
The VLDB Journal (2008) 17:1121–1141
DOI 10.1007/s00778-007-0054-1

REGULAR PAPER

Power-law relationship and self-similarity in the itemset support
distribution: analysis and applications

Kun-Ta Chuang · Jiun-Long Huang ·
Ming-Syan Chen

Received: 28 February 2006 / Accepted: 28 March 2007 / Published online: 4 July 2007
© Springer-Verlag 2007

Abstract In this paper, we identify and explore that the
power-law relationship and the self-similar phenomenon
appear in the itemset support distribution. The itemset sup-
port distribution refers to the distribution of the count of item-
sets versus their supports. Exploring the characteristics of
these natural phenomena is useful to many applications such
as providing the direction of tuning the performance of the
frequent-itemset mining. However, due to the explosive num-
ber of itemsets, it is prohibitively expensive to retrieve lots of
itemsets before we identify the characteristics of the itemset
support distribution in targeted data. As such, we also pro-
pose a valid and cost-effective algorithm, called algorithm
PPL, to extract characteristics of the itemset support distri-
bution. Furthermore, to fully explore the advantages of our
discovery, we also propose novel mechanisms with the help
of PPL to solve two important problems: (1) determining a
subtle parameter for mining approximate frequent itemsets
over data streams; and (2) determining the sufficient sample
size for mining frequent patterns. As validated in our experi-
mental results, PPL can efficiently and precisely identify the
characteristics of the itemset support distribution in various
real data. In addition, empirical studies also demonstrate that
our mechanisms for those two challenging problems are in
orders of magnitude better than previous works, showing

K.-T. Chuang (B) · M.-S. Chen
Department of Electrical Engineering, National Taiwan University,
Taipei, Taiwan, ROC
e-mail: doug@arbor.ee.ntu.edu.tw

M.-S. Chen
e-mail: mschen@cc.ee.ntu.edu.tw

J.-L. Huang
Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan, ROC
e-mail: jlhuang@cs.nctu.edu.tw

the prominent advantage of PPL to be an important pre-
processing means for mining applications.

1 Introduction

The importance of mining frequent itemsets has been rec-
ognized in various applications, including web log mining,
DNA sequence mining, frequent episodes mining, periodic
patterns, to name a few [20]. Due to the data-driven nature
of mining algorithms, it is believed in the literature that
the parameter tuning of the designed algorithm is usually
requested in order to achieve the better result or performance
on the targeted applications. It is clear that the deeper knowl-
edge about the characteristics of the targeted data leads to the
better execution efficiency and the better interpretation of the
mining result. As such, a mechanism to precisely estimate the
data characteristics is usually deemed as an important pre-
processing means for mining applications.

Recent research advances in the frequent-itemset mining
have been in the direction of discovering characteristics of
real datasets. For example, the works in [18] and [32] both
seek the relationship between different itemset lengths in the
targeted dataset. Such relationships can be further utilized to
control the mining process [18], or to generate the realistic
synthetic datasets for the system parameter tuning [32].

To provide better understanding on real datasets, we in
this paper investigate a more important characteristic in real
datasets, named the itemset support distribution. The itemset
support distribution refers to the distribution of the count of
itemsets versus the itemset support, where an itemset com-
plies with the definition in [1]. Explicitly, we shall study
the relationship between the value of support, say 0.01, and
the number of itemsets having the support 0.01 in the data-
set, as the curve illustrated in Fig. 1. The itemset support

123

1122 K.-T. Chuang et al.

Fig. 1 The illustration of the itemset support distribution and the com-
parison between false positives and false negatives in the frequency-
approximation applications

distribution, which is indeed a kind of the probability den-
sity function, will state the degree of the cohesion between
different items in the dataset. To the best of our knowledge,
this fundamental question has not been formally addressed.

Inspired by the power-law relationship observed in many
distributions of single words (users, web pages) [6,43], it
is important to examine whether the itemset support distri-
bution also follows the power-law relationship. From obser-
vations on various retail datasets and as validated by our
empirical studies later, it is amazingly found that the power-
law relationship indeed appears in the itemset support dis-
tribution and we can characterize that as a Zipf distribution
[43].

In addition, we also find the self-similar phenomenon
exists in the distribution of itemset supports. Self-similarity
refers to the phenomenon that a distribution whose appear-
ance is unchanged regardless of the scale at which it is viewed
[3,37]. Specifically, our observation shows that the power-
law phenomenon, whose existence has been found in the sup-
port distribution of 1-items in early works [43], also exists in
the support distribution consisting of itemsets with a certain
length i (i ≥ 1). It is a self-similar phenomenon in nature.
Importantly, self-similarity can provide proper reasons of
why the power-law phenomenon also exists in the itemset
support distribution.

However, to find the parameters characterizing the item-
set support distribution is more challenging than to find the
parameters in the distribution of 1-items, since an extremely
large number of itemsets needs to be retrieved. Note that there
are at most m + Cm

2 + Cm
3 + · · · + Cm

m−1 + Cm
m = 2m − 1

possible itemsets in a dataset, where m denotes the number
of distinct items in the dataset. In practice, the itemset combi-
national explosion incurs extremely large time and memory
consumption, which will drastically decrease the practica-
bility of knowing the characteristics of the itemset support
distribution. To broaden the applicability of our discovery,
we also propose in this paper a valid and cost-effective algo-
rithm, called algorithm PPL (standing for Predict the Power-
Law relationship), to correctly estimate the parameters of the

itemset support distribution from a sample dataset while also
avoiding the need of generating lots of itemsets. As shown in
our empirical studies, algorithm PPL is able to efficiently and
precisely extract the characteristics of the power-law relation-
ship. As such, algorithm PPL can be utilized as an efficient
pre-processing step for extensive applications of mining fre-
quent patterns.

1.1 Motivating applications

The power-law phenomenon has received a great deal of
attention in web mining and data mining research [15]. Nev-
ertheless, this natural phenomenon is not fully explored and
utilized in the most important mining application, namely the
frequent-pattern mining. We review several popular frequent-
pattern mining applications, and comment the advantage of
utilizing algorithm PPL as their pre-processing step:

1.1.1 Frequency approximation over data streams

Recent advances in streaming research recognize the impor-
tance of frequency approximation [11,25,26,38]. Among
them, based on the assumption that the support distribu-
tion of single items follows the Zipf distribution, the work
in [26] devised algorithm Space-Saving to compute top-k
single items over time. Algorithm Space-Saving has a mem-

ory bound equal to min(|A|, (1
ε

) 1
θ , 1

ε
), where |A| denotes

the number of distinct items in the database, ε is the error
parameter,1 and θ is the parameter of the Zipf distribution.
Clearly, according to our observation, their idea can be fur-
ther extended to approximately retrieve top-k frequent item-
sets, since the itemset support distribution also follows the
Zipf distribution. In addition, while executing algorithm PPL
in advance, the appropriate memory size (depending on the
parameter θ which can be identified by PPL) can be assigned
prior to the execution of algorithm Space-Saving. It enables
the efficient implementation. For example, since the mem-
ory to maintain itemsets can be previously allocated, we can
implement the algorithm by maintaining itemsets in an array-
like structure as opposed to a dynamic linked list-like struc-
ture, to achieve better efficiency. Note that it is reported that
the dynamic data structure in general leads to poor efficiency
due to its poor spatial locality and poor temporal locality
[19].

1.1.2 False positives versus false negatives

As pointed out in [39], a challenging issue of the frequency
approximation over data streams arises from the choice

1 Specifically, ε is used to ensure that no item with true frequency less
then (s − ε)N will be output, where s denotes the minimum support
and N is the number of tuples in the database.

123

Power-law relationship and self-similarity in the itemset support distribution 1123

between false positives and false negatives. Specifically, tra-
ditional works of mining approximate frequent patterns, such
as [25], are usually false-positive oriented, i.e., they allow
identifying non-frequent itemsets as frequent ones. In con-
trast, the authors in [39] introduce false-negative oriented
algorithms, which allow identifying frequent itemsets as non-
frequent ones. By simulation, the authors in [39] conclude
that false-negative oriented algorithm can lead to small mem-
ory consumption as compared to that in false-positive ori-
ented solutions. In practice, our observation in the itemset
support distribution provides the essential evidence of their
studies: the possible number of inaccurate patterns identified
by a false-negative oriented solution (frequent itemsets being
identified as non-frequent) is much smaller than the possi-
ble number of inaccurate patterns identified by false-positive
oriented solutions (non-frequent itemsets being identified as
frequent). The reason is that the itemset support distribu-
tion follows the power-law relationship, and the number of
small-support itemsets will be larger than the number of high-
support itemsets.

Furthermore, the error parameter ε in [25] and the param-
eter δ in [39] control the compromise between the resource
consumption and the resulting accuracy, but how to deter-
mine these parameters is fully left unsolved to users. Note
that users are easy to give desired model accuracy (or a bound
of tolerant errors) rather than to give these subtle parameters.
Suppose that algorithm PPL is executed as a pre-process-
ing step to approximately estimate the expected number of
inaccurate itemsets incurred either as false positives or as
false negatives, as illustrated in Fig. 1. As such, a good refer-
ence to appropriately determine these error parameters can
be provided, because we can estimate the resulting accuracy
with respect to any given degree of these error parameters.
Algorithm PPL is thus able to provide the better flexibility
of striking a compromise between the resource consumption
and accuracy in mining approximate frequent patterns over
data streams. We will validate the feasibility of this idea in
our application studies.

