAR. We assume
each transformer tap has 32 discrete steps such that each step
is 5/8% of the nominal transformer tap ratio. We consider two
sets of discrete control variables, namely and , in
each system and the number of switching capacitors and trans-
formers in each subsystem for each set are shown in Table II.
The values of of each subsystem can be easily calculated
by adding the number of switching capacitors and transformers
as shown in the fifth row of Table II, and we set for
each subsystem as shown in the last row of Table II.

For each system, each objective function and each discrete
control variable set, we have tested eight cases, which are de-
scribed by three arguments , such that indicates
the test system is the IEEE 118-bus system and 2 the TP 244-bus
system, indicates the objective function is total genera-
tion cost and 2 the total system losses, indicates the first
discrete control variable set and 2 the second discrete control
variable set for the corresponding system as shown in Table II.
These eight cases are shown in the first column of Table III.
We apply Distributed Algorithm II to solve the DOPFD of these
eight cases in the 4-PC network. The four PCs are of the same
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model: Pentium IV, 2.66-GHz processor and 1.25 GB of RAM.
We assign subsystems and as the root subsystems of the
IEEE 118-bus and TP 244-bus systems, respectively. The pro-
gram is written in . We employ the TCPIP as the communica-
tion protocol in the 4-PC network. We set in Steps 9
and 12 in Distributed Algorithm I and in Step 3 of Dis-
tributed Algorithm II. The final objective value of the overall
system in each case obtained by the Distributed Algorithm II
and corresponding CPU time consumed in the 4-PC network is
shown in the second and the eighth columns in Table III. The
consumed CPU time including the communication overhead in
the 4-PC network is counted until the root subsystem determines
the good enough discrete control solution and sends the corre-
sponding subvector to each subsystem.

To illustrate the reduction of the search space of discrete con-
trol variables in our approach, we take the case (1,1,1) as an
illustrative example. The size of the original search space
is , because each
transformer tap has 32 discrete steps and each switching capac-
itor has four capacitor banks. After executing Step 1 of Dis-
tributed Algorithm II (i.e., part 1 of Stage 1), the size of search
space is reduced from 2.237 to

. At this point, each discrete control variable

has two choices of discrete values, or . After ex-
ecuting Step 2 (i.e., part 2 of Stage 1), we found that the op-
timal objective value of the CDOPF (23) is very insensitive to

the transform tap ratio due to two reasons: 1) the values of
and are insensitive to the deviation of transformer
tap ratio and 2) the discrete step of the transform tap ratio is very
small. On the other hand, optimal objective value is more sen-
sitive to capacitor due to larger discrete step unless the optimal
continuous capacitor value is already close to one of the neigh-
boring discrete values. Thus, all the transformer taps and half of
the switching capacitors of each subsystem are fixed at the side
of closest discrete value that achieves as defined
in part 2 of Stage 1. At this point, we have further reduced the
size of the search space from 1.1 to .
After executing Step 3 (i.e., Stage 2), the best 50 out of the 1024
possible resulted from Step 2 are selected based on the sen-
sitivity model. At this point, we have further reduced the size of
the search space from 1024 to 50. Applying the exact model to
evaluate the 50 possible resulted from Step 3, that is ex-
ecuting Steps 4 and 5 (i.e., Stage 3), the best is the good
enough discrete control variable solution. From this case, we
see that if we apply the exhaustive search method to find the op-
timal for (1), we need to solve 2.237 CDOPFs. How-
ever, we only need to solve 51 CDOPFs to obtain a good enough

. Moreover, the 50 CDOPFs solved in Steps 4 and 5 take one
iteration only. This manifests the dramatic computation time re-
duction in our approach.

To verify our results, we also implement the Distributed Al-
gorithm II in single PC and apply to the eight cases. The final
objective values shown in the third column of Table III are ex-
actly the same as that obtained in the 4-PC network, and the
consumed CPU times are shown in the ninth column.

