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Abstract We explore in this paper a practicably interest-
ing mining task to retrieve top-k (closed) itemsets in the
presence of the memory constraint. Specifically, as opposed
to most previous works that concentrate on improving the
mining efficiency or on reducing the memory size by best
effort, we first attempt to specify the available upper mem-
ory size that can be utilized by mining frequent itemsets.
To comply with the upper bound of the memory consump-
tion, two efficient algorithms, called MTK and MTK_Close,
are devised for mining frequent itemsets and closed item-
sets, respectively, without specifying the subtle minimum
support. Instead, users only need to give a more human-
understandable parameter, namely the desired number of
frequent (closed) itemsets k. In practice, it is quite chal-
lenging to constrain the memory consumption while also
efficiently retrieving top-k itemsets. To effectively achieve
this, MTK and MTK_Close are devised as level-wise search
algorithms, where the number of candidates being generated-
and-tested in each database scan will be limited. A novel
search approach, called δ-stair search, is utilized in MTK
and MTK_Close to effectively assign the available memory
for testing candidate itemsets with various itemset-lengths,
which leads to a small number of required database scans.
As demonstrated in the empirical study on real data and
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synthetic data, instead of only providing the flexibility of
striking a compromise between the execution efficiency and
the memory consumption, MTK and MTK_Close can both
achieve high efficiency and have a constrained memory
bound, showing the prominent advantage to be practical algo-
rithms of mining frequent patterns.

1 Introduction

The discovery of frequent relationship among a huge data-
base has been known to be useful in selective marketing,
decision analysis, and business management [14]. A popular
area of its applications is the market basket analysis, which
studies the buying behaviors of customers by searching for
sets of items that are frequently purchased together. Specifi-
cally, let I = {x1, x2, . . . , xm} be a set of items. A set X ⊆ I
with m = |X | is called a m-itemset or simply an itemset.
Formally, an itemset X refers to a frequent itemset or a large
itemset if the support of X , i.e., the fraction of transactions
in the database that contain X, is larger than the minimum
support threshold, indicating that the presence of itemset X
is significant in the database.

However, it is reported that discovering frequent item-
sets suffers from two inherent obstacles, namely, (1) the
subtle determination of the minimum support [22]; (2) the
unbounded memory consumption [11]. Specifically, without
specific knowledge, a critical problem “What is the appro-
priate minimum support?” is usually left unsolved to users
in previous works. Note that setting the minimum support
is quite subtle since a small minimum support may result in
an extremely large size of frequent itemsets at the cost of
execution efficiency. Oppositely, setting a large minimum
support may only generate a few itemsets, which cannot
provide enough information for marketing decisions. In
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order to obtain a desired result, users in general need to
tune the minimum support over a wide range. This is very
time-consuming and indeed is a serious problem for the appli-
cability of mining frequent itemsets. Furthermore, another
issue which will be faced in practice is the large memory
consumption. A large memory, which may not be affordable
in most personal computers nowadays, is in general required
during the mining process, especially when the minimum
support is small or the database size is large. It will result
in the serious “out of memory” system crash, making users
shy away from executing the frequent itemset mining. Note
that users may tolerate to mine frequent itemsets off-line. For
example, frequent itemsets can be discovered in every night
as long as users are able to make their marketing decisions in
the morning. In contrast, the system crash due to the “out of
memory” error is repulsive in a commercial mining system.

To remedy the first problem, recent research advances in
data mining call for the need to discover top-k frequent pat-
terns without the minimum support specification [6,22]. The
top-k frequent patterns refer to the k most frequent itemsets
in the database. As opposed to specify the subtle minimum
support, users will only need to give the desired count of fre-
quent itemsets, which is indeed a more human-understand-
able parameter. For example, to make marketing decisions,
users may be interested in less than 10,000 frequent itemsets.
Hence they can easily give the number of frequent itemsets k
equal to 10,000 and further mine top-k frequent itemsets.
More specifically, instead of mining top-k frequent item-
sets, the work in [22] aimed to discover top-k closed item-
sets whose lengths exceed a specified threshold. Under such
specific constraint, the FP-tree can be constructed with sev-
eral pruning strategies such as omitting transactions whose
lengths are less than the specified itemset-length. Moreover,
the work in [6] initially constructs a complete FP-tree in
memory, and then retrieves k most frequent l-itemsets, where
l lies in a range specified by users. In addition, a recent work
in [1] studied a post-processing approach to determine the
k patterns that best approximate all frequent itemsets dis-
covered. However, its concept inherently deviates far from
discovering top-k frequent patterns, since its objective is to
approximately describe the set of frequent itemsets and the
minimum support still needs to be specified in advance.

The second problem of mining frequent patterns, i.e., the
unbounded memory consumption, has been discussed in the
direction of reducing the required memory by means of com-
pressed structures or skillful search approaches [4,10,17,19].
Recently, the issue has also received a great deal of attention
in mining data streams [7,15,23,25]. Since a large mem-
ory consumption is prohibitive in streaming environments,
we have to discover frequent patterns within an estimated
memory upper bound at the cost of the resulting precision
[3]. For example, the solution in [25] empirically derived
its memory upper bound of O( 1

s3 ), where s is the specified

minimum support. Formally, same as traditional algorithms
such as Apriori [2] and FPGrowth [12], the applicability
of these approaches is valid based on the premise that the
required memory can be unconditionally provided by the
system. However, it is improbable and the “out of memory”
system crash is still likely to happen while the minimum sup-
port is small or the data distribution is quite dense. Recent
studies in frequent-pattern mining have pointed out that most
previous works were optimized for efficiency at the cost of
the memory space, and thus their scalability will need further
justification [11]. In practice, a desirable research direction
is to allow that the available memory upper bound, say 100
or 200 MB, can be specified by system designers. Mining
frequent patterns under the specified bound of the mem-
ory consumption is referred to as the “memory-constraint
frequent-pattern mining” in this paper. Despite of its great
applicability, how to realize the memory-constraint frequent-
pattern mining is however not fully explored thus far.

To enable the better feasibility of mining frequent patterns,
we examine in this paper the problem of discovering top-k
frequent patterns, coupled with the need of the memory-
constraint mining. The goal is desirable but is quite chal-
lenging. Note that previous works of mining top-k frequent
patterns [6,22] need to be executed by initially building a
complete FP-tree in memory. It is clear that the memory prob-
lem will be worse than the traditional frequent itemset mining
since the size of the in-memory FP-tree is solely proportional
to the entire database size.1 Although we can implement the
disk-based FPGrowth algorithm [13] to ensure the complete
FP-tree can be constructed, it has been reported that the disk-
based implementation is much inefficient as compared to the
memory-based implementation since the I/O swap will dras-
tically degrade the mining performance [10]. Furthermore,
previous works of mining top-k frequent itemsets only con-
centrate on mining special itemsets such as closed itemsets
[22] or itemsets with the specified long itemset-length [6],
because some heuristic strategies to reduce the search space
can be applied. For example, as mentioned above, the FP-tree
can be constructed by omitting transactions whose lengths are
less than the specified itemset-length, which helps to reduce
the size of the FP-tree and makes the search more efficient
[22]. However, those pruning techniques will be no longer
valid in the general model of mining pure top-k frequent item-
sets. Mining top-k frequent itemsets without any constraint
of item types or itemset-lengths are referred to as mining pure
top-k frequent patterns in this paper. The naive extensions of
previous solutions to discover pure top-k frequent itemsets

1 One may suggest to apply sampling prior to mine top-k frequent item-
sets at the cost of resulting precision. However, for obtaining a con-
sistent mining result, the space to store the complete FP-tree is still
unbounded since all itemset combinations remain in the tree (note that,
what changed after the unbiased sampling is the frequency of itemsets
rather than the tree structure).

123



Mining top-k frequent patterns in the presence of the memory constraint 1323

will not only lead to inefficiency but also face more serious
problem of the memory bottleneck. Note that determining
the minimum itemset-length incurs another inconvenience
to users, which conflicts the purpose to release users from
the determination of subtle parameters. In addition, in many
real applications such as retail applications, mining pure
top-k frequent itemsets is equally or more important than
mining top-k itemsets with long itemset-lengths (users may
not be interested in long itemsets since they usually attempt
to cross-sell two or three products as opposed to one hundred
products [14]).

Actually, as we can imagine, even though the memory
space is not affordable in a PC nowadays, the memory issue
will become insignificant in a server-level machine in the
near future. In addition, the minimum support requirement
may be determined by a domain expert without much effort.
However, in our consideration, the data mining functionality
is not a patent owned by few people. It is worth providing
an easily deployed solution to mine association rules every-
where and every time in such a way that the visibility and
usability of the mining capability can be broadened to more
users with a PC in hand.