1.1.3 Performance tuning of mining frequent patterns

It is reported that the effectiveness of many heuristic opti-
mizations for mining frequent itemsets usually depends the
data characteristics, particularly the sparsity/density of the
targeted data [28]. Once the data is long and dense, i.e.,
the itemset support distribution is highly skewed, depth-first
approaches such as FP-growth [21] are more powerful than
breath-first approaches such as DHP [29]. In contrast, algo-
rithm DHP is more suitable in the presence of sparse data.
Hence early identifying the parameters of the itemset sup-
port distribution (to indicate the level of data sparsity) by
algorithm PPL will help users to make proper strategies to
achieve the best performance of mining frequent patterns.

1.1.4 Determine the appropriate minimum support

Characterizing the itemset support distribution in advance
will help the determination of the minimum support. For-
mally, setting the minimum support is quite subtle, since
a small minimum support leads to an extremely large size
of frequent itemsets, and in contrast, only a few itemsets
are generated when the minimum support is large. In order
to obtain a desired mining result, users in general need to
tune the minimum support over a wide range, which is time-
consuming and is a serious problem for the applicability of
mining frequent itemsets. To remedy this, we can execute
algorithm PPL as a pre-processing step, which is able to
estimate the number of itemsets with support exceeding a
specified minimum support. As such, users can easily decide
the appropriate minimum support threshold to retrieve the
desired number of frequent patterns.2

1.1.5 Synthetic data generator

Formally, a synthetic data generator is an important means to
perform the sensitivity analysis of a proposed algorithm. Pre-
vious works of the association-rule mining usually observe
their results by utilizing the synthetic data generator pro-
vided in [1]. Recently, the work in [32] seeks the relationship
between different itemset lengths to generate more realistic
synthetic datasets. Going beyond this, we comment that, a
real dataset can be better characterized by giving its itemset
support distribution. Therefore, the generation of the syn-
thetic transactional datasets by the generators [1,32] can be
further modified by considering the characteristics in their
itemset support distributions.

1.1.6 Determine the sufficient sample size

Random Sampling has been shown to be an effective means to
improve the efficiency of mining frequent patterns at the cost
of model accuracy [24,34,41]. Clearly, the sample size con-
trols the compromise between mining efficiency and model
accuracy. In the literature, progressive sampling is the state-
of-the-art solution to determine an appropriate sample size
[30,31]. Specifically, progressive sampling iteratively exe-
cutes the frequent-pattern mining on samples whose sizes are
progressively increased, and the process will be terminated
until the mining accuracy is no longer significantly improved.
However, such a solution requires multiple executions of

2 In the literature, solutions to discover top-k frequent patters can obtain
frequent patterns without setting the subtle minimum support [7,36].
However, those solutions require to build a complete FP-tree in mem-
ory, which is memory-consuming. In general, the most efficient and
cost-effective strategy is to determine an appropriate minimum support
and then to execute the winner of frequent-pattern mining algorithms,
such as algorithms in [5,27,35].

123

1124 K.-T. Chuang et al.

frequent-pattern mining, which is very time-consuming. How
to efficiently determine the sufficient sample size for obtain-
ing desired model accuracy remains a challenging issue. To
achieve this, we propose an efficient mechanism to determine
the sufficient sample size with the help of algorithm PPL. We
will realize the idea in this paper, and the details are given in
Sect. 4.

1.2 Our contributions

Our contributions in this paper are to solidly study issues
related to the power-law relationship in the itemset support
distribution. More precisely:

(1) We first formalize the problem of the itemset support
distribution and explore the important phenomenon that
the distribution follows the Zipf distribution. In addi-
tion, we also find the self-similar phenomenon exists
in the distribution, which provides proper answers of
why the power-law relationship appears in the itemset
support distribution.

(2) To broaden the applicability of our discovery, we also
present a valid and cost-effective algorithm, called algo-
rithm PPL, to identify characteristics of the itemset sup-
port distribution without the need of discovering lots of
itemsets in advance.

(3) We propose novel mechanisms with the help of PPL to
solve two important problems: (a) determining a sub-
tle parameter for mining approximate frequent itemsets
over data streams; and (b) determining the sufficient
sample size for mining frequent patterns.

(4) We complement our analytical and algorithmic results
by a thorough empirical study on real data and demon-
strate the prominent advantage of algorithm PPL to be
an effective pre-processing means for various mining
applications.

This paper is organized as follows. Section 2 formalizes
our problem and explores the power-law relationship and
self-similarity in the itemset support distribution. In Sect. 3,
we give the design of algorithm PPL to efficiently and cor-
rectly retrieve characteristics of the itemset support distri-
bution. The experimental results, including two application
studies, are shown in Sect. 4. Finally, this paper concludes
with Sect. 5.

2 Power-law and self-similarity

2.1 Review of the power-law relationship and
self-similarity

Since the first observation of the power-law relationship in
[43], which discovered the frequency of the nth most-

frequently-used word in the natural language is approxi-
mately inversely proportional to n, the power-law relation-
ship has been successively discovered in many real data,
including WWW cache [6], Internet topology [16] and
economics,3 to name a few.4 Specifically, the power-law
relationship can be characterized by several mathematical
models, including the well-known Zipf distribution and its
variations such as the DGX distribution [4]. Among them,
the Zipf distribution is the most widely used form due to

its simplicity, as shown by fi ∝
(

1/rφ
i

)
, where fi denotes

the frequency of words (users, events,. . .) that are ranked as
the r th

i most frequent words (users, events,. . .) in the dataset,
and φ is the parameter characterizing the skewness of the
distribution. In practice, the Zipf distribution can be further
extended to characterize the “count-frequency” relationship,

which is stated as fi ∝
(

1/cφ
i

)
, where fi is the count of

distinct words that appear ci times in the dataset [4]. Without
loss of generality, we discuss the “count-frequency” relation-
ship in the sequel because the “count-frequency” relationship
can be deemed as a kind of the probability density function,
which is more desirable.

In essence, the Zipf distribution is often demonstrated by
scatterplotting the data with the x-axis being log(ci) and the
y-axis being log(fi). The distribution is deemed following
the power-law relationship if the points in the log–log plot
are close to a single straight line, as shown by

log(fi) = θ log(ci) + Ω. (1)

Formally, the slope θ and the Y -intercept Ω in Eq. 1 can be
estimated by the linear regression:5

θ =
∑k

i=1 log(ci) log(fi)−
(∑k

i=1 log(ci)
)
×

(∑k
i=1 log(fi)

)

k

∑k
i=1 log2(ci) −

(∑k
i=1 log(ci)

)2

k

;(2)

Ω =
∑k

i=1 log(fi)

k
− θ ×

∑k
i=1 log(ci)

k
, (3)

where k denotes the number of points in the log–log plot.
Note that the linear regression technique is a method based
on the least-square errors. The correlation coefficient (or said

3 In economics, the power law in slightly different form is known as
Pareto’s principle or the famous 80–20 rule [23].
4 See the power-law references in mining applications in [15] and in
different domains in http://www.nslij-genetics.org/wli/zipf/.
5 Other measurements to estimate the parameters of the power-law dis-
tribution include the non-linear regression and the maximum likelihood
estimation. Among them, the linear regression is the most widely uti-
lized approach due to its feasibility and simplicity.

123

Power-law relationship and self-similarity in the itemset support distribution 1125

the goodness of fit of the regression line) can be utilized to
examine whether those points in the log–log plot exactly lie
in the line log(fi) = θ log(ci) + Ω or not [33]. For conve-
nience of discussion, we postpone the formula of the correla-
tion coefficient to Eq. 6 in Sect. 3.3. In addition, for details of
the regression technique, which is out of scope for this paper,
the reader is asked to follow the pointers in some well-known
materials such as [33].

Note that previous observations mostly concentrate on the
power-law relationship in the distribution consisting of single
events, e.g., single words or single items [6,43]. Naturally, it
is important to investigate whether the prevalent power-law
relationship also appears in the support distribution of units
consisting of a set of words or items. Such cases were first
investigated in the computational linguistics literature [14],
where the power-law relationship of N -grams had been dem-
onstrated (N -grams denote phrases consisting of N consec-
utive words). Their studies show that the “count-frequency”
relationship of N -grams (with a fixed N) approximately fol-
lows the Zipf distribution.

Self-similarity, which has also been observed in various
real data including Ethernet traffic and WWW traffic [12,13,
15,37], is another natural phenomenon related to the power-
law relationship. In general, self-similarity is one type of
fractal: an object whose appearance is unchanged regardless
of the scale at which it is viewed. There are many ways that
data can be viewed as self-similar. Among them, a data series
is said statistically self-similar if the distribution viewed at
varying scaling is the same as that of the original. Followed
by the discovery of self-similarity, many phenomena, such
as long-range dependence and heavy-tailed distributions,
have also been discovered. Formally, the existence of self-
similarity creates new spectrums in various research areas,
and the system design with taking self-similarity into account
is likely to function in more proper ways. Note that our focus
is not on establishing the theoretical model of self-similarity
in the itemset support distribution; instead we concentrate on
examining the existence of self-similarity in the itemset sup-
port distribution and discussing its consequences.
Interested readers can see [3,37] for the theoretical
discussion.

2.2 Observations on the power-law relationship in itemset
support distribution

In this paper, our first goal is to investigate whether the power-
law relationship appears in the distribution of itemset sup-
ports in real datasets, where an itemset complies with the
definition in [1]. Specifically, let I = {x1, x2, . . . , xm} be a
set of distinct items in the dataset. A set X ⊆ I with k = |X |
is called a k-itemset or simply an itemset. Let the support
of an itemset X in the database D be the fraction of trans-

Table 1 Parameters of real datasets

Dataset Is |D| Tmax Tavg

BMS-POS 1,657 515,596 164 6.5

Retail 16,470 88,162 76 10.3

3C_chain 130,108 8,000,000 87 5.4

Book 12,082 100,000 13 2.3

actions in D that contain X .6 We would like to investigate
whether the support distribution of itemsets follows the Zipf
distribution, as the form shown by

log(fi) = θ log(si) + Ω, (4)

where si denotes the support of itemsets and fi denotes the
frequency of itemsets whose supports are si . Note that the
“support-frequency” relationship in Eq. 4 is physically equiv-
alent to the “count-frequency” relationship. For interest of
space, we show the investigation on four retail-like datasets,
which are skewed, sparse, and most association-rule algo-
rithms are designed for such types of data [42].

