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Abstract: Many parameters affect the quality of the resistance spot welding (RSW) process. It
is not easy to obtain optimal parameters of the RSW process in the automobile industry.
Conventionally, the Taguchi method has been widely used in engineering; however, with this
method the desired results can only be obtained with the use of very discrete control factors,
thus leading to uncertainty about the real optimum. In the process to weld the low-carbon
sheet steels of the auto body, the Taguchi method was used for the initial optimization of the
RSW process parameters. A neural network with the Levenberg–Marquardt back-propagation
algorithm was then adopted to develop the relationships between the welding process
parameters and tensile shear strength of each specimen. The optimal parameters of the RSW
process were determined by simulating the process parameters using a well-trained neural
network model. Experimental results illustrate the Taguchi–neural approach.

Keywords: resistance spot welding, Taguchi method, neural network

1 INTRODUCTION

Resistance welding is widely used by mass produc-

tion, where production runs and consistent condi-

tions are maintained. Resistance spot welding (RSW)

is a resistance welding process that produces a weld

at the facing surfaces of a joint by the heat obtained

from resistance to the flow of welding current

through the workpieces from electrodes that serve

to concentrate the welding current and pressure at

the weld area [1]. The RSW process is especially used

in the automobile industry. Because low-carbon

steel sheet has good weldability and can deform

plastically to a complex shape, it is commonly used

in the RSW process of an auto body. Many paramet-

ers affect the RSW quality, such as the welding

current, electrode force and welding time. The

desired welding parameters are usually determined

on the basis of experience or handbook values.

However, it does not ensure that the selected

welding parameters result in optimal or near-

optimal welding quality characteristics for the

particular welding system and environmental con-

ditions. Response surface methodology (RSM) is

widely used to predict the weld bead geometry and

mechanical properties in many welding processes.

Benyounis et al. [2] developed mathematical models

using RSM to predict the heat input and to describe

the laser weld bead profile for the continuous-wave

CO2 laser butt welding of medium-carbon steel. The

desired high-quality welds can be achieved by

choosing the working condition using the developed

models. However, theoretical knowledge of RSM is

obscure. The calculation of RSM is relatively com-

plicated and not easy for engineers to follow.

The Taguchi method, a popular experimental

design method in industry, can overcome the short-

comings of full factorial design when carrying out

fractional factorial design. The approach optimizes

parameter design, but with fewer experiments. In

modern quality engineering, experimental design

work is performed to develop robust designs to
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improve the quality of the product. Taguchi’s para-

meter design is intended to yield robust quality by

reducing the effects of environmental conditions

and variations due to the deterioration of certain

components [3]. However, the Taguchi method has

some limitations when adopted in practice. It can

find optimal solutions only within the specified level

of control factors. After a parameter setting has been

determined, the range of optimal solutions is set.

The Taguchi method cannot find the real optimal

values when the specified parameters are contin-

uous, because it considers only the discrete control

factors.

A neural network (NN) is a non-linear function,

and can accurately represent a complex relationship

between inputs and outputs [4–6]. A trained NN

model has also been used to predict accurately the

response (output) for specified parameter settings

(input). Additionally, Khaw et al. [7] demonstrated

that advantages can be gained using the Taguchi

concept for NN design. First, it is the only known

method for NN design that considers robustness as

an important design criterion, increasing the quality

of the NN. Second, the Taguchi method uses orth-

ogonal arrays to design an NN systematically,

subsequently markedly reducing the design and

development time for NNs. A Taguchi–neural ap-

proach that combined the Taguchi method and an

NN was used to construct a model and to determine

optimal conditions for improving the quality of the

RSW process. The Taguchi–neural approach consists

of two phases. Phase 1 executes initial optimization

via the Taguchi method to construct a database for

the NN. Phase 2 applies an NN with the Levenberg–

Marquardt back-propagation (LMBP) algorithm to

search for the optimal parameter combination.

2 INITIAL OPTIMIZATION BY THE TAGUCHI
METHOD

Low-carbon steel sheet was used in this work; its

chemical composition is listed in Table 1. Plates

0.7 mm in thickness were cut into strips of size

30 mm6100 mm. The RSW machine (FANUC a8/

4000is type) was utilized for the experiment. A

schematic diagram of low-carbon steel sheet speci-

men for RSW is shown in Fig. 1.