As a consequence, we propose in this paper efficient solu-
tions, called MTK (standing for the Memory-constraint top-k
frequent-pattern mining) and MTK_Close, to discover pure
top-k frequent patterns and top-k closed patterns, respec-
tively, in the presence of the memory constraint. Since our
goal is to release users from the burden of setting subtle
parameters and to provide better flexibility in various appli-
cations, the itemset-length constraint is not imposed on our
model. Note that FP-tree based solutions intrinsically cannot
be memory-constraint frequent-pattern mining approaches
since the size of an in-memory FP-tree is proportional to the
database size. As such, we devise MTK and MTK_Close as
level-wise based algorithms as analogous to Apriori [2], DHP
[19], and DIC [4]. In practice, level-wise based algorithms
generate a potentially huge set of candidate itemsets which
may not fit in memory. It also leads to a large memory require-
ment. To remedy this, we devise an efficient search approach
in MTK and MTK_Close, called the δ-stair search, to limit the
number of candidates which are generated-and-tested in each
database scan. Specifically, the δ-stair search assigns the
available memory to concurrently generate candidates with
consecutive itemset-lengths. Using the δ-stair search will
lead to a small number of database scans which are required
to retrieve the set of top-k frequent itemsets, to ensure the
memory usage can be constrained without comprising the
execution efficiency. More importantly, the MTK algorithm
even requires a smaller number of database scans than tra-
ditional approaches with an unbounded memory usage. This
is attributed to that the δ-stair search can effectively utilize
the memory to test candidates which are highly potential to
be included in top-k frequent itemsets. In addition, the high

efficiency also comes from that the MTK and MTK_Close
algorithms are sophisticatedly designed to fully integrate
with many skillful techniques proposed in the literature, such
as the scan-reduction technique [2,20] and the hash-index-
ing technique [19] (readers can refer [9] for the detailed sur-
vey and comparison of these optimizations). As such, the
MTK and MTK_Close algorithms cannot only comply with
the memory constraint but also retrieve top-k frequent/closed
itemsets with high efficiency.

The contribution of this paper can be summarized as fol-
lows: (1) while previous works on mining frequent patterns
mostly concentrate on improving the mining efficiency or on
reducing the memory size by best effort, we further inves-
tigate in this paper the important issue of mining frequent/
closed itemsets in the presence of the explicit memory con-
straint. (2) While previous works on mining top-k frequent
patterns aimed to discover special top-k patterns, we propose
the MTK algorithm to mine pure top-k frequent itemsets, and
devise its extension to mine top-k closed itemsets, to provide
better flexibility of mining frequent patterns for various appli-
cations. (3) We complement our analytical and algorithmic
results by a thorough empirical study on real data and syn-
thetic data, and show that MTK and MTK_Close can retrieve
top-k itemsets and top-k closed itemsets with high efficiency
even though the memory usage is constrained. The result
demonstrates that, instead of only providing the flexibility
of striking a compromise between the execution efficiency
and the memory consumption, MTK and MTK_Close can
both achieve high efficiency and have a constrained memory
bound, showing their prominent advantages to be practical
algorithms of mining frequent patterns.

This paper is organized as follows. Section 2 introduces
the problem description and gives a baseline approach to
discover frequent itemsets with the memory constraint. In
Sect. 3, we give the design of the δ -stair search to retrieve
top-k frequent itemsets. The implementation of the MTK and
MTK_Close algorithms are presented in Sect. 4. Section 5
shows the experimental results. Finally, this paper concludes
with Sect. 6.

2 Memory-constraint frequent-pattern mining

In Sect. 2.1, we formally specify the problem we study in this
paper. In Sect. 2.2, we introduce a baseline approach, referred
to as the Naive algorithm, to discover frequent patterns in
the presence of the memory constraint.

2.1 Problem description

We first introduce the notations used hereafter. For ease of
exposition, in the sequel, pure top-k frequent itemsets will
be simply denoted by top-k frequent itemsets, to distinguish
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from top-k closed itemsets without ambiguity. Suppose that
sup(X) denotes the support 2 of itemset X in the database D.
We give several necessary definitions as follows:

Definition 1 (top-k frequent itemsets) Given the desired
number of frequent itemsets k, an itemset X is a top-k fre-
quent itemset in D if there are less than k itemsets3 whose
supports are larger than sup(X). Let Tk denote the set of all
top-k frequent itemsets. The minimum support to retrieve Tk

will be

supmin(Tk) = min {sup(X) |X ∈ Tk } .

Definition 2 (closed itemsets) An itemset X is referred to as
a closed itemset if there exists no itemset X ′ that (1) sup(X) =
sup(X ′); and (2) X ⊂ X ′ [26].

Definition 3 (top-k closed itemsets) Given the desired
number of closed itemsets k, an itemset X is a top-k closed
itemset in D if there are less than k closed itemsets whose
supports are larger than sup(X). Let T Ck denote the set of all
top-k closed itemsets. The minimum support to retrieve T Ck

will be

supmin(T Ck) = min {sup(X) |X ∈ T Ck } .

Furthermore, let an itemset containing j items be referred
to as a j -itemset. We then have Definition 4 below:

Definition 4 An itemset, denoted by X j,m , is the mth most
frequent j-itemset if and only if there are (m −1) j-itemsets
whose supports exceed sup(X j,m). In addition, an itemset,
denoted by Xc

j,m , is the mth most closed frequent j-item-
set if and only if there are (m − 1) closed j-itemsets whose
supports exceed sup(Xc

j,m).

Example 2.1 As the example shown in Table 1, we illus-
trate top ten frequent itemsets and top ten closed itemsets in
Table 2 to best understand the notation used. As can be seen,
the minimum support to retrieve the top ten frequent itemsets
is equal to five, i.e., supmin(T10) = 5, because there are ten
itemsets with support larger than or equal to 5. Moreover,
the minimum support to retrieve the top ten closed itemsets
is equal to four [supmin(T C10) = 4], where we will retrieve
11 closed itemsets to be independent of the order of items.
In addition, itemset {A} is not a closed itemset since one of
its superset, {AF}, has the same support. In this example,
{D} is the fourth most frequent 1-item which is denoted as

2 Without loss of generality, the support is considered as the absolute
occurrence frequency in this paper.
3 Note that there may be larger than k itemsets satisfying this definition
since itemsets may have the same support. Definition 1 will avoid the
situation that the mining result depends on the order of items.

Table 1 An example transaction
database TID Items

100 A B D F

200 A B F

300 A D F

400 B C E D

500 B C D E F

600 A B F

700 A B F

800 A B D F

900 A B C D F

1,000 A B C E F

Table 2 The illustrative example of top-k frequent/closed itemsets

Itemset Sup. Itemset Sup.

Top-ten frequent itemsets supmin(T10) = 5

A 8 A F 8

B 9 B D 5

D 6 B F 8

F 9 D F 5

A B 7 A B F 7

Top-ten closed itemsets supmin(T C10) = 4

B 9 B F 8

D 6 D F 5

F 9 A B F 7

A F 8 A D F 4

B C 4 B D F 4

B D 5

Examples of the mth most frequent/closed itemsets

X1,4 = {D}
sup(X1,4) = 6

X2,1 = {AF}, {B F}
sup(X2,1) = 8

Xc
3,1 = {AB F}

sup(Xc
3,1) = 7

X1,4, because three 1-itemsets {A}, {B} and {F} have sup-
ports larger than sup(X1,4). In other words, sup(X1,4) = 6
will be the minimum support to retrieve top four 1-items.
In addition, X2,1 will correspond to either itemsets {AF} or
{B F} because they have the same support and there is no 2-
itemset whose support exceeds theirs. Furthermore, the first
most closed frequent 3-itemsets, denoted by Xc

3,1, is {AB F},
and sup(Xc

3,1) = 7. ��
Note that closed itemsets have been deemed as the con-

densed representation of frequent itemsets, because a closed
itemset is the itemset that covers all of its sub-itemsets with
the same support [22]. In some applications, mining top-k
closed itemsets will be equally or more applicable than
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Fig. 1 The illustrative support distribution plot

mining top-k itemsets. We consider in this paper the approach
which is equally applicable to mine top-k frequent item-
sets and top-k closed itemsets, depending on the application
need. In the following, we first describe the support distribu-
tion plot, which will be frequently exploited to illustrate our
model of retrieving top-k frequent itemsets hereafter.
The support distribution plot: The support distribution plot
consists of various parallel lines, where the i th line presents
the range of supports of all i-itemsets, and each i-itemset
can be plotted in the i th line with respect to its support. An
illustration of the support distribution plot is shown in Fig. 1,
where we can identify the position of itemset Xi,m , ∀m in
the i th line according to its support sup(Xi,m). As can be
seen, itemsets whose supports lie in the shadow region will
comprise top-k frequent itemsets. Furthermore, according to
the downward closure property [2], the line with respect to
i-itemsets will be shorter than the line with respect to j-item-
sets, where i > j . ��

We then describe the concept to retrieve frequent patterns
in the presence of the memory constraint. For ease of pre-
sentation, we discuss the issue of the memory constraint on
the case of frequent itemsets. The discussion of closed item-
sets is similar and thus we defer the details to Sect. 4. Note
that the upper memory consumption of depth-first algorithms
such as the FPGrowth algorithm [12] is proportional to the
database size, which inherently cannot be limited below a
user-specified memory size. We resort to level-wise search
algorithms to realize the memory-constraint frequent-pattern
mining. Specifically, it is clear that the memory consumption
of level-wise search algorithms is solely proportional to the
number of itemsets residing in the memory [24] , including
the candidate itemsets and the stored itemsets.4 Moreover,

4 We assume that discovered frequent itemsets will be stored in the
menory for further use.

following Definition 1, mining top-k frequent itemsets can
be viewed as mining frequent itemsets with the minimum
support equal to supmin(Tk) if we assume that supmin(Tk)

can be known in advance. Although it is infeasible to make
such an assumption, it can help to clarify important concepts
of the considered model. As such, Remark 1 below tells that
we can limit the memory consumption in level-wise search
algorithms by constraining the size of candidates tested in
each database scan.