To examine whether the support distribution of itemsets
in retail datasets follows the Zipf distribution, four real data-
sets are investigated in this paper, including two well-known
retail benchmark datasets,7 and two transaction datasets from
a 3C chain store and a large book store in Taiwan. Those data-
sets are summarized in Table 1, where Is denotes the distinct
items in the dataset, |D| denotes the number of transactions,
Tmax denotes the maximum itemset length and Tavg denotes
the average itemset length. Furthermore, we execute algo-
rithm FP-growth downloaded from Christian Borgelt’s web-
site8 to obtain itemsets with their supports. Since the number
of all itemsets is extremely large (there are 2Is − 1 possible
itemsets at most), it is very difficult to discover all itemsets in
reasonable execution time. For efficiency reasons, we did not
retrieve all itemsets in each dataset, but instead retrieve item-
sets whose support counts exceed 30, where 30 is a sufficient
number in the statistical sense [33].

The observations are shown in Fig. 2, where the curve of
the original support distribution presents the log–log rela-
tionship of the itemset support versus the number of itemsets
with the corresponding support (the curve of the quantized
support distribution will be discussed in the next section). As
can be seen, the log–log plot is very Zipf-like, meaning that
the power-law relationship indeed appears in the distribu-

6 The support is considered as the relative occurrence frequency. Note
that it is defined in some literature as the absolute one, i.e., the occur-
rence frequency in the database.
7 Downloaded from the website of the ICDM workshop on Frequent
Itemset Mining, 2003: http://www.fimi.cs.helsinki.fi/data/.
8 http://www.fuzzy.cs.uni-magdeburg.de/˜borgelt/fpgrowth.html.

123

1126 K.-T. Chuang et al.

(a) (b)

(c) (d)

Fig. 2 The support distribution of four real datasets

tion of the itemset support. In addition, the “top-concavity” 9

phenomenon, which is prevalent in the distribution of single
items [4,43], is insignificant in the itemset support distri-
bution. As such, the Zipf distribution is enough to correctly
characterize the power-law relationship in the itemset sup-
port distribution. We accordingly demonstrate the fact that
the power-law relationship appears in the itemset support
distribution.

2.3 Observations on self-similarity in itemset support
distribution

Our observations in Sect. 2.2 are surprising and informa-
tive, which show that the power-law relationship exists in the
support distribution consisting of all itemsets. Note that pre-
vious works mainly reported the existence of the power-law
relationship in the support distribution consisting of single
events [6,43]. Is there any possible reason to link up previous
studies and our investigation? Surprisingly, the self-similar
phenomenon can provide a proper answer. We begin the dis-
cussion by examining the support distribution consisting of
all itemsets with a certain itemset-length. The observations
are shown in Fig. 3, where “i-itemset support distribution”
represents the support distribution consisting of all itemsets
with the itemset-length equal to i . We arbitrarily select three

9 The “top concavity” phenomenon refers to that the top part of the
log–log curve tilts vertically (with relatively concave shapes).

itemset-lengths shown in a figure. Clearly, the result in Fig. 3
shows that the support distribution of itemsets with a cer-
tain itemset-length also follows the power-law distribution10

and the support distribution of a larger itemset-length has
a sharper slope. The informative result supports a conclu-
sion: the power-law phenomenon among the supports of sin-
gle events also appears in the support distribution of their
i-combinations for any i . This is statistically self-similar in
nature, as analyzed in Remark 1.

Remark 1 Let the database D = {t1, t2, . . . , td}, and ti =
{x(i,1), x(i,2), . . . , x(i,mi)}, 1 ≤ i ≤ d. Clearly, the tuple ti
contains Cmi

2 2-itemsets, which can be aggregated as Cmi
1

1-items. Accordingly, we have
∑d

i=1 Cmi
2 2-itemsets in D,

which can also be aggregated as
∑d

i=1 Cmi
1 1-items. It implies

that, the distribution of 1-items is an aggregated version with
respect to the distribution 2-itemsets. Note that the essence
of statistical self-similarity is that the subject shows the same
pattern in the distribution, regardless of the scale of the inves-
tigation. As such, it can be proved by induction that the i-
itemset support distribution is an aggregated version with
respect to (i + j)-itemset support distribution for j ≥ 1.
Since i-itemset support distribution follows the power-law
distribution for any i as shown in Fig. 3, we conclude that

10 Despite the similar purpose of this observation and the observation of
N -grams [14], they are inherently different since N -grams are phrases
consisting of N consecutive words but i-itemsets are itemsets consisting
of i arbitrary-position items.

123

Power-law relationship and self-similarity in the itemset support distribution 1127

(a) (b)

(c) (d)

Fig. 3 The support distribution consisting of itemsets with a certain itemset-length

statistical self-similarity exists in the i-itemset support dis-
tribution for any i .

The existence of self-similarity in the i-itemset support
distribution is a new discovery. It also provides the evidence
for the existence of the power-law phenomenon in the item-
set support distribution. We further investigate into Fig. 3
and show in Fig. 4 the comparison between the itemset sup-
port distribution and i-itemset support distributions with rel-
atively large itemset-lengths. It is clear to see that, in the
log–log plot, the slope of the i-itemset support distribution
is progressively close to the slope of the itemset support dis-
tribution as the itemset-length increases. In addition, while
the itemset-length exceeding a certain degree, these slopes
of the log–log i-itemset support distributions are almost the
same as that of the log–log itemset support distribution. This
property leads to Lemma 1 below.

Lemma 1 Suppose that self-similarity exists in the i-item-
set support distribution, which follows the Zipf distribution
for any i . The itemset support distribution consisting of all
itemsets also follows the Zipf distribution.

Proof Suppose that fi j denotes the count of i-itemsets whose
supports are equal to c j , where 0 ≤ c j ≤ 1. Since i-itemset
support distribution follows the Zipf distribution, we have
fi j = sθi

j × eΩi according to Eq. 1, where θi and Ωi denote
the slope and the intercept in the log–log i-itemset support
distribution, respectively. Clearly, the count of itemsets f̂ j

with supports equal to c j in the itemset support distribution

is f̂ j = ∑
i fi j = ∑

i sθi
j × eΩi . As shown in Fig. 4, we

know slopes of the log–log i-itemset support distributions
with relatively large itemset-lengths are almost the same. Let
this slope be denoted by θmax. We have

f̂ j =
∑

sθi
j × eΩi ≈ cθmax

j ×
(∑

eΩi
)

log(f̂ j) ≈ θmax log(s j) + log
(∑

eΩi
)

.
(5)

Comparing Eqs. 1 and 5, we can conclude that the itemset
support distribution follows the Zipf distribution.11 ��

Lemma 1 provides the proper cause why the power-law
relationship exists in the itemset support distribution. Note
that in this section, we show the evidence that the power-
law relationship and self-similarity exist in the itemset sup-
port distribution. Knowing the power-law phenomenon can
provide strategies for solving many challenging problems in
the frequent-pattern mining which cannot be solved by tradi-
tional methods. We will describe these issues in the following
sections.

11 The count of i-itemsets with a small itemset-length is neglected in
Eq. 5, since the count of i-itemsets with a relatively large itemset-length
is in orders of magnitude larger than that with a small itemset-length.

123

1128 K.-T. Chuang et al.

(a) (b)

(c) (d)

Fig. 4 The comparison between the support distribution and i-itemset support distributions

3 Design of algorithm PPL

As mentioned in Sect. 1.1, recognizing characteristics of the
itemset support distribution can provide a great benefit to
proper mining system designs. However, it is prohibitively
expensive to find all itemsets and further estimate the charac-
teristics of the power-law relationship in the itemset support
distribution, i.e., the slope θ and the Y -intercept Ω in Eqs. 2
and 3. A naive approach to retrieve all itemsets without the
support pruning will result in extremely large time and mem-
ory consumption (there are 2m −1 possible itemsets at most).
To broaden the applicability of our discovery, an efficient
approach is required to correctly estimate these parameters.

As a consequence, we propose in this section a valid and
cost-effective solution, named PPL, to estimate the param-
eters of the power-law relationship in the itemset support dis-
tribution. Formally, time and memory consumption is
required if all itemsets with their supports need to be retrieved.
To reduce required resources, two conventional methods can
be utilized in our case. The first method is to use sampling
[34]. Another method is to use support pruning techniques
[29], where only the set of high-support itemsets will be
retrieved so as to efficiently discover the parameters of the
power-law relationship from the partial set of itemsets.
Specifically, to fully utilize the capability of these two
approaches, algorithm PPL is decomposed into three phases:
(1) sampling; (2) obtaining high-support itemsets; and (3)
estimating the parameters of the power-law relationship by
the linear regression technique.

However, three challenges will be faced inherently:

(1) The support distribution obtained in a sample will devi-
ate from the support distribution in the original data-
base. Note that after sampling, the support of an itemset
in the sample may be different from its support in the
original dataset [41]. As pointed out in [8,41], the num-
ber of itemsets with the support s j is likely to increase
after sampling, which can be clarified by the illustra-
tion in Fig. 5a. Specifically, according to the sampling
distribution12 shown in Fig. 5a, the shadow region is
equal to the probability that an itemset with support ss

in the original dataset changes its support to s j in a sam-
ple. Correspondingly, an itemset with support s j in the
original data has a similar probability of changing its
support to ss after sampling. Since the number of item-
sets with support ss is larger than that with support s j ,
the moving-in itemsets will be more than the moving-
out itemsets with respect to s j . Clearly, the number of
itemsets with support s j in a sample is thus larger than
that in the original dataset. The point is demonstrated
in our empirical studies in Fig. 6a, c, where the sup-
port distributions obtained in the original dataset and

12 Suppose that we repeatedly generate a lot of samples of the same
sample size. The distribution of the support of X among these samples
is referred to as the sampling distribution of the support of X . Formally,
the sampling distribution will approximately follow a normal distribu-
tion with mean equal to the support of X in the entire dataset, and its
variance depends on the sample size [10].