2.1 Quality characteristic of the RSW process

The study used the tensile shear strength of specimens

as the quality characteristic of the process. A universal

testing machine was used for this study to measure

the welding tensile shear strength of the RSW speci-

mens. The speed was set at 0.1 mm/s in the testing.

2.2 Parameters of the RSW process

Taguchi separated the factors into two main groups:

control factors and noise factors. Control factors are

those that allow a manufacturer to control during

processing, and noise factors are expensive or

difficult to control [8]. As learned from handbook

and practical experience in the production of an

auto body, the major welding parameters for the

RSW process include the welding current, welding

time, electrode force, the size of electrode tip, and

the surface condition of specimens in the RSW

process. The initial conditions of production opera-

tion currently are a welding current of 8000 A, a

welding time of 9 cycles, an electrode force of 1.6 kN,

and an electrode tip diameter of 4 mm.

By reference to the existing parameter conditions

in the production line, the ranges of experimental

parameter values were as follows: welding current

range, 6000–12 000 A; welding time range, 6–24 cycles;

electrode force range, 1.0–3.2 kN; electrode tip dia-

meter range, 3–6 mm. The values of each welding

process parameter at different levels are listed in

Table 2. Moreover, the surface condition of the weld-

ing area plays a very significant role in the joint

quality. It is very hard to control the surface cleanl-

iness of the weldment in the automatic production.

The cleanliness of specimens was selected as the

noise factor in this study. The specimens at level 1

(designated N1), without any cleaning treatment, may

Table 1 Chemical composition of the material used

Material C Si Mn P S Fe

Amount (wt %) in
MJSC270C

0.020 0.01 0.18 0.013 0.010 Balance

Fig. 1 Schematic diagram of the specimens

1386 H-L Lin, T Chou, and C-P Chou

Proc. IMechE Vol. 222 Part D: J. Automobile Engineering JAUTO270 F IMechE 2008

 at NATIONAL CHIAO TUNG UNIV LIB on April 25, 2014pid.sagepub.comDownloaded from 

http://pid.sagepub.com/


have been tarnished with dirt and/or grease. The

surface impurities were removed and the surface

cleaned with acetone at level 2 (specimens designated

N2).

2.3 Orthogonal array experiment

Taguchi tabulated 18 basic orthogonal arrays which

are called standard orthogonal arrays [8]. Four four-

level control factors, in addition to one noise factor,

were considered in this investigation. The interaction

effect between the welding parameters was not

considered. Therefore, there are 12 degrees of freedom

owing to the four control factors. The degrees of

freedom for the orthogonal array should be greater

than or at least equal to those for the process

parameters. The L16 (45) orthogonal array which has

15 degrees of freedom was employed in this study. An

experimental layout with an inner array for control

factors and an outer array for a two-level noise factor

(N1 and N2) is shown in Table 3. Six repetitions (y1, y2,

y3, y4, y5, and y6) for each trial are used with this

experimental arrangement; y1, y2, and y3 are N1

specimens (without cleaning); y4, y5, and y6 are N2

specimens (cleaned with acetone). In the Taguchi

method, repetitions are used to assess the noise effect

on some quality characteristic(s) of interest. The

experimental results for the tensile shear strength

using the L16 orthogonal array are shown in Table 4.

2.4 Evaluation of the initial optimal condition

Taguchi created a transformation of the repetition

data to another value, i.e. to a measure of

the variation present. The transformation is the

signal-to-noise ratio (SNR) S/N [9]. There are several

SNRs available, depending on the type of character-

istic present, such as lower is better (LB), nominal is

best (NB), or higher is better (HB). The tensile-shear

strength of the specimens as discussed earlier

belongs to the HB quality characteristic. The SNRs,

which condense the multiple data points within a

trial, depend on the three-characteristic LB, NB, and

HB. The equation for calculating the SNR for the HB

characteristic is

SNR~{10 log
1

n

Xn

i~1

1

y2
i

 !
ð1Þ

where n is the number of tests in a trial (number of

repetitions regardless of noise levels). The value of n

is 6 in this study. The SNRs corresponding to the

tensile-shear strength value of each trial are shown

in Table 4. The effect of each welding process

parameter on the SNR at different levels can be

separated out because the experimental design is

orthogonal. Table 5 describes the SNR for each level

of each control factor in the welding process. For

example, the SNR for level 1 of the control factor A is

computed as

SNRA1
~

8:498z10:490z10:410z10:922

4
~10:080 dB

Figure 2 shows the SNR graph obtained from

Table 5. Basically, the larger SNR, the better is the

quality characteristic (the tensile shear strength) for

the specimens. The initial optimal combinations of

the RSW process parameter levels, A1B4C2D3, can be

determined from Fig. 2.