Remark 1 Suppose that the available memory size is speci-
fied as M . M can be equivalently transformed to the upper
number of itemsets concurrently residing in the memory. Let
the corresponding upper number of itemsets in memory be
denoted by Mc. As such, the memory consumption will be
limited below M if at most Mc candidates will be concur-
rently generated-and-tested in each database scan.5

In essence, the memory size occupied by each i-item-
set is proportional to the corresponding itemset-length i .
For simplicity, here we assume that all candidate itemsets
occupy the same memory without considering its itemset-
length. The discussion of this implementation issue will be
deferred to Sect. 4. Clearly, Remark 1 states that a level-wise
search algorithm is able to limit its memory consumption
if we can guarantee the upper number of candidate item-
sets being tested in one database scan. For example, sup-
pose that Mc = 300, 000, meaning that at most 300,000
candidate itemsets can be generated-and-tested in one data-
base scan. Assuming we have 1,000 frequent 1-items, we
can only select 775 1-items to generate candidate 2-itemsets
since

(775
2

) = 299, 925, which is bounded below Mc. These
299, 925 candidate 2-itemsets will be tested in one database
scan, and the remaining

(1000
2

)− (775
2

) = 199, 575 candidate
2-itemsets will be generated-and-tested in the next database
scan.

The concept of this approach deviates far from that of
previous level-wise search algorithms, where all candidate
(i + 1)-itemsets are generated-and-tested in one database
scan after all frequent i-itemsets have been found. Actually,
readers may easily point out a straightforward solution to
constrain the number of generated candidates: (1) arbitrarily
combining frequent i-itemsets to generate their correspond-
ing candidate (i +1)-itemsets until the number of candidates
reaches the upper number of candidates Mc; (2) test these Mc

candidates in one database scan and identify the contained
frequent itemsets; (3) return to Step 1 unless no candidate
(i + 1)-itemset can be generated; (4) increase i by 1 and
return to Step 1.

5 It is reasonable to assume that Mc is much larger than the desired
number of frequent itemsets k. Therefore, without loss of generality, we
simply assume Mc only indicates the upper number of candidate item-
sets which will be concurrently generated-and-tested in each database
scan.
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However, it is clear to see that the procedure of the candi-
date generation will become difficult since those early gen-
erated candidates must be systematically recorded to avoid
the duplicate generation. Moreover, this approach may incur
extra database scans since the available memory may not be
fully utilized in some database scans (for example, the latest
scan to test candidate i-itemsets may only occupy a small
memory). It conflicts the spirit of previous works to reduce
the number of database scans. To realize the memory-con-
straint frequent-pattern mining without comprising the exe-
cution efficiency, the number of database scans is required to
be as small as possible. We therefore devise a baseline algo-
rithm, called the Naive algorithm, to be an efficient mem-
ory-constraint frequent-pattern mining approach.

2.2 Algorithm Naive: the baseline method to discover
frequent patterns in the presence of the memory
constraint

In order to efficiently generate candidates in the presence
of the memory constraint, we resort to the recent advanced
technique presented in [8]. Specifically, the technique in [8]
can estimate a tight upper bound of candidate itemsets. In
our model, this technique can be further utilized to select the
appropriate set of frequent i-itemsets in such a way that we
can guarantee that their candidates (i + 1)-itemsets can be
fully generated in the available memory. Formally, given a
set of j -itemsets Fj , the upper bound of candidate ( j + i)-
itemsets, generated from Fj can be estimated according to
Theorem 1 below:

Theorem 1 Given N and j, there exists a unique representa-
tion, called the j-canonical representation, as the form

N =
(

m j

j

)
+

(
m j−1

j − 1

)
+ · · · +

(
mr

r

)
,

where r ≥ 1, m j ≥ m j−1 ≥ · · · ≥ mr , and mv ≥ v,

for v = r , r + 1, . . . , j . Therefore, assuming we have N
j-itemsets, the tight upper bound of candidate ( j + i)-
itemsets generated from these N j-itemsets will be equal to

Ĉ j,i (N ) =
(

m j

j + i

)
+

(
m j−1

j − 1 + i

)
+ · · · +

(
ms+1

s + i + 1

)
,

where i ≥ 1 and s is the smallest integer such that ms < s+i .
If no such an integer exists, s will be equal to r − 1 [8].

Theorem 1 gives the tight upper bound of candidate ( j+i)-
itemsets which will be generated from a set of N j-itemsets.
An illustrative example, which is quoted from [8], is shown
below to clarify the concept of Theorem 1.

Example 2.2 Suppose that there are 13 3-itemsets in L3,
which are

{{3,2,1}, {4,2,1}, {4,3,1}, {4,3,2}, {5,2,1},
{5,3,2}, {5,4,1}, {5,4,2}, {5,4,2}, {5,4,3},
{5,3,1}, {6,2,1}, {6,3,2}}.

The 3-canonical representation of 13 is
(5

3

) + (3
2

) = 13, and
hence the upper bound of candidate 4-itemsets is Ĉ3,1(13) =(5

4

) + (3
3

) = 6. The upper bound of candidate 5-itemsets

is Ĉ3,2(13)= (5
5

)= 1. This is tight indeed since candidates
C4 generated from L3 will be C4 = {{4, 3, 2, 1}, {5, 3, 2, 1},
{5, 4, 2, 1}, {5, 4, 3, 1}, {5, 4, 3, 2}, {6, 3, 2, 1}}, and C5

is {5,4,3,2,1}. ��

In light of Theorem 1, we devise a naive extension of
level-wise search algorithms, called the Naive algorithm, to
discover top-k frequent itemsets with the memory constraint:
Naive algorithm: We illustrate the idea of the Naive algo-
rithm in Fig. 2, where Fig. 2a shows the process of data-
base scans in the perspective of the support distribution plot
and Fig. 2b shows the perspective of candidates generated in
the available memory. Assuming supmin(Tk) can be known
in advance, we can initially obtain the set of 1-items whose
supports exceed supmin(Tk) after the first database scan. Sup-
pose that Li denotes the set of i-itemsets whose supports
exceed supmin(Tk), and |Li | denotes the number of itemsets
in Li . We then select the most n1 frequent items of L1, i.e.,
{X1,1, X1,2, . . . , X1,n1 } to generate their candidate 2-item-
sets in the second database scan, where

n1 = max
{
n

∣∣Ĉ1,1(n) ≤ Mc
}
.

For example, n1 = 775 if Mc is specified as 300,000 [∵
Ĉ1,1(775) = 299, 925]. Therefore only candidate 2-item-
sets from the most frequent 775 1-items will be generated in
memory and tested in the second database scan. Formally,
Lemma 1 tells that all 2-itemsets whose supports exceed
X1,775 will be retrieved:

Lemma 1 Given the most n frequent i-itemsets {Xi,1, Xi,2,

. . . , Xi,n}, the set of (i+j)-itemsets whose supports exceed
sup(Xi,n) will be included in the candidates generated from
{Xi,1, Xi,2, . . . , Xi,n}, for j ≥ 1.

Note that Lemma 1 is a direct result from the downward
closure property. In this case, all 2-itemsets whose supports
exceed sup(X1,775) will be retrieved after the second data-
base scan. Afterward, if Ĉ1,1(|L1|) − Ĉ1,1(n1) < Mc, the
remaining candidate 2-itemsets will be generated-and-tested
in the third database scan. To better utilize the available mem-
ory, partial candidate 3-itemsets from the most frequent n2

2-itemsets will be also generated and tested in the third data-
base scan, where

n2 = max
{
n

∣∣Ĉ2,1(n) ≤ 2Mc − Ĉ1,1(|L1|)
}
.
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Fig. 2 The illustration of mining frequent itemsets under the memory constraint

For example, suppose |L1| = 1, 000. We will generate and
test Ĉ1,1(1000)−Ĉ1,1(775)= 199, 575 candidate 2-itemsets,
and at most 2 × 300, 000 − 499, 500 = 100, 500 candidate
3-itemsets in the third database scan, where candidate 3-item-
sets are generated from most frequent 3,629 2-itemsets since
n2 = 3, 629 [∵ Ĉ2,1(3629) = 100, 481 and Ĉ2,1(3630) =
100, 540]. Accordingly, we retrieve all 3-itemsets whose sup-
port exceed sup(X2,3629) after the third scan.

Explicitly, at most Mc candidate itemsets, possibly
including candidate itemsets with various lengths, will be
generated-and-tested in one database scan until no further
candidates will be generated. Following the procedure of
traditional level-wise search algorithms except the strategy
of the candidate generation, we will retrieve top-k frequent
itemsets finally. In case Mc is large enough, we may directly
generate candidate i-itemsets from Li−2 or Li−3 as long
as the candidate count is below Mc [Theorem 1 is able to
determine the tight upper bound of candidate (i + j)-item-
set generated from frequent i-itemsets, where j > 1]. It can
be achieved by the technique similar to the scan-reduction
technique discussed in [5]. ��

Note that the feasibility of the naive algorithm relies on the
process to avoid the generation of duplicate candidates. To
realize this, recall a standard candidate generation procedure
addressed in [16] at first:

C ′
i = {

X ∪ X ′ ∣∣X, X ′ ∈ Li−1,
∣∣X ∩ X ′∣∣ = i − 2

}
.