123

Power-law relationship and self-similarity in the itemset support distribution 1129

(a) (b)

Fig. 5 The problems incurred by two traditional methods in estimating the power-law relationship

in a random sample with 20,000 tuples are included. It
can be seen that the support distribution in the sample
deviates from that in the original dataset. In practice,
due to randomness, we cannot precisely estimate the
deviation between the support distribution in a sample
and that in the original dataset. As such, utilizing sam-
pling will increase difficulty in correctly predicting the
characteristics of the support distribution.

(2) Without prior knowledge, it is difficult to determine the
appropriate minimum support. Note that same as pre-
vious frequent-pattern mining works, we do not know
how to determine the subtle minimum support. A large
minimum support will result in too few itemsets, which
cannot provide sufficient information to correctly esti-
mate the parameters of the Zipf distribution. In contrast,
the small minimum support will generate a lot of item-
sets, resulting in inefficiency.

(3) It is difficult to obtain the desired regression line due to
the support fluctuation on high-support itemsets. Con-
sider the observation in Fig. 5b, where a solid straight
line represents the regression line over all points with
respect to high supports, and the dotted lines show the
envelope of the support fluctuation. As can be seen,
points with respect to high supports do not exactly fol-
low the Zipf distribution, and the support distribution of
these points has the large support fluctuation. Since we
only retrieve high-support itemsets, we inevitably face
the challenges from the support fluctuation.13 Without
a proper design, the regression line over points with
respect to high supports may deviate from the desired
regression line.

13 In [6], the slope of the log–log plot is obtained by using the linear
regression, excluding the rightmost 100 points to avoid the serious effect
of the fluctuation. However, such an approach will fail in our cases since
we may only have a few rightmost points, which are summarized from
high-support itemsets and may be less than 100 points.

To overcome those challenges, several novel mechanisms
will be devised in algorithm PPL. In the following, we per-
form step-by-step analysis to discuss the details.

3.1 Phase I: sampling

The goal of Phase I is to select a sample from the original data-
set. Note that as mentioned in the first challenge described
above, the support distribution in a sample will deviate from
that in the original dataset, and the deviation is unpredictable.
In fact, this phenomenon can be significantly reduced in the
quantized support distribution, which will be obtained by
the histogram technique [22]. Explicitly, all itemsets can be
aggregated by means of the traditional equi-width histogram
and then obtain the quantized support distribution. We give
the formal definition of the quantized support distribution
below.

Definition 1 (The quantized support distribution) Given all
points (si , fi)in the original support distribution, where fi

denotes the count of itemsets whose supports are si . After
aggregating those points by means of the equi-width histo-
gram, a set of new points (ŝ j , f̂ j)will be obtained, where ŝ j

denotes the representative value (the default is the median
value) of the support range corresponding to the j th bucket
in the histogram, and f̂ j denotes the count of itemsets with
supports falling in the j th bucket. The quantized support dis-
tribution is the distribution consisting of all points (ŝ j , f̂ j).

The argument that the quantized support distribution is
able to significantly reduce the influence of support-devia-
tion follows the observation below:

Observation Note that the sampling distribution of the sup-
port of an itemset X will approximately follow a normal
distribution with mean equal to the support of X in the entire
dataset and its variance depends on the sample size [10].
As shown in Fig. 7a, the shadow region represents the error
probability that an itemset with support si changes its support

123

1130 K.-T. Chuang et al.

(a) (b)

(c) (d)

Fig. 6 The original support distribution and the quantized support distribution

Fig. 7 Influence of the
support-deviation (a)

(b)

after sampling. On the other hand, consider the case of the
quantized support distribution, as shown in Fig. 7b. The error
probability that itemsets with supports in bucket j change to
either bucket j −1 or bucket j +1 after sampling will be rel-
atively small as compared to the error probability illustrated
in Fig. 7a. That is, the supports of most itemsets are likely to
remain in the same support bucket after sampling. In other
words, only itemsets with supports in the margin of a bucket
are likely to have the support not falling in the same bucket
after sampling. This argument is demonstrated in Fig. 6b, d,
where the quantized support distributions obtained in the
original dataset and in the sample with 20,000 tuples are
shown and the parameter w denotes the number of aggre-

gated points. It is clear to see that the quantized support dis-
tribution in a sample will be close to the quantized support
distribution in the original dataset.

Following the observation, we comment that the quantized
support distribution is not sensitive to the support-deviation.
That is, the quantized support distribution in the sample will
be close to the quantized support distribution in the entire
dataset. As such, we turn to obtain the quantized support
distribution in the sample.

However, recalling the observation in Fig. 2, the quantized
support distribution still deviates from the original support
distribution. Importantly, assuming that the original support
distribution approximately follows the Zipf distribution,

123

Power-law relationship and self-similarity in the itemset support distribution 1131

Lemma 2 below indicates that the quantized support dis-
tribution also has the same slope as the slope in the origi-
nal support distribution and has a “predictable” drift of the
Y -intercept.

Lemma 2 Suppose that the itemset support distribution fol-
lows the Zipf distribution so that we have log(fi) ≈ θ

log(si) + Ω.Assuming that there are w distinct points in the
original support distribution being aggregated as a point in
the quantized support distribution, we will have an approxi-
mate Zipf distribution as the form

log(f̂k) ≈ θ log(̂sk) + Ω + log (w) ,

in the quantized support distribution, where ŝk denotes the
representative of the quantized support in the kth bucket and
f̂k denotes the count of itemsets whose supports fall in the
kth bucket. As such, the log–log plot in the quantized support
distribution has the slope θ and the Y-intercept Ω + log (w).

Proof Suppose that |D| is the database size. Let points
(sk1, fk1), (sk2, fk2), . . . , (skw, fkw) be summarized as the kth
point (̂sk , f̂k) in the quantized support distribution. Note that
we have eΩ × sθ

i j ≈ fi j since it follows the Zipf distribution.

Clearly, we have f̂k = ∑w
j=1 fk, j , and

ŝk = sk1 + skw

2
=

sk1 +
(

sk1 + w
|D|

)

2
= sk1 + w

2 × |D| .

Since w
|D| is in general much small as compared to sk1, we

have

sθ
k j

ŝθ
k

=
(

sk1 + j
|D|

sk1 + w
2×|D|

)θ

≈ 1.

Therefore sθ
k j , for 1 ≤ j ≤ w, will be approximately equal

to ŝθ
k , which yields that

f̂k =
w∑

j=1

fk j ≈ eΩ ×
w∑

j=1

ŝθ
k = eΩ × w × ŝθ

k

log(f̂k) ≈ θ log(̂sk) + Ω + log (w) . ��
Lemma 2 indicates that the slope θ remains the same in

the quantized support distribution, and the Y -intercept will
be changed to Ω+log (w). Figure 2 demonstrates the success
of Lemma 2, where we can see that, for high-support points,
the slope of the quantized support distribution (w = 10 or
100) is equal to that of the quantized support distribution
without sampling. As a result, the side-effect of sampling is
overcome.

For ease of reference, we summarize the process to over-
come problems incurred by sampling, as shown in Fig. 8:

(1) Obtain the characteristics of the quantized support dis-
tribution in the sample.

(2) The characteristics of the quantized support distribu-
tion in the whole dataset are expected equal to that in
the sample.

(3) Obtain the characteristics of the original itemset support
distribution according to Lemma 2.

Once Step 1 is complete, Step 2 and Step 3 can be straight-
forwardly executed with the mathematical manipulation
mentioned above. How to precisely achieve Step 1 will be
discussed in Sects. 3.2 and 3.3.

The remaining issue in this phase is, what is the appropri-
ate sample size to obtain the quantized support distribution
which can be consistent with that in the entire database. For-
mally, the level of consistency depends on the variance of
the sampling distribution of the support, and the variance
depends on the sample size [34]. A small sample size will
lead to a large variance as compared to the variance in a large
sample size. As pointed out in previous works of sampling for
mining association rules, a sample size either equal to 20,000
[34] or a sample rate equal to 10% [41], can roughly generate
a satisfactory set of frequent itemsets. We comment that the
sample size 20,000 or 10% is also sufficient to generate the
accurate quantized support distribution by following several
points: (1) The level of complexity to generate the accurate
quantized support distribution is not higher than to the level
of complexity to generate accurate frequent itemsets; (2) in
Phase II only high-support itemsets will be generated, whose
supports, as indicated in [34], can be easily preserved in sam-
ples as compared to supports of low-support itemsets; (3) the
difference between counts of itemsets within a certain bucket
in a small sample and in the entire dataset is negligible in the
log–log scale (note that the characteristics of the power-law
relationship is estimated in the log–log scale); (4) the tech-
nique devised in Phase III is robust to the difference between
quantized support distributions in the sample and in the entire
dataset.

As simultaneously considering execution efficiency and
above points, we therefore set the sample size as 20,000 in
default since the sample can be easily executed and main-
tained in main memory. The discreet users can set the size
as 10% of the entire size, as the suggestion in [41]. We will
also investigate the issue of the sample size in our empirical
studies later.