Table 2 Control factors and their levels

Factor Process parameter Level 1 Level 2 Level 3 Level 4

A Electrode tip diameter 3 mm 4 mm 5 mm 6 mm
B Welding current 6000 A 8000 A 10 000 A 12 000 A
C Electrode force 1.0 kN 1.8 kN 2.4 kN 3.2 kN
D Welding time 6 cycles 12 cycles 18 cycles 24 cycles

Table 3 Summary of experimental layout using an L16 orthogonal array

Trial number

Control factor

Noise factor

A B C D

N1 specimens N2 specimens

y1 y2 y3 y4 y5 y6

1 1 1 1 1 Measure data
2 1 2 2 2
3 1 3 3 3

14 4 2 3 1
15 4 3 2 4
16 4 4 1 3
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2.5 Analysis of variance

The analysis of variance (ANOVA) is not a compli-

cated method and has a large amount of mathema-

tical uniqueness associated with it [9]. The purpose

of the ANOVA is to investigate the welding pro-

cess parameters that significantly affect quality. The

percentage contribution to the total sum of the

squared deviations can be used to evaluate the imp-

ortance of a change in a welding process para-

meter on these quality characteristics. In addition,

the F-test value can also be used to determine which

welding process parameters have a significant effect

on the quality characteristics, as shown in the

equation

F{test value

~
mean square due to a control factor

mean square due to experimental error ð2Þ

Usually, when the F-test is less than 1, the

experiment error outweighs the control factor. When

the F-test value is approximately equal to 2, the

control factor has only a moderate effect compared

with the experiment error. When the F-test value is

greater than 4, this means that a change in the

process parameter has a significant effect on the

quality characteristics [10]. When the contribution of

a factor is small, as with control factor A (the diameter

of the electrode tip) in Table 6, the sum of squares for

that factor is combined with the error. This process of

disregarding the contribution of a selected factor and

subsequently adjusting the contributions of the other

factors is known as ‘pooling’ [11]. The welding current

and electrode force were the significant welding

parameters that affect the quality characteristic, with

the welding current being the most significant, as

indicated by Table 6.

2.6 Confirmation test and proper regulation

The final step of the Taguchi method is to compare

the estimated value with the confirmative experi-

mental value, using the optimal level of the control

factors to confirm the experimental reproducibility.

The estimated SNR gopt using the optimal level of the

Table 4 Summary of experimental data

Trial number

Control factors Tensile shear strength

A B C D Average (kN) SNR (dB)

1 1 1 1 1 2.704 8.498
2 1 2 2 2 3.366 10.490
3 1 3 3 3 3.364 10.410
4 1 4 4 4 3.584 10.922
5 2 1 2 3 2.969 9.426
6 2 2 1 4 3.244 10.181
7 2 3 4 1 3.099 9.799
8 2 4 3 2 3.036 9.617
9 3 1 3 4 2.376 7.452

10 3 2 4 3 3.340 10.470
11 3 3 1 2 3.379 10.566
12 3 4 2 1 3.526 10.922
13 4 1 4 2 1.661 4.307
14 4 2 3 1 3.199 10.064
15 4 3 2 4 3.688 11.315
16 4 4 1 3 3.783 11.554

Table 5 SNR response table for the tensile shear
strength

Factor
Process
parameter Level 1 Level 2 Level 3 Level 4

A Electrode tip
diameter

10.080 9.756 9.852 9.310

B Welding current 7.421 10.301 10.523 10.754
C Electrode force 10.200 10.538 9.386 8.875
D Welding time 9.821 8.745 10.465 9.968

Fig. 2 SNR graph for the tensile-shear strength
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control factors, can be calculated as

gopt~ĝgz
Xq

j~1

gj{ĝg
� �

ð3Þ

where ĝ is the total average of SNR of all the

experimental values, gj is the mean SNR at the

optimal level, and q is the number of control factors

that significantly affect the quality characteristic.