This demonstrates that Distributed Algorithm II is success-
fully implemented in a computer network, and the consumed

CPU time is less than one third but more than one fourth of the
CPU time consumed by the centralized version. The reason that
the Distributed Algorithm II is not four times faster than the
centralized version when using the 4-PC network is because the
sizes of the four subsystems are different, and there exists some
but very slight communication overhead. It is worth noting that
the good enough solutions we obtained in all the eight cases
are feasible. This reflects the significantly improved probability
of our approach in getting feasible discrete control solutions as
commented in Remark 3. Although we cannot find any com-
peting methods in dealing with the DOPFD considered in this
paper so far, we can treat (1) as a centralized OPF with discrete
control variables for all the eight cases and solve them using
the global searching techniques GA and TS methods associated
with the combination of SQP with the DPQN methods to solve
the centralized CDOPF. In the employed GA [26], we use a
simple coding scheme of 0 and 1 strings to represent all pos-
sible in , and each represents a population in GA. We
randomly select 20 from as our initial populations. The
fitness of a population is set to be the reciprocal of the objec-
tive value of (1), in which is set to be the population , and
is solved by the combination of the SQP and DPQN methods in
single PC. The members in the mating pool are selected from
the pool of populations using roulette wheel selection scheme
based on the fitness values. We set the probability of selecting
members in the mating pool to serve as parents for crossover
to be . We use a single point crossover scheme and
assume the mutation probability to be . For each
of the eight cases, we stop GA when it consumes around 150
times of the CPU time consumed by the centralized version of
Distributed Algorithm II and record the best so far objective
values and the consumed CPU time in the fourth and the tenth
columns of Table III. The iterative mechanism of the employed
TS method is stated in the following. Starting from a randomly
selected from , in each iteration of the TS method, we ran-
domly evaluate one third of the neighboring of the current

and accept the best one to be the new based on the tabu
list and a criterion of global aspiration by objective [26]. Noting
that evaluating the objective value of (1) for a given in the
TS method is the same as in GA, we apply TS method to all
eight cases. For each of the eight cases, we also stop the method
when it consumes around 150 times of the CPU time consumed
by the centralized Distributed Algorithm II and record the best
so far objective value and the consumed CPU times in the sixth
and the eleventh columns in Table III. From the fourth and sixth
columns of Table III, we see that in most of the cases, GA out-
performs TS method, because of its capability of decentraliza-
tion. From the fifth and seventh columns, we can observe that
when the number of discrete control variables increases in the
same system for the same objective function, the performance
of both GA and TS methods degrade, because the improvement
of the best so far objective values becomes more sluggish. Fur-
thermore from the third, fifth, seventh, ninth, tenth and eleventh
columns, we find that when both GA and TS methods consumed
around 150 times of the CPU time consumed by the central-
ized version of Distributed Algorithm II, their best so far objec-
tive values are still 23.25% and 24.63%, on the average, more
than the objective values obtained by the centralized version of
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Distributed Algorithm II, respectively. On the other hand, using
less than one third of the CPU time, the Distributed Algorithm
II implemented in 4-PC network can obtain the same objective
value as that obtained by the centralized version. These indi-
rect comparisons demonstrate the computational efficiency of
Distributed Algorithm II and the goodness of the obtained good
enough solutions. The feasibility and the goodness of the ob-
tained good enough solutions in all eight cases confirm the ro-
bustness of our algorithm.

V. CONCLUSION

In this paper, we have proposed a distributed algorithm to
deal with DOPFD of large distributed power systems. We use a
4-PC network to implement the proposed distributed algorithm
and apply to the DOPFD on the IEEE 118-bus and TP 244-bus
systems. We have ascertained the robustness of our distributed
algorithm in the aspects of feasibility and goodness of the ob-
tained solution; moreover, the computational speed of our dis-
tributed algorithm is at least three times faster than the central-
ized version in all the test cases when using a 4-PC network.
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