3.2 Phase II: discover high-support itemsets in the sample

In this phase, the high-support itemsets in the sample will
be discovered. Without prior knowledge to determine the
appropriate minimum support, we resort to the technique of
“discover top-k itemsets” [7,36] instead of “discover itemsets
with the specified minimum support,” where top-k itemsets

123

1132 K.-T. Chuang et al.

Fig. 8 The flow to overcome problems incurred by sampling

refer to the k most frequent itemsets in the dataset. In practice,
the size of k can be easily specified a priori. As will be shown
in our experimental results, k equal to 5,000 will suffice to
correctly estimate the parameters of the power-law relation-
ship in most cases. As such we set k as 5,000 in default,
where top 5,000 itemsets can be efficiently retrieved by the
state-of-the-art algorithm for mining top-k frequent itemsets.
Previous works to discover top-k frequent itemsets include
[7,36]. Formally, those works shoot for discovering top-k
itemsets with specified constraints such as discovering closed
itemsets [7]. Therefore directly extending these solutions to
discover top-k itemsets (without those specific constraints)
will lead to inefficiency since their pruning techniques will
be infeasible.

Recent advances in the literature has proposed a new
approach, called the MTK algorithm, to identify top-k fre-
quent itemsets within an upper constraint of the memory
usage [9]. Specifically, MTK is devised as a candidate gener-
ate-and-test manner similar to the Apriori algorithm, except
the strategy of the candidate generation. With the help of the
theory to predict the upper number of the generated candi-
dates [17], MTK is able to decide the set of candidates that
will be generated in the next database scan by satisfying two
properties (1) a candidate so generated is highly possible to be
included in top-k frequent itemsets; (2) the total used memory
is constrained below a user specified upper memory size.

In fact, applying the MTK algorithm as Phase II of PPL
still faces a challenge that multiple database scans may be
required, which will lead to execution inefficiency. Fortu-
nately, the input database of the MTK algorithm is not too
large to be maintained in the memory since Phase I of PPL
has generated a small sample for further use. As such, all
operations in Phase II, including the database scan and the
candidate generation, can be accomplished in an efficient and
memory-resident manner without extra I/O, thus achieving
high efficiency.

It is worth commenting that the MTK algorithm is the bet-
ter approach for our need rather than BOMO [7] and TFP [36]
due to an additional reason: as shown in [9], the MTK algo-
rithm outperforms BOMO and TFP while k is not so large
(k < 100,000). Since k = 5,000 is adequate to provide neces-
sary information for the identification of power-law param-
eters, it is clear that MTK results in best efficiency in this
setting. For interest of space, the details of algorithm MTK
are not described in this paper, and interested readers can
refer to [9] for the details.

3.3 Phase III: characterize the power-law relationship

The parameters of the Zipf distribution will be estimated in
this phase. Suppose that {X1, . . . , Xk} is the set of top-k
itemsets which are obtained in Phase II. At the beginning
of this phase, we will aggregate these itemsets by means of
histogram with the support bucket width equal to w

|S| , where
|S| is the size of the sample dataset and w is the number of
distinct and consecutive support counts which will be aggre-
gated into the same bucket. Note that the default of w is 10
in this paper since empirically w = 10 is able to preserve
the slope of the itemset support distribution, as shown in
Fig. 5b. As such, top-k itemsets is aggregated into a set of
points Hk ={

(
ŝ1, f̂1

)
,
(
ŝ2, f̂2

)
, . . . ,

(
ŝz, f̂z

)
} sorted by ŝi ,

where ŝi < ŝ j iff i < j . Afterward, we can characterize the
power-law relationship by performing the regression analysis
on Hk .

However, as pointed out as the third challenge described
in the beginning of Sect. 3, directly executing the regression
analysis over all points in Hk results in the incorrect estima-
tion due to the support fluctuation on high support itemsets.
Therefore a problem arises: “how to select an appropriate
subset of points from Hk to correctly estimate the param-
eters of the Zipf distribution?” Recall the observation in
Fig. 5b. Points with respect to very high-supports usually
do not accurately follow the Zipf distribution. On the other
hand, points with respect to low supports usually follow the
Zipf distribution. As such, a naive approach can be devised as
follows.

3.3.1 Naive approach

It is intuitive to suggest the regression line over a subset of
leftmost points in Hk since they are likely to correctly fit the
power-law relationship. For example, we may estimate the
power-law relationship by performing the regression analy-
sis over the leftmost five points in Hk, i.e., {

(
ŝ1, f̂1

)
, . . . ,(

ŝ5, f̂5
)
}. Nevertheless, we did not know how many points

are sufficient to obtain the desired regression line. We have
to examine all possible regression lines, and then select the
one with the best correlation coefficient, since it will have
the best power to explain the log–log relationship in the Zipf
distribution.

However, such an approach suffers from the problem that
the best correlation coefficient does not imply the best fit of
the Zipf distribution. In particular, leftmost few points may

123

Power-law relationship and self-similarity in the itemset support distribution 1133

Fig. 9 The illustration of the best fit regression line

result in the best correlation coefficient, but the regression
line could be easily bias to outlier points [33]. In addition,
the result of the linear regression may be affected by the noise
from sampling in Phase I. As such, we further devise a novel
solution, which is inspired from the training-and-testing sce-
nario in supervised learning [20], to correctly estimate the
parameters of the Zipf distribution from Hk .

3.3.2 Minimizing testing error approach

Let Hk be divided into two distinct subsets, where the first
subset, called the testing set Te, consists of leftmost m points
and another subset, called the training set Tr , consists of
rightmost (z − m) points. Here z is the number of points in
Hk and m is the parameter to adjust the size of the testing
set, m < z. We have Te = {(

ŝ1, f̂1
)
, . . . ,

(
ŝm, f̂m

)}
and

Tr = {(
ŝm+1, f̂m+1

)
, . . . ,

(
ŝz, f̂z

)}
. Consider the illustra-

tion in Fig. 9, where each point in Te is called a testing point.
Our goal is to find the best fit regression line from Tr so that
all testing points in Te can well lie in the line. Formally, we
give the definition of the best fit regression line as follows.

Definition 2 (Best fit regression line) Given the training set
Tr and the testing set Te. The best fit regression line, denoted
by Rg (̂si) = θ̂g log(̂si) + Ω̂g, will satisfy:

(1) Rg (̂si) = θ̂g log(̂si) + Ω̂g is the regression line over
the leftmost g points in Tr , i.e.,

{(
ŝm+1, f̂m+1

)
, . . . ,(

ŝg, f̂g
)}

, where m + 1 ≤ g ≤ z.
(2) The correlation coefficient, rg , over the data points{(

ŝm+1, f̂m+1
)
, . . . ,

(
ŝg, f̂g

)}
is smaller than a pre-

defined threshold δ. Note that rg is equal to

∑g
i=m+1

∑g
j=m+1 (log(̂si) − us)

(
log(f̂ j) − u f

)

√∑g

i=m+1
(log(̂si) − us)

2
√∑g

j=m+1

(
log(f̂ j) − u f

)2
,

(6)

where us and u f are the mean of log(̂si) and log(f̂ j),
respectively.

(3) g = arg minu

{∑m
j=1

(
Ru (̂s j) − log(f̂ j)

)2
}

, subject

to the correlation coefficient r f ≤ δ and m+1 ≤ u ≤ z.

Ensure: Best_fit():
Input:

Top-k itemsets, Xi , where i = 1, ..., k
The number of aggregated support counts, i.e., w

The number of points in Te, i.e., m
The correlation coefficient threshold δ

Output:

The best fit slope θ̂g , and the best fit Y -intercept Ω̂g

1. Let fi = 0, where i = 0,...,
⌈ 1

∆

⌉
; //∆ = w

|D| , the support width
of a bucket
2. for i = 1 to k; //calculate the count of itemsets in each bucket

3. fα = fα + 1, where α =
⌈

sup(Xi)
∆

⌉
and sup(Xi) denotes the

support of Xi ;
4. find Λ, where fΛ = mini { fi �= 0} ; //the leftmost points in Te
5. for t = (Λ + m + 1) to

⌈ 1
∆

⌉
begin

6. [Ωt , θt , rt]=linear_reg(
(
log(s j), log(f j)

)
, where

(Λ + m + 1) ≤ j ≤ t;
7. V art = ∑m

j=0

[
θ f log (sΛ+ j)+Ω t− log (f Λ+ j)

]2 ; //the
testing error
8. end
9. find g, where g = arg minu (V aru), subject to ru ≤ δ; //Crite-
rion 3 in Def. 2
10. return Ωg, θg with respect to g;

The whole procedure to find the best fit regression line
is outlined in Procedure Best_fit, where the function lin-
ear_reg() will return three parameters, the intercept Ω (see
Eq. 3), the slope θ (see Eq. 2) and the correlation coefficient
r (see Eq. 6). Specifically, the correlation coefficient rg (a
value between −1 and 1) can represent the level how those
points are explained by the regression line. The regression
line will fit points better when rg → −1 since without loss
of generality, f̂i and ŝi are negatively correlated. Statisti-
cally, it is believed that rg ≤ −0.8 is sufficient to claim the
regression line can explain these points [33]. Thus δ is set as
−0.8 in default. Note that Criterion 3 in Definition 2 states
that we desire the regression line with the minimum testing
error. In addition, algorithm PPL is degenerated into the naive
approach if there is no testing point in Te while simply choos-
ing the regression line with the best correlation coefficient.
For comparison purposes, we will also show the result of the
naive approach in our experimental results. Note that the best
fit regression line will be identified in the partial quantized
support distribution from top-k itemsets discovered in a sam-
ple. In light of Lemma 2, the slope and the Y -intercept in the
original itemset support distribution will be equal to θ̂g and
Ω̂g − log(w), respectively.