The confidence interval (CI) is the interval be-

tween the maximum and minimum values for which

the true average should fall at some stated percen-

tage of confidence [9]. The confidence limits of the

above estimation can be calculated taking into

account the equation

CI~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa;1;ne

Vep
1

neff
z

1

r

� �s
ð4Þ

where Fa;1;ne
is the F ratio required for risk a,

confidence equal to 1 2 risk, ne the degrees of

freedom for pooled error, Vep the pooled error

variance, r the sample size for the confirmation

experiment, and neff the effective sample size and is

given by

neff~
N

1zDOFopt
ð5Þ

where N is the total number of trials and DOFopt is

the total degrees of freedom associated with items

used in the gopt estimate. With a confidence of 95

per cent for the tensile shear strength, F0.05;1;6 5 5.99,

and Vep 5 0.831 (from Table 6), the sample size r

for the confirmation experiment is 2, N 5 16,

DOFopt 5 9, and the effective sample size is neff 5 1.6.

Thus, the CI is computed to be 2.37 dB. The expe-

rimental results (Table 7) confirm that the initial

optimizations of the RSW process parameters were

achieved.

Although the conformity of reproducibility for the

experimental results has been confirmed with an

average tensile shear strength of the specimens as

high as 3.812 kN, however, a spark phenomenon

took place between the specimens and the electrode

during the spot welding process, which leads to a

severely shortened life cycle of the electrode and a

collaterally affected joint quality of weldment for

subsequent welding. With the ANOVA outcomes

(Table 6) referenced, a proper regulation of the weld-

ing current is necessary to cope with the above-

mentioned defects. As can be seen from Fig. 2

(the SNR graph), the SNR was slightly increased

when the welding current increased from 8000 A to

12 000 A, i.e. the tensile shear strength of specimens

was not increased greatly. Therefore, the optimal

conditions of parameters obtained from application

of the Taguchi method remained unchanged except

that the welding current was changed from 12 000 A

to 8000 A. Table 8 lists the experimental results after

the parameters had been adjusted.

3 NEURAL NETWORK

NNs are used for the modelling of complex manu-

facturing processes, usually with regard to process

Table 6 Results of ANOVA for the tensile shear strength

Factor Process parameter
Number of degrees
of freedom

Sum of
squares Mean square F test

Pure sum of
squares

Contribution
(%)

A Electrode tip diameter 3 1.253*
B Welding current 3 29.332 9.777 11.77 26.84 56.51
C Electrode force 3 6.892 2.297 2.77 4.40 9.27
D Welding time 3 6.292 2.097 2.53 3.80 8.00
Error 3 3.730
Error (pooled) (6) (4.983) (0.831) 12.46 26.23
Total 15 47.500 47.500 100

*The factor is treated as a pooled error.

Table 7 Results of the confirmation experiment

Trial number

Tensile shear strength

Confidence interval (95%)N1 specimens N2 specimens SNR (dB) Average (kN)

17 4.062 3.955 3.945 3.745 3.622 3.579 11.607 3.812 12.257 ¡ 2.37 (dB)
18 3.995 3.672 3.857 3.707 3.701 3.9043 11.597
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and quality control [12, 13]. Several well-known

supervised learning networks use a back-propaga-

tion (BP) NN. Funahashi [14] proved that a BP NN

may approximately realize any continuous mapping.

BP learning employs a gradient-descent algorithm to

minimize the mean-square error (MSE) between the

target data and the predictions of an NN. However,

one of the major problems with the conventional BP

algorithm (the gradient-descent algorithm) is the

extended training time required. The techniques for

accelerating convergence have fallen into two main

categories: heuristic methods and standard numer-

ical optimization methods such as the LMBP algo-

rithm [15].

3.1 The Levenberg–Marquardt back-propagation
algorithm

The LMBP algorithm is similar to the quasi-Newton

method, in which a simplified form of the Hessian

matrix (second derivatives) is used. When the cost

function has the form of a sum of squares, then the

Hessian matrix H can be approximated as

H~JTJ ð6Þ

and the gradient can be computed as

g~JTe ð7Þ

where J is the Jacobian matrix that contains the first

derivatives of the network errors with respect to the

weights and biases and e is a vector of network

errors. The Jacobian matrix can be computed

through a standard BP technique that is much less

complex than computing the Hessian matrix [16].