Ci = {
X ∈ C ′

i |X contains i members of Li−1
}
.

In light of the property that the Naive algorithm always tests
the set of candidates by joining higher-frequency itemsets,
we can effectively avoid the candidate regeneration by rewrit-
ing the two-step candidate generation procedure, as shown
in Lemma 2 below:

Lemma 2 Suppose that following the procedure of the Naive
algorithm, we have identified all frequent i-itemsets with
supports exceeding sup(Xi−1,n1) after the wth database

scan. Let Fi−1,n1 = {Xi−1,1, Xi−1,2, . . . , Xi−1,n1}, and
Fi−1,n2 = {Fi−1,n1, F ′}, where

F ′ = {Xi−1,n1+1, Xi−1,n1+2, . . . , Xi−1,n2}

and n2 ≥ n 1. While we expect to identify all i -itemsets with
support exceeding sup(Xi−1,n2) in the next scan, the set of
candidate i-itemsets Ci that will be generated by the Naive
algorithm in the w + 1th scan is:

C ′′
i = {

X ∪ X ′ ∣∣X ∈ Fi−1,n2, X ′ ∈ F ′,
∣∣X ∩ X ′∣∣ = i − 2

}
.

Ci = {
X ∈ C ′′

i

∣∣X contains i members of Fi−1,n2
}
.

As such, the Naive algorithm can effectively test necessary
candidates without regenerating candidates which have been
generated before.

Rationale: Note that the Naive algorithm has a property
that it always generates-and-tests the set of candidates from
higher-frequency itemsets. According to Lemma 1, the set
of candidate i -itemsets generated from Fi−1,n1 will not
be necessary to be examined again because they have been
generated in previous scans. Following the first step of the
candidate generation in [16], the superset of candidate i-item-
sets generated from Fi−1,n2, is

{
X ∪ X ′∣∣X, X ′ ∈ Fi−1,n2,∣∣X ∩ X ′∣∣ = i − 2

}
, which is equivalent to

{
X ∪ X ′ ∣∣X ∈ Fi−1,n2, X ′ ∈ F ′,

∣∣X ∩ X ′∣∣ = i − 2
} ∩

{
X ∪ X ′ ∣∣X, X ′ ∈ Fi−1,n1,

∣∣X ∩ X ′∣∣ = i − 2
}
.

Since all validated candidates in

{
X ∪ X ′ ∣∣X, X ′ ∈ Fi−1,n1,

∣∣X ∩ X ′∣∣ = i − 2
}

have been generated before, only the set of itemsets in{
X ∪ X ′ ∣∣X ∈ Fi−1,n2, X ′ ∈ F ′,

∣∣X ∩ X ′∣∣ = i − 2
}
, i.e.,

C ′′
i , is necessary to be examined to generated validated can-

didates in the w + 1th scan. Based on the foregoing, the
candidate generation procedure in Lemma 2 can effectively
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avoid regenerating candidates which have been tested
before. ��

Lemma 2 can be clearly illustrated by the following exam-
ple. Suppose that we have tested all candidate 3-itemsets from
Fi−1,n1 = {{1, 2},{1, 3}, {1, 4},{2, 3},{2, 4},{3, 5}} in pre-
vious scans, i.e., candidates 3-itemsets {1, 2, 3} and {1, 2,
4} have been tested before. While we expect to test all can-
didates from Fi−1,n2 = {Fi−1,n1,{3, 4},{1, 5}}, we have

C ′′
3 =

{
X ∪ X ′

∣
∣∣∣

X ∈ Fi−1,n2, X ′ ∈ {{3,4}, {1,5}},∣
∣X ∩ X ′∣∣ = i − 2

}

= {{1, 3, 4}, {2, 3, 4}, {3, 4, 5}},
and C3 = {{1, 3, 4},{2, 3, 4}}. Finally, we generate the
necessary candidates without regenerating these candidate
3-itemsets which have been tested before, i.e., {1, 2, 3} and
{1, 2, 4}. Since Fi−1,n2 and F ′ can be identified without
extra overhead, we can effectively avoid the duplicate candi-
date generation in the Naive algorithm.

For interest of space, we omit the formal presentation of
this naive approach because this approach is merely devised
for the comparison purpose. It is worth mentioning that, the
Naive algorithm conveys the important concept that the prob-
lem of mining top-k frequent itemsets can be equivalently
viewed as a jigsaw puzzle-like problem as follows:

Remark 2 Consider the view of the support distribution plot
such as Fig. 2a. Imagine that following the procedure of the
Naive algorithm, we can fill up a right-most region of the sup-
port distribution plot, which consists of identified frequent
itemsets, after each database scan.6 For example, the four
database scans in Fig. 2a will correspond to four right-most
regions in the shadow region. From this point, the problem of
efficiently mining top-k frequent itemsets can be translated to
the problem that “how can the area with the support exceed-
ing supmin(Tk) in the support distribution plot be separated
into disjoint regions while the number of regions is as small
as possible?”

Clearly, Remark 2 gives an important perspective to ana-
lyze the problem of mining top-k frequent itemsets. This will
be used for further devising the efficient solution to mine
top-k frequent itemsets. Note that the Naive approach must
be achieved under the assumption that supmin(Tk) is known
prior to the mining process. However, it is difficult, even
impossible to know supmin(Tk) in advance. We still need to
devise an efficient mining solution to achieve the same goal
without such an assumption. Before presenting the details

6 In practice, some itemsets are generated-and-tested in previous data-
base scans since itemsets with support larger than supmin(Tk) will be
maintained after each database scan. For simplicity, we convey the con-
cept without considering such a slight difference. It will be a matter of
the implementation.

of the feasible approach, we give Remark 3 below to dem-
onstrate that the Naive approach is one of the most efficient
level-wise search algorithms to retrieve top-k frequent item-
sets under the memory constraint, if supmin(Tk) can be known
in advance.

Remark 3 Let Cm denote the set of candidate m-itemsets
generated from the set of (m-1)-itemsets whose supports
exceed supmin(Tk). Without loss of generality, Cm will be
the set of candidate m-itemsets which should be generated-
and-tested to obtain the set of m-itemsets belonging to top-k
frequent itemsets by applying level-wise search approaches.
Therefore, while also utilizing several advanced pruning
techniques of level-wise algorithms such as the hash-pruning
technique [5], the Naive algorithm will retrieve the top-k fre-
quent itemsets with the minimum number of database scans
in the presence of the memory constraint.

In Sect. 5, the Naive algorithm will be used to evaluate the
efficiency of solutions to mine top-k frequent/closed itemsets
for comparison purposes.

3 Memory-constraint top-k frequent-pattern mining

3.1 Principles to search top-k frequent patterns

We present the idea to efficiently retrieve top-k frequent item-
sets under the memory constraint without the assumption that
supmin(Tk) is known in advance. At first, necessary properties
of top-k frequent/closed itemsets are presented.

Lemma 3 The mth most frequent j-itemset, X j,m, is
included in candidates generated from the set of i-itemsets
whose supports are larger than or equal to sup(X j,m), where
j > i .

In essence, Lemma 3 is a direct result from the down-
ward closure property. According to Lemma 3, we also have
Lemmas 4, 5 and 6.

Lemma 4 The set of ( j + i)-itemsets belonging to top-k fre-
quent itemsets will be a subset of candidates generated from
the set of j -itemsets belonging to top-k frequent itemsets,
where i ≥ 1.

Rationale: Suppose that C j+i denotes the set of candidate
( j+i)-itemsets generated from the set of frequent ( j + i − 1)-
itemsets, denoted by L j+i−1, whose supports all exceed
supmin(Tk) in this case. That is, C j+i = L j+i−1 ∗ L j+i−1.
Let C1

j+i be the set of candidate ( j + i)-itemsets directly

generated from C j+i−1, i.e., C1
j+i = C j+i−1 ∗ C j+i−1.

Since C j+i−1 ⊇ L j+i−1, we have C j+i−1 ∗ C j+i−1 ⊇
L j+i−1∗L j+i−1, showing that C1

j+i ⊇ C j+i ⊇ L j+i . Recur-

sively we have Ci
j+i ⊇ · · · ⊇ C2

j+i ⊇ C1
j+i ⊇ C j+i , where
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Ci
j+i is the candidate ( j +i)-itemsets directly generated from

frequent j-itemsets, thus indicating Ci
j+i ⊇ L j+i and lead-

ing to Lemma 4. Note that the power of this property has
been fully utilized in the scan-reduction technique to reduce
the number of database scans [2,20]. ��
Lemma 5 Suppose that we make sure that all i -itemsets
whose supports exceed sup(Xi,vi ) have been discovered. It
implies that we have already tested all candidate i-itemsets
generated from (i − m)-itemsets whose supports exceed
sup(Xi,vi ), where m ≥ 1.