We finally summarize the overall flow of algorithm PPL,
as shown in Fig. 10: (1) sampling; (2) discover top-k frequent

123

1134 K.-T. Chuang et al.

Fig. 10 The flowchart of algorithm PPL

(a) (b)

(c) (d)

Fig. 11 The results of algorithm PPL

itemsets in the sample; (3) aggregate the support of top-k
itemsets by means of the equi-width histogram so as to obtain
the partial quantized support distribution; (4) perform Pro-
cedure Best_fit to obtain the characteristics of the quantized
support distribution in the sample; (5) identify the charac-
teristics of the power-law relationship in the itemset support
distribution in the entire database according to Lemma 2.

4 Experimental studies

In Sect. 4.1, we show the performance studies of PPL to esti-
mate the parameters of the itemset support distribution. To
demonstrate the applicability of PPL, in Sects. 4.2 and 4.3, we
further study two applications out of six applications intro-
duced in Sect. 1. Specifically, in Sect. 4.2 we propose a variant
of Lossy-Counting based algorithms [25] with help of PPL
for mining approximate frequent itemsets. In Sect. 4.3, we
utilize PPL to realize a challenging mining task: determin-
ing the sufficient sample size for mining frequent patterns
[30]. Note that the reason we select these two applications is
that the success of these two applications is fully attributed
to the help of the PPL algorithm, whereas the best execu-

tion of other four applications needs the integration of other
optimization strategies.

4.1 Performance studies of algorithm PPL

The four real skewed datasets described in Table 1 are uti-
lized in our experimental studies. Since the goal to show the
support distribution follows the Zipf distribution has been
demonstrated in Sect. 2, we in this subsection investigate
whether algorithm PPL can efficiently and correctly estimate
the parameters of the power-law relationship in the itemset
support distribution. The simulation is coded by C++ and
performed on Windows XP in a 1.7GHz IBM compatible PC
with 512MB of memory. The default parameters in the exper-
iments are: (1) k = 5,000 (top-k itemsets); (2) the number of
aggregated support counts w = 10; (3) the number of points
in the training set is equal to 5; (4) the correlation coefficient
threshold δ = −0.8; (5) the sample size |S| = 20,000.

We investigate whether algorithm PPL with the default
parameters is able to correctly characterize the power-law
relationship in four real datasets. The results are presented in
Fig. 11, where the original support distributions and the best
fit regression lines obtained by algorithm PPL (with their

123

Power-law relationship and self-similarity in the itemset support distribution 1135

Fig. 12 The execution time of different approaches

slopes θ and Y -intercepts Ω) are shown. Note that the best
fit regression line is discovered in the quantized support dis-
tribution in the sample. As can be seen, the best fit regression
line can perfectly characterize the Zipf distribution in the four
real datasets, showing the effectiveness of PPL.

Furthermore, the execution time is shown in Fig. 12, where
the execution time of “Brute force approach” indicates the
time to retrieve the original support distribution in Fig. 2 by
algorithm FP-growth. Indeed, the brute force approach can
correctly determine the parameters of the Zipf distribution by
finding most of itemsets, but it will pay for extremely large
time and memory consumption. On the other hand, PPL can
efficiently estimate the parameters of the power-law relation-
ship by avoiding the expensive process to obtain all itemsets.
It is worth mentioning that the efficiency gain in Fig. 12,
which is calculated as the execution time of the brute force
approach divided by the execution time of algorithm PPL,
shows that algorithm PPL is in orders of magnitude faster
than the brute force approach. In addition, Fig. 12 also shows
that PPL is cost-effective, thus demonstrating the feasibil-
ity of PPL to be a pre-processing means for other mining
applications.

Same as the experiments in [4], the quantitative analysis
of algorithm PPL could be evaluated by the quantile-quantile
plot (qqplot), as the one shown in Fig. 13. The qqplot is used
to compare the quantiles of two datasets. If the distributions
of these two datasets are similar, the qqplot will be linear and
the slope will be close to one. As such, we generate a synthetic
support distribution according to the parameters estimated by
algorithm PPL, and then make a qqplot between the original
support distribution and the synthetic support distribution.
Afterward, two important factors can be calculated: (1) the
slope of the qqplot; (2) the correlation coefficient of points
in the qqplot. If these two factors are both close to unity, we
can claim that the real distribution and the synthetic distri-
bution are from the same distribution [4], meaning that the
regression line can perfectly represent the data distribution.

The qqplots on various correlation coefficient thresholds
δ are shown in Fig. 13, where Fig. 13a is the qqplot corre-
sponding to the result of Fig. 11a. We can find that the qqplot
in Fig. 13a is close to linear, except points with respect to
very low supports and very high supports. Note that Fig. 2
shows that points with respect to high supports in the BMS-
POS dataset do not exactly follow the power-law relationship
and points with respect to low supports slightly vary from the

Zipf distribution, thus causing the deviation of a few points.
However, the slope and the correlation coefficient are very
close to unity, indicating that the synthetic distribution can
almost perfectly fit the real distribution. Furthermore, when
we increase the threshold δ, as shown in Fig. 13b, the esti-
mated quality degrades, showing the importance of Criterion
2 in Definition 2. Indeed, a regression line with a low cor-
relation coefficient will lose its effectiveness to estimate the
power-law relationship, even though it results in the mini-
mum testing error (Criterion 3 in Definition 2).

For interest of space, other qqplot results of four real data-
sets are summarized in Fig. 14. At first, we observe results
with various numbers of testing points, i.e., |Te| in Fig. 14.
Note that the case |Te| = 0 can be viewed as the naive
approach discussed in Sect. 3.3. As can be seen, the naive
approach cannot correctly model the distribution since the
correlation coefficient and the slope deviate far from unity.
On the other hand, |Te| = 5 (default cases) and |Te| = 10
both lead to the desirable result. Moreover, the studies of
various δ are also shown, and we can find that δ = −0.8
(default cases) or −0.9 results in the correlation coefficient
and the slope both close to one. Note that without loss of gen-
erality, the results of |Te| = 0 and δ = −0.5 can be viewed
as the case to obtain the regression line over all points from
top-k itemsets. It can be seen that the regression line over all
points loses of its power to explain the real data distribution.
The above observations all demonstrate the effectiveness of
algorithm PPL.

In addition, with the result of various k, we can conclude
that the default k = 5,000 is sufficient to obtain high qual-
ity results. Note that top-5,000 itemsets can be efficiently
retrieved in the sample, indicating the efficiency and effec-
tiveness of algorithm PPL. We also investigate the effect of
the sample size. Clearly, the result obtained in the sample
with the default size 20,000 is close to the result obtained
in the large sample with size equal to 0.2 × |D|, showing
that the resulting quality is not sensitive to the sample size if
the sample size is not arbitrarily small. Finally, we observe
the result of various w. Note that Lemma 2 may not be valid
when w is large. Thus it can be seen that w = 100 slightly
degrades the estimated quality of algorithm PPL as compared
to that in w = 10. Since the goal of quantization in this paper
is to diminish the side-effect of sampling, we conclude that
w = 10 is sufficient to achieve this and will give the excellent
fit of the itemset support distribution.

4.2 Application study: false positive or false negative of
frequent itemsets

To better understand the advantage of knowing characteris-
tics of the itemset support distribution, we implement the
Lossy-Counting based algorithm, denoted by BTS (Buffer-
Trie-SetGen), for mining approximate frequent itemsets over

123

1136 K.-T. Chuang et al.

Fig. 13 The qqplot results in BMS-POS with various δ

Fig. 14 The qqplot results of
four real datasets

data streams [25], and apply algorithm PPL as its pre-
processing step.

4.2.1 Background review

BTS is a one-pass algorithm which realizes the ε-deficient
synopsis of each frequent pattern [25]. That is, BTS guaran-
tees each identified frequent pattern having a support larger
than s − ε, where s is the specified minimum support and
ε is an error parameter. Originally, algorithm BTS is false-
positive oriented: all frequent itemsets in the stream will be
retrieved by BTS (100% recall rate), but non-frequent item-
sets with supports in [s −ε, s] in the stream may be identified
as frequent by BTS (smaller than 100% precision rate). Given
a set of true frequent itemsets A and a set of obtained fre-
quent itemsets B, precision is defined as |A∩B|

|B| , and another

measurement of the quality, i.e., recall, is defined as |A∩B|
|A| .

For comparison purposes, the work in [39] extends BTS to
be a false-negative oriented algorithm by deliberately setting
the minimum support as s + ε. As such, the output contains
only those frequent itemsets with support exceeding s but fre-
quent itemsets between s and s+ε may not be included in the
output. Indeed, precision in the false-negative scheme will
be equal to 100% while compromising recall of the output.

Formally, in works of the ε-deficient synopsis, the error
parameter ε controls the bound of required memory con-
sumption: a larger ε leads to smaller memory consumption

but incurs a worse frequency approximation; and in contrast,
a smaller ε results in a better frequency approximation but
requires larger memory consumption. Determining a proper
decision of ε is thus the key to the success of the ε-deficient
synopsis. Unfortunately, how to decide a proper value of ε

was fully left unsolved to users in the literature. The default in
[25,39] is ε = 0.1s, and, however, it is a not proper choice in
all situations. Note that users are easy to give desired model
accuracy rather than to give the subtle error parameter. As
such, a good reference to appropriately determine ε can be
provided if we execute algorithm PPL in advance:

4.2.2 Suggested enhancement

In practice, while users give the desired recall (in the case
of false negatives), denoted by r , or the desired precision
(in the case of false positives), denoted by p, of the result,
algorithm PPL can enable the system to automatically deter-
mine the proper ε. The basic idea is to identify ε as the mini-
mum one which satisfies the user desired recall and precision
in such a way that we can achieve desired model accuracy
with the smallest memory consumption. Specifically, after
performing PPL in an early received substream, two param-
eters, i.e., the slope θ and the Y-intercept Ω , can be obtained.
Accordingly, we can apply the following procedure prior to
the execution of algorithm BTS:

123

Power-law relationship and self-similarity in the itemset support distribution 1137

Fig. 15 The result of applying
algorithm PPL prior to
algorithm BTS (in the
BMS-POS dataset)

(1) Calculate the approximate number of frequent item-
sets, fs , with the given minimum support s, i.e., fs =∫ 1

s

(
eΩ × xθ

)
dx;

(2) For the false negative case, identify ε as arg

minα

{
fα
fs

≥ r
}

, where fα = ∫ 1
s+α

(
eΩ × xθ

)
dx . For

the false positive case, we will identify ε as arg

minβ

{
fβ
fs

≥ p
}

, where fβ = ∫ 1
s−β

(
eΩ × xθ

)
dx .