An iteration of this algorithm can be written as

X K z1~X K { JTJzmI
� �{1

JTe ð8Þ

When the scalar m is zero, this is just Gauss–Newton

behaviour using the approximate Hessian matrix.

When m is large, this becomes gradient-descent type

with a small step size.

3.2 The parameters of the LMBP algorithm

The algorithm begins with m set to some small value.

If a step does not yield a smaller value for e, then the

step is repeated with m multiplied by some factor

h . 1. Eventually e should be decreased since a small

step in the direction of steepest descent would be

taken. If a step does produce a smaller value for e,

then m is divided by h for the next step, ensuring that

the algorithm will approach Gauss–Newton beha-

viour, which should provide faster convergence [15].

The LMBP algorithm is the fastest algorithm that has

been tested for training multilayer networks of

moderate size, even though it requires a matrix

inversion at each iteration. It requires two para-

meters, but the algorithm does not appear to be

sensitive to this selection.

4 APPLICATION OF THE BP NEURAL NETWORK

4.1 Training of the BP network

An NN, which can capture and represent the rel-

ationship between the process variables and process

outputs, was developed in this stage. Multilayer

perceptions are feedforward NNs commonly used to

solve difficult predictive modelling problems [17].

They usually consist of an input layer, one or more

hidden layers, and one output layer. The neurons in

the hidden layers are computational units that

perform non-linear mapping between inputs and

outputs. A feedforward NN was adopted in this

study. It takes a set of five input values (the control

factors A, B, C, and D and a noise factor) and predicts

the value of one output (the tensile-shear strength of

the specimen). The transfer functions for all hidden

neurons are tangent sigmoid functions, as shown in

the equation

f xð Þ~ exp xð Þ{exp {xð Þ
exp xð Þzexp {xð Þ ð9Þ

The transfer functions for the output neurons are

linear functions [18].

Determining the number of hidden neurons is

critical to the design of NNs. An over-abundance of

hidden neurons provides too much flexibility, which

Table 8 Results of the Taguchi method with proper regulation

Trial number

Tensile shear strength

Average (kN)N1 specimens N2 specimens

19 3.485 3.297 3.294 3.605 3.431 3.221 3.375
20 3.334 3.172 3.368 3.583 3.411 3.296

1390 H-L Lin, T Chou, and C-P Chou

Proc. IMechE Vol. 222 Part D: J. Automobile Engineering JAUTO270 F IMechE 2008

 at NATIONAL CHIAO TUNG UNIV LIB on April 25, 2014pid.sagepub.comDownloaded from 

http://pid.sagepub.com/


usually causes overfitting. However, too few hidden

neurons restrict the learning capability of a network

and degrade its approximation performance [17]. A

total of 96 input–output data patterns were sepa-

rated into a training set, a testing set, and a val-

idating set. Functionally, 60 per cent (58 patterns)

were randomly selected for training the NN, 20 per

cent (19 patterns) were randomly selected for

testing, and 20 per cent (19 patterns) were randomly

selected for validating. An efficient algorithm,

namely the Levenberg–Marquardt algorithm, was

used to improve classical BP learning in the training

process [15, 17]. The NN software MATLAB Neural

Network ToolBox was used to develop the required

network. The performance of each NN was mea-

sured with the MSE of the testing subset. It must be

noted that, because the outcome of the training

greatly depends on the initialization of the weights,

this is done randomly according to the Nguyen–

Widrow technique [19]. Therefore, each NN was

trained three times and the average MSE was

calculated. The results for seven networks tested

are presented in Table 9. They show that the best

performing NN was the 5–4–1 which displayed an

average MSE of 5.78 per cent together with a min-

imum MSE that was equal to 3.15 per cent. The

topology of the 5–4–1 network with a m value of 0.001

and a h value of 10 is depicted in Fig. 3.