Rationale: According to Lemma 1, all candidate i-itemsets
generated from (i − 1)-itemsets with support exceeding
sup(Xi,vi ) must be tested (or be pruned) if we want to obtain
the set of frequent i-itemsets whose supports exceed
sup(Xi,vi ). In addition, the set of candidate i-itemsets gener-
ated from the set of (i − 1)-itemsets whose supports exceed
sup(Xi,vi ) is a subset of candidate i-itemsets directly gener-
ated from frequent (i − m)-itemsets whose supports exceed
sup(Xi,vi ) for m > 1. Hence, it is clear that if we have obtained
all i-itemsets whose supports exceed sup(Xi,vi ), all candi-
date i-itemsets generated from (i − 1)-itemsets whose
supports exceed sup(Xi,vi )have also been tested, even though
in practice candidate i-itemsets are directly generated from
frequent (i − m)-itemsets for m > 1. Recursively, we can
derive that all candidate i-itemsets generated from (i − m)-
itemsets whose supports exceed sup(Xi,vi ). ��
Lemma 6 Suppose that after thewth database scan, we have
retrieved a set of itemsets Rw = {X1,1, X1,2, . . . , X1,m1 ,

X2,1, . . . , X2,m2 , . . . , Xt,mt , . . .}, where t ≥ 1 and Xi,1, . . . ,

Xi,mi denotes the set of all i -itemsets whose supports exceed
sup(Xi,mi ). Let supk(w) be equal to the support of the kth
most frequent itemset in Rw (if |Rw| < k, supk(w) = 0).
Accordingly, we have supk(w) ≤ supk(z), for z > w, and
supk(w) ≤ supmin(Tk).

Rationale: Lemma 6 can be proved by contradiction. Sup-
pose that supk(w) > supmin(Tk). Note that there are k item-
sets whose supports exceed supmin(Tk). Thus we will have
less than k itemsets whose supports exceed supk(w), which
conflicts the definition of supk(w). As such, supk(w) will
be smaller than or equal to supmin(Tk). In addition, since
Rw ⊆ Rz for z > w, it is clear that supk(w) ≤ supk(z) . ��

In light of Lemma 6, one may obtain top-k frequent item-
sets by initially setting the minimum support equal to zero,
and then raising the minimum support equal to supk(w) after
thewth database scan. Therefore, without the assumption that
supmin(Tk) is known in advance, the problem to efficiently
mine top-k frequent itemsets can be viewed as the problem to
find supk(w) = supmin(Tk), where the number of database
scans, w, is as small as possible.
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Fig. 3 The illustration of the horizontal first search approach

As a consequence, analogous to the process in the Naive
algorithm, we can initially discover the set of high-support
itemsets in each level, and then progressively discover item-
sets with the relatively small support by generating and test-
ing candidates except those candidates tested in previous
scans. In other words, we can prioritize to fill up the region
of the right part of the support distribution plot (recall that
Remark 2 states that mining top-k frequent itemsets can be
viewed as a jigsaw puzzle-like problem). As such, two alter-
native approaches below is devised to fill up the right part
of the support distribution plot, i.e., to retrieve top-k fre-
quent itemsets, without assuming that supmin(Tk) is known
in advance.
Horizontal first search approach: The first approach is
called the horizontal first search approach, whose perspec-
tive of the support distribution plot is shown in Fig. 3. The
basic concept is that, in the wth database scan, we prior-
itize to discover itemsets in the sibling level whose sup-
ports exceed supk(w−1). Specifically, suppose that we have
tested candidate (i + 1)-itemsets generated from i-itemsets
whose supports exceed s1 after the wth database scan. In
the (w + 1)th database scan, we will generate all candi-
date (i + 1)-itemsets from i-itemsets whose supports exceed
s2, excluding those candidates generated in previous scans,
where supk(w − 1) ≤ s2 < s1. Surely, the memory space
must be guaranteed to ensure the generated candidates can be
maintained in the memory. While we still have the remain-
ing memory, we can concurrently generate partial candidate
(i + 2)-itemsets from those identified most frequent (i + 1)-
itemsets.

Note that the horizontal first search approach can fully
utilize the merit of level-wise algorithms to effectively prune
unnecessary candidates. For example, a candidate 3-itemset
{A, B, C} will not be generated and tested in the wth database
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Fig. 4 The illustration of the vertical first search approach

scan if the support of one of {A, B}, {A, C}, {B, C} is smaller
than supk(w−1). However, one drawback of this approach is
that we may identify many itemsets which are not included
in top-k frequent itemsets. The reason results from that a
lot of top-k itemsets are with long itemset-lengths, and thus
supk(w) cannot effectively and quickly approach supmin(Tk)

when w is small. As shown in Fig. 3, it is clear to see that a lot
of itemsets with support smaller than supmin(Tk) will be also
discovered in the wth database scan when supk(w−1) is not
close to supmin(Tk). Generating those unnecessary itemsets
will lead to extra database scans, thus degrading the execu-
tion efficiency. ��
Vertical first search approach: The second approach is
called the vertical first search approach, whose perspective of
the support distribution plot is shown in Fig. 4. The basic con-
cept is that, in the wth database scan, we prioritize to discover
longer itemsets whose supports exceed supk(w − 1). This
can be achieved by directly generate candidate i-itemsets
from frequent j-itemsets, where j may be smaller than i −1.

For example, let n1 = max
{

n
∣∣∣
(∑2

i=1 Ĉ1,i (n)
)

≤ Mc

}
. We

may select n1 most frequent 1-items, i.e., X1,1, X1,2, . . . ,

X1,n1 , and then test whether there are i -itemsets, 2 ≤ i ≤ 3,
whose supports exceed sup(X1,n1). In practice, the vertical
first search approach is beneficial to efficiently obtain top-k
frequent itemsets when k is small [or, supmin(Tk) is high].
Moreover, another merit of the vertical first search approach
is that the identified itemsets will mostly belong to top-k fre-
quent itemsets as compared to the case in the horizontal first
search approach. However, the drawback of this approach is
that a lot of candidates, which indeed can be pruned by the
level-wise search, will also be generated-and-tested. Thus
when k is large, this approach will suffer from an extremely
large number of database scans. ��

3.2 The δ-stair search

Apparently, it is still required to devise a solution to more
effectively make supk(w) approach supmin(Tk) while also
fully utilizing the merit of the level-wise candidate pruning.
In other words, we try to integrate the merit of the horizontal
first search approach and the vertical first search approach
while diminishing the side-effect of those two approaches.
To achieve this, we propose a novel search approach, called
the δ-stair search, in this paper. The basic concept behind
the δ-stair search is to equally share Mc candidates to δ

different itemset lengths and then to gradually upward or
downward search frequent itemsets. Specifically, the δ-stair
search consists of two distinct steps, namely the upward δ-
stair search step and the downward δ-stair search step. We
formally describe the principles of upward δ-stair search step
and the downward δ-stair search step, respectively.
Upward δ-stair search step: Suppose that in the wth data-
base scan, we have concurrently generated-and-tested candi-
date itemsets whose lengths are between u and u+δ−1. In the
(w + 1)th database scan, the upward δ-stair search will con-
currently generate-and-test candidate itemsets whose lengths
are between u+1 and u+δ. Furthermore, assume before the
(w + 1)th database scan, we have discovered the set of item-
sets Rw = {X1,1, X1,2, . . . , X1,v1 , X2,1, . . . , X2,v2 , . . . ,

Xt,vt , . . .} in which each itemset has the support exceeding
supk(w), where {Xi,1, . . . , Xi,vi }denotes the set of i-itemsets
whose supports exceed sup(Xi,vi ). In the (w + 1)th database
scan, we examine candidate ( j + 1)-itemsets generated from
{X j,1, X j,2, . . . , X j,n j }, excluding candidate ( j+1)-itemsets
from {X j,1, X j,2, . . . , X j,m j }, where u ≤ j ≤ u + δ − 1,
and

n j = max

{
n

∣∣∣
∣
Ĉ j,1(n) − γ j+1 ≤ Mc

δ
,

sup(X j,n) ≥ supk(w)

}
,

m j = min
{
n

∣∣sup(X j,n) ≥ sup(X j+1,v j+1)
}
.

Here γi denotes the number of candidate i-itemsets which
have been tested before the (w + 1)th database scan.

As such, we will retrieve all (j+1)-itemsets whose supports
exceed sup(X j,n j ) after the (w + 1)th database scan, where
u ≤ j ≤ u + δ − 1.

Example 2.3 Consider the illustration shown in Fig. 5a. In
this case, δ is set to 2, meaning that candidate itemsets of two
levels will be concurrently generated-and-tested in each data-
base scan. Specifically, we will obtain the set of 1-items after
the first database scan (if the count of distinct 1-items exceeds
k, we only select most k frequent 1-items). Afterward, we
generate Mc

2 candidate 2-itemsets from the set of most h1

frequent 1-items and generate Mc
2 candidate 3-itemsets

directly from the set of most frequent h′
1 1-items, where

Ĉ1,1(h1) ≤ Mc
2 and Ĉ1,2(h′

1) ≤ Mc
2 . Therefore we will

obtain 2-itemsets whose supports exceed sup(X1,h1) and
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Fig. 5 The illustration of the
δ-stair search with δ = 2
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3-itemsets whose supports exceed sup(X1,h′
1
) after the second

database scan. For example, suppose that Mc = 300,000. We
select the most frequent 548 1-items to generate candidate
2-itemsets [h1 = 548, because Ĉ1,1(548) = 149,878] and
select the most frequent 97 1-items to directly generate can-
didate 3-itemsets [h′

1 = 97, because Ĉ1,2(97) = 147,440].
The first and the second database scans are referred to as the
initial step in this paper.