4.2.3 Simulation results

We investigate whether algorithm PPL can help algorithm
BTS to obtain the desired quality with a proper ε. The results
are shown in Fig. 15, where the BMS-POS dataset is applied.
We specify the desired recall equal to one and the desired
precision equal to 0.8 or 0.9 in the case of false positives. For
the case of false negatives, the desired recall is specified as
0.8 or 0.9 and the desired precision equal to one. For com-
parison purposes, we also show the result of ε = 0.1s, which
is the default in [25,39]. In addition, two minimum supports,
0.1 and 0.05, are given, where s = 0.1 and s = 0.05 leads to
122,449 and 582,752 frequent itemsets in the dataset, respec-
tively. As shown in Fig. 15, it can be seen that the obtained
recall and precision are quite close to the desired one when
we apply PPL in advance, indicating the prominent advan-
tage of algorithm PPL for such an application. Although the
default ε = 0.1s results in a smaller memory cost in some
cases, it indeed pays for an undesired loss of model accuracy.
Importantly, we also find that ε = 0.1s may achieve the recall
rate larger than the desired one in the case of false-negative
cases, indicating that ε = 0.1s is larger than an appropriate
one in such situations. It inevitably leads to large memory
consumption. In such cases, algorithm PPL can help to sug-
gest a relatively large ε, which achieves the desired recall
while also leading to smaller memory consumption.

In essence, the applicability of the ε-deficient synopsis
relies on a proper decision of the error parameter. We in this
subsection demonstrate that algorithm PPL can provide a
good reference to determine such a subtle parameter, show-
ing its prominent advantage to be a pre-processing means for
data mining applications.

4.3 Application study: sufficient sample size for frequent
itemsets

To further show the advantages of PPL, we study in this
subsection another important problem in frequent-pattern
mining: determining the sufficient sample size for mining
frequent itemsets.

4.3.1 Background review

Recently, research advances in frequent-pattern mining have
been in the direction of attempts to reduce the execution com-
plexity so as to discover frequent patterns in extremely large
databases [21,34]. Among others, random sampling is one
of the most straightforward manners to improve the mining
efficiency [24,30,34,41]. However, using random sampling
inevitably results in the generation of incorrect frequent pat-
terns, which are not valid with respect to the entire database.
It has been reported that a larger sample size leads to better
consistency between the result obtained in the sample and
that in the original dataset, but incurs larger time consump-
tion; in contrast, a small sample size leads to smaller time
consumption, but incurs the loss of model accuracy obtained
[41]. How to determine an appropriate sample size is thus
the key to the success of the sampling technique.

Traditionally, Chernoff bounds can provide a way to deter-
mine an appropriate sample size. However, the suggested
sample size is conservative and is usually too large for min-
ing frequent patterns [41]. In the literature, progressive sam-
pling is another solution to determine the appropriate sample
size [30]. Specifically, progressive sampling iteratively exe-
cutes the frequent-pattern mining on random samples whose
sizes are progressively increased, and the process will be
terminated until the mining accuracy is no longer signifi-
cantly improved. Finally, satisfactory model accuracy can be
obtained without a prohibitively large sample size. However,
the targeted application may be iteratively executed on many
samples with variant sample sizes. It is also time-consuming.
The practicability of such an approach thus needs further jus-
tification.

123

1138 K.-T. Chuang et al.

Fig. 16 Determining the sufficient sample size

4.3.2 Suggested enhancement

To provide better flexibility and efficiency to determine an
appropriate sample size, we devise in this subsection an inno-
vation approach with the help of PPL. The basic concept
can be best understood by the illustration in Fig. 16, where
Fig. 16a depicts the sampling distribution of the support of
an itemset. Formally, the sampling distribution will approxi-
mately follow a normal distribution14 with mean equal to the
support of x in the entire dataset, and its deviation is equal to

σx,N =
√

sx × (1 − sx)

N
, (7)

where N denotes the sample size and sx denotes the sup-
port of x in the entire dataset [10]. Consider the example
in Fig. 16a, where the support of the itemset x in the entire
dataset is equal to 10% and the minimum support, denoted
by supmin, is specified as 8%. Clearly, a larger sample size
leads to a smaller deviation (according to Eq. 7), and thus
the corresponding error probability of incorrectly identify-
ing the itemset type is smaller. Without loss of generality,
the error probability of an itemset with support sx can be
approximated by

ξ(sx , N) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

supmin∫

0

1√
2πσx,N

g(y)dy, if sx ≥ supmin

1∫

supmin

1√
2πσx,N

g(y)dy, if sx < supmin

,

(8)

14 In essence, the sampling distribution follows a binomial distribution.
However, as the sample size is large, the distribution can be approxi-
mated by a normal distribution or a Poisson distribution. The details
can be found in [10]. For simplicity, we convey our idea without dis-
tinguishing the variants. It is a matter of implementation to precisely
calculate the probability.

where g(y) = exp
(−(y−sx)2

2σx,N

)
. Clearly, users are easy to

give desired model accuracy rather than to directly decide a
sample size. As such, we propose another aspect of determin-
ing a sufficient sample size: “given user desired model accu-
racy, i.e., recall and precision, the sufficient sample size is the
minimum sample size which can achieve desired model accu-
racy.” This idea can be realized with the help of PPL. Spe-
cifically, we can determine the expected recall rate Er (N)

and precision rate E p(N) in a sample size N according to
the following equations:

Er (N) = E
[
F f ⇒ f (N)

]

F f
;

E p(N) = E
[
F f ⇒ f (N)

]

E
[
F f ⇒ f (N)

] + E
[
Fn f ⇒ f (N)

] ,

where F f denotes the number of frequent itemsets in the
entire dataset, F f ⇒ f (N) denotes the number of itemsets
which are frequent both in the entire dataset and in the sam-
ple, Fn f ⇒ f (N) denotes the number of itemsets which are
non-frequent in the entire dataset but are identified as fre-
quent in the sample.

After we execute algorithm PPL, and obtain the slope θ

and the Y -intercept Ω of the itemset support distribution, we
can further determine the expected model accuracy obtained
in each sample size by considering the illustration in Fig. 16b.
Clearly, the expectation of the recall rate can be rewritten as

Er (N) =
∫ 1

supmin

(
eΩ × sθ

x

) × [1 − ξ(sx , N)] dsx
∫ 1

supmin

(
eΩ × sθ

x

)
dsx

,

where
(
eΩ × sθ

x

)
represents the number of itemsets with sup-

port sx , and [1 − ξ(sx , N)] denotes the probability that an
itemset with support sx in the entire dataset can be correctly
identified as a frequent itemset (sx ≥ supmin). Similarly, the
expectation of the precision rate can be rewritten as

E p(N) =
∫ 1

supmin

(
eΩ × sθ

x

) × [1 − ξ(sx , N)] dsx

G(N)
,

123

Power-law relationship and self-similarity in the itemset support distribution 1139

(a) (b)

(c) (d)

Fig. 17 The estimated model accuracy curves

where G(N) =
{∫ 1

supmin

(
eΩ × sθ

x

) × [1 − ξ(sx , N)] dsx

}
+

{∫ supmin
0

(
eΩ × sθ

y

)
× ξ(sy, N)dsy

}
.

For simplicity, we utilize the well-known metric F-Score,
which is calculated as the harmonic mean of precision and
recall, to simultaneously consider recall and precision [2].
Formally, the expected F-Score of a sample size N is defined
as

EF (N) = 2 × E p(N) × Er (N)

E p(N) + Er (N)
, (9)

where 0 ≤ EF (N) ≤ 1. With the help of PPL, we can
quickly determine the expected F-Score of each sample size
and plot the curve of EF (N) versus the sample size N , as
the illustrative curve shown in Fig. 16c. In essence, the curve
is monotonically increasing as the sample size increases. As
such, the sufficient sample size can be determined as the
minimum sample size to achieve the desired model
accuracy.

We summarize the procedure to determine the sufficient
sample size: (1) execute PPL, and obtain the slope θ and the
Y-intercept Ω of the itemset support distribution; (2) progres-
sively increase the sample size and calculate the expected
F-Score according to Eq. 9; and (3) determine the sample
size as the minimum sample size which can achieve the
desired model accuracy according to the result obtained in
Step 2.

4.3.3 Simulation results

We assess the efficiency and the effectiveness of the pro-
posed method to suggest the sufficient sample size (without
ambiguity, we still call the proposed method as PPL in the
sequel). For comparison purposes, the state-of-the-art pro-
gressive sampling algorithm, RC-S [30], is also evaluated. To
give the best credit of algorithm RC-S, algorithm Eclat [40]
is applied as the frequent-pattern mining method according
to the suggestion in [30]. Furthermore, in all experiments, the
user-specified parameter α of algorithm RC-S is set to one,
which is consistent with its default value addressed in [30].
For fair comparison, we use an arithmetic sampling schedule
to estimate model accuracy in different sample rates: {0.05,
0.1, 0.15, . . . , 0.95}. In addition, model accuracy of a sam-
ple size is calculated as the average F-Scores over 50 runs on
samples with this size.