4.2 Simulation with a well-trained network

The control factor A (the diameter of the electrode

tip) is an insignificant welding parameter that affects

the quality characteristic, as shown in Table 6. First,

the trained network 5–4–1 with 3.15 per cent MSE

value was employed as the simulating function of

the control factor A. Figure 4 compares results

simulated using the control factor A, the other

conditions (B 5 8000 A, C 5 1.8 kN, and D 5 18

cycles) indicating that the tensile shear strength of

specimens is optimal for setting the diameter of the

electrode tip to 6 mm. Second, Fig. 5 compares

results simulated using the control factor D,

the other conditions (A 5 6 mm, B 5 8000 A, and

C 5 1.8 kN) indicating that the tensile shear strength

of specimens is optimal for setting the welding time

to 15 cycles. Third, Fig. 6 compares results simulated

using the control factor C, the other conditions

(A 5 6 mm, B 5 8000 A, and D 5 15 cycles) indicating

that the tensile shear strength of specimens is

optimal for setting the electrode force to 1.9 kN.

Finally, Fig. 7 compares results simulated using the

control factor D, the other conditions (A 5 6 mm,

C 5 1.9 kN, and D 5 15 cycles) indicating that a

welding current over 9000 A may be more sensitive

for the cleanliness of specimens. In addition, it can

be seen that the welding current and tensile shear

strength are in direct ratio until about 9000 A. The

welding current of the RSW process for the initial

condition is 8000 A. Therefore, a welding current of

8000 A has been selected in this study.

Table 9 Options for different networks

Architecture
(input–hidden
unit–output)

MSE for training

Train 1 Train 2 Train 3 Average

5–2–1 0.2997 0.1208 0.2480 0.2228
5–3–1 0.2174 0.1923 0.0653 0.1583
5–4–1 0.0587 0.0315 0.0833 0.0578
5–5–1 0.0548 0.0948 0.1258 0.0918
5–6–1 0.0435 0.0413 0.1518 0.0789
5–7–1 0.1242 0.1196 0.0489 0.0976
5–8–1 0.0703 0.1017 0.0330 0.0683

Fig. 3 The BP network topology

Fig. 4 Results of simulating different sizes of the
electrode tip
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4.3 Comparison of the experimental results

Combining the Taguchi method and NNs yielded a

welding condition that optimized the tensile shear

strength of an RSW specimen: electrode tip dia-

meter, 6 mm; welding current, 8000 A; electrode

force, 1.9 kN; welding time, 15 cycles. Table 10 pres-

ents the experimental results obtained using these

optimal welding parameters. Table 11 presents the

experimental results obtained using the present

conditions of production operation currently (A 5

4 mm, B 5 8000 A, C 5 1.6 kN, and D 5 9 cycles).

Comparing Table 8 with Table 11 reveals that the

increase in average tensile shear strength from the

initial condition to the initial optimal parameters

(apply the Taguchi method only) is 0.133 kN. Com-

paring Table 10 with Table 11 reveals that the

increase in average tensile shear strength from the

initial condition to the real optimal parameters

(apply the Taguchi–neural approach) is 0.409 kN. In

summary, the quality of the RSW process for low-

carbon steel sheet can be efficiently improved

through the Taguchi–neural approach.

5 CONCLUSIONS

1. The improvement in the average tensile shear

strength from the initial conditions to the initial

optimal parameters (apply the Taguchi method

only) is about 4.1 per cent. The improvement in

the average tensile shear strength from initial

conditions to the real optimal parameters (apply

the Taguchi–neural approach) is about 12.6 per

cent.

2. The NN with the LMBP algorithm represents an

easy and quick method to explore a non-linear

model. The well-trained model may help engi-

neers to predict precisely the tensile shear

strength of specimens and to adjust welding

parameters effectively for the RSW process in

the future.

3. The Taguchi–neural approach allows engineers to

use neural network software directly to optimize

the parameters of the RSW process without any

theoretical knowledge of neural computing.

Fig. 6 Results of simulating different electrode forces

Fig. 7 Results of simulating different welding currents
Fig. 5 Results of simulating different welding times

Table 10 Results of the Taguchi–neural approach

Trial
number

Tensile shear strength
Average
(kN)N1 specimens N2 specimens

21 3.652 3.787 3.780 3.424 3.612 3.596 3.651
22 3.589 3.572 3.686 3.851 3.684 3.579
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Table 11 Results of the initial conditions
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(kN)N1 specimens N2 specimens
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