Note that after the second database scan, we will retrieve
all 2-itemsets, denoted by {X2,1, . . . , X2,v2 }, whose sup-
ports exceed sup(X1,h1), and retrieve the set of 3-itemsets,
denoted by {X3,1, . . . , X3,v3 }, whose support exceed sup
(X1,h′

1
). In addition, let X2,m2 be the 2-itemset that all

3-itemsets with support exceeding sup(X2,m2) have
been discovered in the second database scan, i.e., m2 =
max

{
n
∣∣sup(X2,n)≤ sup(X3,v3)

}
. In the third database scan,

we will upwardly search top-k frequent itemsets. Note that
according to Lemma 4, we have already tested all candidate
3-itemsets generated from {X2,1, …, X2,m2 } in the second
database scan. As such, in the third database scan, Mc

2
candidate 3-itemsets are generated from the set {X2,1, X2,2,

. . . , X2,n2 }, excluding candidate 3-itemsets from {X2,1, X2,2,

. . . , X2,m2 }, where n2 = max
{

n
∣∣∣Ĉ2,1(n) ≤ Mc

2

}
. More-

over, since we did not test any 4-itemset in previous
database scans, in the third database scan, we will also gen-
erate and test Mc

2 candidate 4-itemsets, which are concur-
rently generated from the set {X3,1, X3,2, . . . , X3,n3 }, where
n3 = max

{
n
∣∣Ĉ3,1(n3) ≤ Mc

2

}
. Finally, the third database

scan is executed to test these generated candidates.
The execution of the third database scan is called an

upward δ-stair search step. Same as the execution of the
third database scan, the execution of the fourth database
scan is also an upward δ-stair search step, as illustrated in
Fig. 5a. ��

Downward δ-stair search step: Suppose that in the wth
database scan, we have concurrently generated-and-tested
candidate itemsets whose lengths are between u and u+δ−1.

The downward search will generate candidates correspond-
ing to two different cases below:

(a) If the wth database scan is an upward δ-stair search,
in the (w + 1)th database scan, the downward δ-stair
search will concurrently generate-and-test candidate
itemsets whose lengths are between u and u + δ − 1.

(b) If the wth database scan is a downward δ-stair search,
in the (w + 1)th database scan, the downward δ-stair
search will concurrently generate-and-test candidate
itemsets whose lengths are between u−1 and u+δ−2.

Furthermore, assume before the (w + 1)th database scan,
we have discovered the set of itemsets Rw = {X1,1, X1,2, . . . ,

X1,v1 , X2,1, . . . , X2,v2 , . . . , Xt,vt , . . .} in which each itemset
has the support exceeding supk(w), where {Xi,1, . . . , Xi,vi

denotes the set of i-itemsets whose supports exceed
sup(Xi,vi ). In the (w + 1)th database scan, the downward
δ-stair search step will generate candidate ( j + 1)-itemsets
from {X j,1, X j,2, . . . , X j,n j }, excluding candidate ( j + 1)-
itemsets from {X j,1, X j,2, . . . , X j,m j }, where j lies in the
range corresponding to case (a) or case (b), and

n j = max

{
n

∣∣∣∣
Ĉ j,1(n) − γ j+1 ≤ Mc

δ
,

sup(X j,n) ≥ supk(w)

}
,

m j = min
{
n

∣∣sup(X j,n) ≥ sup(X j+1,v j+1)
}
.

Here γ j+1 denotes candidate ( j + 1)-itemsets which have
been tested before (w + 1)th database scan.

As such, after the (w + 1)th database scan, we will retrieve
all ( j + 1)-itemsets whose supports exceed sup(X j,n j ) with
the itemset-lengths corresponding to case (a) or case (b)
above.

Example 2.4 Consider the illustration shown in Fig. 5b. In
this example, candidate 5-itemsets generated from {X4,1,
X4,2, . . . , X4,m4 } has been tested after the fourth database
scan and no 5-itemsets whose supports exceed sup(X4,m4)

were found. As such, the upward search will fail to find any
6-itemsets belonging to top-k frequent itemsets, thus the fifth
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database scan will be turned to the downward δ-stair search
step.

In the fifth database scan, Mc
2 candidate 5-itemsets, exclud-

ing candidates generated from {X4,1, X4,2, . . . , X4,m4 }, are
generated from the set {X4,1, X4,2, . . . , X4,n4 }, where

n4 = max

{
n

∣
∣∣∣Ĉ4,1(n) − γ5 ≤ Mc

2

}

and γ5 denotes the number of candidate 5-itemsets which
have been tested in previous database scans. Moreover,
assume that candidate 4-itemsets generated from {X3,1, X3,2,

. . . , X3,m3 } has been tested in previous database scans. We
also generate Mc

2 candidate 4-itemsets from {X3,1, X3,2, . . . ,

X3,n3 }, excluding candidate 4-itemsets generated from
{X3,1, X3,2, . . . , X3,m3 }, where n4 = max

{
n

∣
∣Ĉ3,1(n) −

γ4 ≤ Mc
2

}
, and γ4 denotes the number of candidate

4-itemsets which have been tested in previous scans.
Suppose that after the fifth database scan, all 1-items,

2-itemsets, 3-itemsets and 4-itemsets whose supports exceed
supk(5) are found. In other words, we did not need to “down-
ward” search itemsets which will not belong to top-k frequent
itemsets. As such, the sixth database scan will return to be
an upward δ-stair search step. Finally, the process of mining
top-k frequent itemsets will end after the sixth database scan
since no 5-itemsets and 6-itemsets whose supports exceed
supk(6) were found. Accordingly, top-k frequent itemsets,
i.e., those itemsets whose supports exceed supk(6), are dis-
covered. In this case, supmin(Tk) is equal to supk(6). ��

We then formally describe when to shift from the upward
δ-stair search step to the downward δ-stair search step, and
vice versa.

The upward search step → the downward search step:
Suppose that in the wth database scan, which is an upward
δ-stair search step, we have generated-and-tested candidate
itemsets whose lengths are between i −δ+1 and i. Moreover,
assume that after the wth database scan, candidate i-itemsets
generated from {Xi−1,1, Xi−1,2, . . . , Xi−1,vi−1 } have been
generated and tested, and no i-itemsets with support larger
than sup(Xi−1,vi−1) were found. In such cases, the (w + 1)th
database scan will turn to be a downward δ -stair search step
since there will be no (i +1)-itemsets whose supports exceed
sup(Xi−1,vi−1) (see the example of the fourth scan to the fifth
scan in Fig. 5). ��
The downward search step → the upward search step:
Suppose that in the wth database scan, which is a downward
δ-stair search step, we have generated-and-tested itemsets
whose lengths are between i and i +δ−1. Moreover, assume
that after the wth database scan, all candidate i-itemsets
generated from {Xi−1,1, Xi−1,2, . . . , Xi−1,vi−1 } have been
tested, where vi−1 = max

{
n

∣∣sup(Xi−1,n) ≤ supk(w)
}
. In

such cases, the (w + 1)th database scan will turn to be an
upward δ-stair search step, because no (i −1)-itemsets with
support below supk(w) will belong to top-k frequent itemsets
(see the example of the fifth scan to the sixth scan in Fig. 5b).
��

Accordingly, the upward δ-stair search step and the down-
ward δ-stair search step will be adaptively switched until all
top-k frequent itemsets are found. It is worth mentioning that,
the δ-stair search approach will efficiently retrieve top-k fre-
quent itemsets with the number of database scans close to
the optimal one, which is required by the Naive algorithm
described in Sect. 2 [under the premise that supmin(Tk) is
known in advance]. This is attributed to that the δ-stair search
has both advantages of the horizontal first search approach
and the vertical first search approach while diminishing their
side-effects.

4 Algorithm MT K

To efficiently retrieve top-k frequent patterns, we in this
section introduce the algorithm, called MTK (standing for
M emory-constraint top-k mining), to realize the concept of
the δ-stair search. In Sect. 4.1, we give the implementation
details of MTK. The extension of MTK to mine top-k closed
itemsets will be discussed in Sect. 4.2. Section 4.3 gives illus-
trative examples.

4.1 Implementation of MTK

Before presenting the details of the implementation, we give
the overview of MTK in Fig. 6. In essence, MTK applies the
hash pruning technique from algorithm DHP [19], which can
effectively reduce unnecessary candidates by utilizing a hash
table structure. Specifically, when scanning the database to
obtain all 1-items (or most k frequent 1-items), we also exam-
ine all 2-itemsets of each transaction, and hash them into the
different buckets of the hash table H2, i.e., increasing the
corresponding bucket count. The hash table H2 can be fur-
ther used to reduce the amount of candidate 2-itemsets which
will be examined in the following database scans if neces-
sary. It is worth mentioning that, as demonstrated in [19],
the hash pruning technique will be powerful in early stages,
particularly when pruning candidate 2-itemsets. Thus both
considering the pruning effect and the other incurred over-
head, the hash pruning will only be utilized in generating
candidate 2-itemsets.