In Fig. 17, the “Model Accuracy Curve” represents the
corresponding curve of the accurate model accuracy versus
the sample size, as the curve illustrated in Fig. 16c. In addi-
tion, the model accuracy curves estimated by PPL (denoted
by “PPL Curve” in Fig. 17) and RC-S (denoted by “RC-S
Curve” in Fig. 17) are also plotted. Importantly, the excellent
approximation of the model accuracy curve can be obtained
by PPL in different datasets; and in contrast, the RC-S is
unstable and cannot correctly estimate the model accuracy
curve. Since RC-S estimates model accuracy of a sample
size only on a sample with the size (for efficiency reasons),
it is clear that the effectiveness of RC-S is solely affected by

123

1140 K.-T. Chuang et al.

Fig. 18 The estimation
effectiveness and execution time
of PPL and RC-S

randomness, which makes samples with the same size deviate
from each other. It causes the unstable estimation of model
accuracy that can be obtained. On the other hand, since PPL
helps to formalize this problem in the statistical sense, it can
precisely estimate the expected model accuracy obtained in
each sample size without facing the challenge incurred by
randomness, showing the prominent advantage of PPL in
this application.

In addition, we show in Fig. 18 the sufficient sample sizes
that are suggested by PPL and RC-S while users give desired
model accuracy. The corresponding execution time required
by these two algorithms is also shown. Two common user
desired F-Scores, i.e., 0.8 and 0.9, are both given. Confirm-
ing the observation in Fig. 17 that PPL can perfectly esti-
mate the model accuracy curve, we can see that the sufficient
sample rates suggested by PPL in each case is almost equal
to the accurately sufficient sample rate, which is manually
checked from the accurate model accuracy curve. In addi-
tion, the execution time required by PPL is much shorter
than that required by RC-S. It is because that RC-S needs
to iteratively execute algorithm Eclat on samples with pro-
gressively increasing sizes until the desired model accuracy is
achieved. It is very time-consuming, particularly when either
the minimum support is small or the desired accuracy is high.
Note that RC-S may lead to execution time shorter than that
of PPL when the desired accuracy is small (e.g., cases of
the sufficient sample rate equal to 5%). However, in general
cases, RC-S cannot efficiently and stably estimate the correct
sample size. On the other hand, the execution time of PPL
is steady in a dataset regardless of the corresponding mini-
mum support and the desired accuracy. Clearly, both consid-
ering effectiveness and efficiency, PPL is the winner in this
application, thus showing its advantages to be an excellent
pre-processing means for frequent-pattern mining.

5 Conclusions

In this paper, we demonstrated that the power-law relation-
ship and the self-similar phenomenon appear in the distribu-

tion of itemset supports in real datasets. Discovering these
nature phenomena is useful to many mining applications. We
also proposed algorithm PPL to efficiently identify charac-
teristics of the power-law relationship in the itemset support
distribution. As shown in the experimental results, algorithm
PPL is able to efficiently extract the characteristics of the
power-law relationship with high accuracy. To fully explore
the advantages of our discovery, we have also solved two
challenging problems with the help of PPL. Empirical stud-
ies demonstrated that our solutions are in orders of magnitude
better than previous works, showing the prominent advantage
of PPL to be an important pre-processing means for mining
applications.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules. In: Proc. of VLDB (1994)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval. Addison–Wesley, Reading (1999)

3. Beran, J.: Statistics for long-memory processes. Monographs on
Statistics and Applied Probability. Chapman & Hall, London
(1994)

4. Bi, Z., Faloutsos, C., Korn, F.: The “DGX” Distribution for Mining
Massive, Skewed Data. In: Proc. of ACM SIGKDD (2000)

5. Borgelt, C.: Efficient implementations of apriori and eclat. In:
Proc. of Workshop on Frequent Itemset Mining Implementations
(2004)

6. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching
and zipf-like distributions: evidence and implications. In: Proc. of
IEEE INFOCOM (1999)

7. Cheung, Y.L., Fu, A.W.: Mining Association Rules without Sup-
port Threshold: with and without Item Constraints. In: TKDE
(2004)

8. Chuang, K.-T., Chen, M.-S., Yang, W.-C.: Progressive sampling
for association rules based on sampling error estimation. In: Proc.
of PAKDD (2005)

9. Chuang, K.-T., Huang, J.-L., Chen, M.-S.: Mining Top-k Frequent
Patterns in the Presence of the Memory Constraint. In: Technical
Report, under submission. A short version is published in Proc.
of ACM CIKM (2005)

10. Cochran, W.G.: Sampling Techniques. Wiley, London (1977)
11. Cormode, G., Muthukrishnan, S.: Summarizing and mining

skewed data streams. In: Proc. of SIAM SDM (2005)

123

Power-law relationship and self-similarity in the itemset support distribution 1141

12. Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes. In: Proc. of ACM SIG-
METRICS (1996)

13. Dill, S., Kumar, R., McCurley, K., Rajagopalan, S., Sivakumar,
D., Tomkins, A.: Self-similarity in the web. In: Proc. of VLDB
(2001)

14. Egghe, L.: The distribution of n-grams. Scientometrics (2000)
15. Faloutsos, C.: Next Generation Data Mining Tools: Power Laws

and Self-similarity for Graphs, Streams and Traditional Data.
ECML (2003)

16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law rela-
tionships of the internet topology. In: Proc. of ACM SIGCOMM
(1999)

17. Geerts, F., Goethals, B., Bussche, J.V.D.: Tight upper bounds on
the number of candidate patterns. ACM Trans. Database Syst.
(2005)

18. Geerts, F., Goethals, B., Bussche, J.V.D.: A tight upper bound on
the number of candidate patterns. In: Proc. of IEEE ICDM (2001)

19. Ghoting, A., Buehrer, G., Parthasarathy, S., Y.Chen, Kim, D.,
Nguyen, A., Dubey, P.: Cache-conscious frequent pattern mining
on a modern processor. In: Proc. of VLDB (2005)

20. Han, J., Kamber, M.: Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, San Francisco (2000)

21. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: Proc. of ACM SIGMOD (2000)

22. Ioannidis, Y.: The history of histograms. In: Proc. of VLDB (2003)
23. Koch, R.: The 80/20 Principle: The Secret of Achieving More

With Less. Nicholas Brealey Publishing, London (1998)
24. Lee, S.D., David Cheung, W.-L., Kao, B.: Is sampling useful in

data mining? A case in the maintenance of discovered association
rules. DMKD 2(3), 233–262 (1998)

25. Manku, G.S., Motwani, R.: Approximate frequency counts over
streaming data. In: Proc. of VLDB (2002)

26. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation
of frequent and top-k elements in data streams. In: Proc. of ICDT
(2005)

27. Orlando, S., Lucchese, C., Palmerini, P., Perego, R., Silvestri, F.:
kDCI: a Multi-Strategy Algorithm for Mining Frequent Sets. In:
Proc. of Workshop on Frequent Itemset Mining Implementations
(2004)

28. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and
resource-aware mining of frequent sets. In: Proc. of IEEE ICDM
(2002)

29. Park, J.-S., Chen, M.-S., Yu, P.S.: An effective hash based algo-
rithm for mining association rules. In: Proc. of ACM SIGMOD
(1995)

30. Parthasarathy, S.: Efficient progressive sampling for association
rules. In: Proc. of IEEE ICDM (2002)

31. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling.
In: Proc. of ACM SIGKDD (1999)

32. Ramesh, G., Maniatty, W.A., Zaki, M.J.: Feasible itemset distri-
butions in data mining: Theory and application. In: Proc. of ACM
PODS (2003)

33. Rice, J.A.: Mathematical statistics and data analysis. Duxbury
Press, North Scituate (1995)

34. Toivonen, H.: Sampling large databases for association rules. In:
Proc. of VLDB (1996)

35. Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In: Proc.
of Workshop on Frequent Itemset Mining Implementations (2004)

36. Wang, J., Han, J., Lu, Y., Tzvetkov, P.: TFP: An Efficient Algo-
rithm for Mining Top-K Frequent Closed Itemsets. In: TKDE
(2005)

37. Willinger, W., Taqqu, M.S., Leland, W.E., Wilson, D.V.: Self-
similarity in high-speed packet traffic: analysis and modelling of
ethernet traffic measurements. Stat. Sci. 10(1) (1995)

38. Wong, R.C.-W., Fu, A.W.: Mining top-k itemsets over a sliding
window based on zipfian distribution. In: Proc. of SIAM SDM
(2005)

39. Yu, J.X., Chong, Z., Lu, H., Zhou, A.: False positive or false nega-
tive: Mining frequent itemsets from high speed transactional data
streams. In: Proc. of VLDB (2004)

40. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms
for fast discovery of association rules. In: Proc. of ACM SIGKDD
(1997)

41. Zaki, M.J., Parthasarathy, S., Wei, I., Ogihara, M.: Evaluation of
sampling for data mining of association rules. In: Int. Workshop
on Research Issues in Data Engineering (1997)

42. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of
association rule algorithms. In: Proc. of SIGKDD (2001)

43. Zipf, G.K.: Human Behavior and the Principle of Least
Effort. Addison–Wesley, Reading (1949)

123

	Power-law relationship and self-similarity in the itemset support distribution: analysis and applications
	Abstract
	1 Introduction
	1.1 Motivating applications
	1.2 Our contributions

	2 Power-law and self-similarity
	2.1 Review of the power-law relationship and self-similarity
	2.2 Observations on the power-law relationship in itemset support distribution
	2.3 Observations on self-similarity in itemset support distribution

	3 Design of algorithm PPL
	3.1 Phase I: sampling
	3.2 Phase II: discover high-support itemsets in the sample
	3.3 Phase III: characterize the power-law relationship

	4 Experimental studies
	4.1 Performance studies of algorithm PPL
	4.2 Application study: false positive or false negative of frequent itemsets
	4.3 Application study: sufficient sample size for frequent itemsets

	5 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