In the second database scan, Mc
δ

candidate i-itemsets, 2 ≤
i ≤ 2+δ−1, will be directly generated from 1-items. For the
case of candidate 2-itemsets, we need to generate candidate
2-itemsets, which belong to the bucket whose bucket count
exceeds supk(1) in H2 (interested readers can refer to [19]
for the details). After the second database scan, we filter out
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Fig. 6 The flowchart of MTK
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Fig. 7 The two-level sorted array to maintain top-k frequent itemsets

itemsets which were discovered in the first and the second
database scans and their supports are smaller than supk(2).
Afterward, the third database scan will be executed as either
an upward δ-stair search step or a downward δ-stair search
step. Then, the upward δ-stair search step and the downward
δ-stair search step will be adaptively switched according to
the criterion described in Sect. 3.2, until all top-k frequent
itemsets are found. In case we need to examine candidate
2-itemsets, H2 will be utilized again to prune the size of
candidates.

The detailed pseudo-codes are outlined in the below.
Explicitly, in addition to the hash table H2 to pruning can-
didate 2-itemsets, several important global variables will be
also maintained, including (1) Tk : the repository to maintain
top-k frequent itemsets; (2) si zei : the pre-estimated memory
overhead to store a candidate i-itemsets; (3) TB[x][y][z]: a
pre-computed sorted array, in which each array unit con-
sists of two variables, namely TB[x][y][z].bound_cand and
TB[x][y][z].itemset_num, to indicate the upper number of
candidate (x + y)-itemsets generated from x-itemsets, where

T B[x][y][z].bound_cand

= Ĉx,y(T B[x][y][z].i temset_num).

Specifically, as shown in Fig. 7, Tk is a dynamic array
structure to maintain top-k frequent itemsets, sorted by two
keys: (1) the support of the itemset; (2) the itemset length.
Once we identify a new itemsets whose support exceeds the
up-to-date minimum support threshold s, it will be inserted
into Tk and itemsets with the smallest support in Tk will
be removed if |Tk | > k. In addition, the memory to store
a candidate is proportional to the itemset length. As such,
si zei can be approximated as the memory of necessary units
multiplied by a factor Φ, where Φ, depending on the imple-
mentation, represents the other overhead such as memory
to maintain necessary pointers in a hash-tree [2]. Moreover,
to search nopt = max

{
n

∣∣Ĉx,y(n) ≤ m
}
, for a given upper

number of candidates m, the function to obtain Ĉx,y(n) orig-
inally needs to be iteratively executed until nopt is found.
We can reduce the execution time to search nopt by
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Algorithm: MTK(k, M, δ)
/*global variables*/
Tk = ∅; /*the repository to maintain top-k frequent itemsets, which is sorted by (1) the support of the itemset; (2) the length of the itemset*/
H2 = ∅; /*refer to [19] for the details of the hash-pruning technique*/
si zei /*the pre-specified memory overhead to store a candidate itemset*/
s=0; /*minimum support*/
tested=∅; /*a hash table to indicate how many candidate (i+1)-itemsets have been tested in previous scans*/
TB[x][y][z]; /*a pre-computed sorted array to indicate the upper number of candidate (x+y)-itemsets according to Theorem 1*/
len_start=1; len_end=1; /*the range of itemset-lengths of candidates examined in this database scan*/
examined=∅; /*a hash table, where examine(i) returns the number of top i-itemsets that all (i+1)-itemsets generated from them have been examined in previous database
scans*/
/*Main Program*/
1. InitStep(); /*The initial step of MTK, including two database scans*/
2. s = min{sup(x)

∣∣x ∈ Tk }; /*The new minimum support threshold*/
3. IsUpward=true; /*indicate whether the previous step is an upward step search*/
4. while (true) {
5. if ( IsUpward==true) { /*the previous step is an upward search*/
6. if (

{
c
∣∣c ∈ Tk , |c|= len_end

} �= ∅) /*remain as the upward search*/
7. len_start=len_start+1; len_end=len_end+1;
8. else /*switch to the downward search*/
9. len_start=len_start; len_end=len_end; IsUpward=false;

10. }
11. else { /*the previous step is an downward search*/
12. Let sk = sup(Xi,m ), where i = len_start and m =examined(len_start)+1;
13. if (sk < s) /*switch to the upward search*/
14. len_start=len_start+1; len_end=len_end+1; IsUpward=true;
15. else /*remain as the downward search*/
16. len_start=len_start-1; len_end=len_end-1;
17. }
18. StairCandGen(len_start,len_end,CandSet);
19. if (|CandSet|>0) {
20. forall transaction t ∈ D do
21. countSupport(t ,CandSet);
22. Tk = Tk ∪ {c ∈ CandSet |c.count ≥ s } ;
23. Tk = {top k itemsets in Tk };
24. s = min{sup(x)

∣
∣x∈Tk }; /*The new minimum support threshold*/

25. }
26. else {
27. Return Tk ;
28. Program End;
29. }
30. }

utilizing T B[x][y][z] via a binary search approach (pre-
sented in Procedure binarySearch). For example, we may
calculate Ĉ2,1(1000) = 14, 235, Ĉ2,1(2000) = 40, 792, and
Ĉ2,1(3000) = 75, 851 in advance. Assuming the available
upper number of candidates, m, is 30,000, we can find that
nopt lies in the range between 1,000 and 2,000, and then
examine n =1,500, 1,750, 1,625 by the binary search
approach. Since Ĉ2,1(1625) = 29, 666, which is closest to
30,000, 1,625 will be suggested as nopt. Note that the sug-
gested result may not be the optimal nopt, but they are indeed
close to each other. This approach will substantially reduce
the time to search nopt.

Detailed subprocedures of the MTK algorithm are then
outlined. Among them, Procedure StairCandGen, i.e., the
major distinguishing innovation of the MTK algorithm, is
used to generate candidate itemsets with the specified range
of itemset-lengths. Note that the generation of candidate 2-
itemsets can be pruned by H2, and sometimes the upper
bound of candidates derived in Theorem 1 may deviate from
the exact number of generated candidates. Thus we may have
the remaining memory after the regular process described in
Sect. 3.2 (line 1–line 9 of Procedure StairCandGen), which
can be further used to generate candidates in the same data-
base scan. Inspired from the downward closure property, the
remaining memory will be shared to generate more candi-
date itemsets with shorter itemset-length in this database scan

since more valid itemsets could be identified (line 10–line 21
of Procedure StairCandGen). Actually, in last few database
scans such as the fifth and the sixth database scans in Fig. 5b,
a large memory usually remains unoccupied after the regular
process. Therefore applying such an approach will reduce
the number of database scans.

To gain more efficiency, we also utilize the selective scan
technique in the DHP algorithm [5] to directly generate can-
didate i-itemsets from (i − 2)-itemsets, or (i − 3)-itemsets
if we still have the remaining memory space (line 23–line
33 of Procedure StairCandGen). Specifically, different from
the DHP algorithm, the selective scan in MTK must comply
with the memory constraint. Therefore, we will first exam-
ine whether candidate i-itemsets generated from discovered
high-support i-itemsets plus candidate (i−1)-itemsets in cur-
rent candidate set, i.e., CandSet, can be generated under the
memory constraint. It is worth mentioning that, the selective
scan will prominently reduce the I/O operations and will lead
to the high execution efficiency.

4.2 Extension of MTK to mine top-k closed itemsets

In essence, depending on the application need, mining top-k
closed itemsets may be equally or more important than min-
ing top-k itemsets. The reason lies in that many itemsets will
be “redundant” among top-k frequent itemsets due to the
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Procedure: InitStep()
/*the initial step of MTK*/
1. forall transaction t ∈ D do
2. insert and count 1-items occurrences in a hash tree;
3. forall 2-subsets x of t do
4. H 2[h 2(x)]++;
5. L 1 = { c|c.count ≥ s, c exists in the leaf node of the hash tree} ;
6. Tk = {top k 1-items in L 1};
7. s = min{sup(x)

∣∣ x ∈ T k }; /*The new minimum support threshold*/
8. len_start=2; len_end=1+δ; CandSet=∅;
9. for (i=len_start; i<len_end;i++) /*Generate candidate i-itemsets from 1-items*/

10. Mi = M/
(
δ × si zei

) ;
11. n i =binarySearch(M i , 1, i);
12. L = {top n i 1-items in T k }; /* |L| may be smaller than ni */
13. Ci = ∅;
14. if (i == 2) /*perform the hash pruning*/
15. forall c ∈ L ∗ L do
16. if (H2[h2(c)]≥ s) then Ci = Ci ∪ {c};
17. else
18. Ci = {all i-subsets of L};
19. CandSet=CandSet∪Ci ;
20. foreach transaction t ∈ D do
21. countSupport(t ,CandSet);
22. Tk = Tk ∪ { c ∈ CandSet | c.count ≥ s } ;
23. Tk = {top k itemsets in T k };
24. Let examined(i) be equal to the number of i-itemsets whose all generated candidate (i+1)-itemsets have been tested, len_start≤ i ≤len_end;

Procedure: StairCandGen(start,end,CandSet)
/*generate δ−Stair candidate itemsets which is able to stored in the available memory upper bound*/
1. for (i=start; i<end;i++)
2. Mi = M/

(
δ × si zei

) ;
3. ni−1 =binarySearch(M i + tested(i), i − 1, 1);
4. Li−1 = {top ni−1 (i − 1)-itemsets in Tk }; /* |Li−1| may be smaller than ni */
5. Let ts = sup(Xi−1,m ), where m =examined(i-1);
6. nLi−1 = {η ∣∣η∈Li−1, sup(η) ≤ts };
7. examined(i − 1) = |Li−1|;
8. genCandidate(nLi−1, Li−1, Ci );
9. CandSet=CandSet∪Ci ;

10. Let Mr be the remaining memory, and i = min
{
�
∣
∣sup(X�,m ) > s

}
, where m = examine(� − 1);

11. while (Mr ! = 0 and i ≤ end) /*If the memory space remains, prioritize to discover itemsets with the shorter length*/
12. Mi = Mr /

(
si zei

) ;
13. ni−1 =binarySearch(Mi + tested(i), i − 1,1);
14. Li−1 = {top ni−1 (i − 1)-itemsets in Tk }; /* |Li−1| may be smaller than ni */
15. if (ni−1 ≤examined(i-1)) then break; /*mean that the remanding memory cannot generate more candidate i-itemsets*/
16. Let ts = sup(Xi−1,m ), where m =examined(i-1);
17. nLi−1 = {η ∣

∣η∈Li−1 , sup(η) ≤ts };
18. examined(i − 1) =|Li−1|;
19. genCandidate(nLi−1, Li−1,Ci );
20. CandSet=CandSet∪Ci ;
21. i++;
22. Let i = start + 1;
23. while (Mr ! = 0) /*If the memory space remains, directly generate candidates from candidates*/
24. Mi = Mr /

(
si zei

) ;
25. nLi−1 = {η |η∈ CandSet , |η| = i − 1 }
26. Li−1 = nLi−1 ∪ {η ∣∣η∈ T k , |η| =i − 1 };
27. ni−1 =binarySearch(Mi + tested(i), i − 1,1);
28. if (ni−1 ≥|Li−1|) /*mean that we can directly generate candidate i-itemsets from candidate (i-1)-itemsets*/
29. genCandidate(nLi−1, Li−1,Ci );
30. CandSet=CandSet∪Ci ;
31. i++;
32. else /*the remaining memory cannot be utilized to generate more candidate i-itemsets*/
33. break;

Procedure: genCandidate(nLi−1,Li−1,Ci )
/*generate candidate i-itemsets from Li−1, excluding candidates tested in previous database scans*/
1. Ci = ∅;
2. F ′

i = {
X ∪ X ′ ∣∣X ∈ Li−1, X ′ ∈ nLi−1,

∣
∣X ∩ X ′∣∣ = i − 2

}

3. Ci = Ci ∪ Fi ;
4. tested(i) = tested(i) + |Ci |; /*indicate how many candidate i-itemsets have been tested*/

Procedure: int binarySearch(cand_num, item_length, predicted_step)
/*find the size of itemsets to generate at most cand_num candidates*/
1. while (left≤right) {

2. middle=
⌊

right+le f t
2

⌋
;

3. if (right==left)
4. return TB[item_length][predicted_step][middle].i temset_num;
5. else if (TB[item_length][predicted_step][middle].bound_cand > cand_num)
6. right=middle-1;
7. else left=middle+1;
8. }
9. return TB[item_length][predicted_step[right].i temset_num;

Procedure: countSupport(t,CandSet)
/*accumulate the support count of candidates*/
1. forall c such that c ∈CandSet and c ∈ t do begin
2. c.count++;
3. end
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Algorithm: MTK_Close(k, M, δ)
/*additional global variables*/
T Ck = ∅; /*the repository to maintain top-k closed frequent itemsets, which is sorted by (1) the support of the itemset; (2) the length of the itemset*/
nT Ck = ∅; /*contains all itemsets which are not closed itemsets and can be expanded from closed itemsets in T Ck */
Tk = ∅; /*Tk is always pointed to be as T Ck ∪ nT Ck */
/*Main Program*/
/*lines 1˜18 refer to algorithm MTK*/
19. if (|CandSet|>0) {
20. forall transaction t ∈ D do
21. count_support(t ,CandSet);
22. forall c ∈CandSet do
23. if (c.count ≥ s)
24. T Ck = T Ck ∪ c;
25. forall

{
c′ ∣∣c′ ∈ T Ck , |c′| = |c| − 1, sup(c′) = sup(c)

}
do

26. if (c′ is a subset of c)
27. remove c′ from T Ck ;
28. nT Ck = nT Ck ∪ c′;
29. T Ck = {top k itemsets in T Ck };
30. s = min{sup(x)

∣
∣x ∈ T Ck }; /*The new minimum support threshold*/

31. remove all itemsets whose supports are smaller than s from nT Ck ;
32. Let h = min

{
�
∣
∣sup(X�,m ) ≤ s

}
, where m = examine(� − 1);

33. remove all itemsets whose lengths are smaller than or equal to h from nT Ck ;
34. }
35. else {
36. Return {top k closed itemsets in T Ck };
37. Program End;
38. }

Procedure: InitStep()
/*the modified part in MTK_Close*/
/*lines 1˜24 refer to procedure InitStep()*/
25. forall c ∈CandSet do
26. if (c.count ≥ s) {
27. T Ck = T Ck ∪ c;
28. forall

{
c′ ∣∣c′ ∈ T Ck , |c′| = |c| − 1, sup(c′) = sup(c)

}
do

29. if (c′ is a subset of c)
30. remove c′ from T Ck ;
31. nT Ck = nT Ck ∪ c′;
32. }
33. T Ck = {top k itemsets in T Ck };
34. s = min{sup(x)

∣∣x ∈ T Ck }; /*The new minimum support threshold*/
35. remove all itemsets whose supports are smaller than s from nT Ck ;
36. Let examined(i) be equal to the number of i-itemsets whose all candidate (i+1)-itemsets have been tested, len_start≤ i ≤len_end;

downward closure property (given any itemset in the top-k
set, all its subsets certainly belong to top-k frequent itemsets)
[26]. Accordingly, we in this section present the solution, spe-
cifically called the MTK_Close algorithm, to retrieve top-k
closed itemsets extended from the MTK algorithm.

Explicitly, following from Definition 3, the basic idea
behind MTK_Close is to maintain all itemsets with supports
exceeding supmin(T Ck) and to progressively filter out unnec-
essary itemsets, i.e., itemsets with support equal to one of
the superset. Therefore, as extended from Lemma 3, we can
devise the MTK_Close algorithm by initially setting the min-
imum support threshold equal to zero and raising the thresh-
old equal to supck(w) after the wth database scan, where
supck(w) denotes the support of the kth most frequent closed
itemset we have discovered after the wth database scan.

The main program of the MTK_Close algorithm, extended
from the MTK algorithm, is outlined below. Other subproce-
dures of the MTK algorithm will carry over in the MTK_Close
algorithm (only a slight modification of procedure InitStep
is required). Specifically, as shown in Fig. 7, the structure
to maintain top-k itemsets, Tk , in the MTK algorithm is a
two-level sorted array, permitting itemsets to be inserted and
removed according to their supports and itemset-lengths. In
the MTK_Close algorithm, an identical structure, i.e., T Ck ,
is utilized to maintain the discovered top-k closed itemsets.

When a new j-itemset X j with the support exceeding the
up-to-date minimum support s is identified, ( j − 1)-itemsets
with the same support in T Ck will be examined whether they
are subsets of X j . Accordingly, any ( j − 1)-itemset which
is identified as a subset of X j and has the support equal to
sup(X j ) will be removed from T Ck .

Another difference between MTK and MTK_Close is that
the MTK_Close algorithm also maintains a structure, called
nT Ck , to store itemsets which are not closed itemsets and
can be expanded from closed itemsets in T Ck . Note that
to precisely generate top-k closed itemsets, all candidate
itemsets generated from all itemsets whose supports exceed
supmin(T Ck) need to be tested. Therefore, nT Ck is required
to be maintained to complement the set of itemsets which sup-
ports exceed supmin(T Ck). Importantly, not all itemsets with
supports exceeding supmin(T Ck) have to be always main-
tained. Note that all frequent but non-closed i-itemsets will
be covered by all closed (i +1)-itemsets [21]. When we have
discovered all (i + 1)-itemsets whose supports exceed the
up-to-date minimum support s, all i-itemsets in nT Ck can
be removed since they will not affect the further discovery
of closed itemsets (line 31–line 33 in the MTK_Close algo-
rithm). The program of the MTK_Close algorithm is then
presented. Other supplemental procedures can be found in
Sect. 4.1.
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(a) The procedure of the candidate generation (b) The view of the support distribution plot
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Fig. 8 The illustrative example of discovering top-k frequent itemsets

4.3 Illustrative running examples

We give the illustrative examples to exhibit the execution of
algorithms MTK and MTK_Close by applying the dataset in
Table 1. For ease of exposition, we assume: (1) the memory
occupied to maintain a candidate i-itemset will be equal to i
memory units, proportional to the size of the itemset-length;
(2) the memory to maintain top-k frequent/closed itemsets
will not be considered; (3) the hash table, i.e., H2, will not
be applied in the example; (4) δ = 2.

Example of top-k frequent itemsets with the memory con-
straint: We perform the MTK algorithm to retrieve top ten
frequent itemsets under the constraint that 40 memory units
can be utilized to store candidate itemsets, as shown in Fig. 8,
where Fig. 8a shows the process of the candidate generation
in each database scan and Fig. 8b shows the correspond-
ing view of the support distribution plot. Without knowing
supmin(Tk) in advance, the up-to-date minimum support,
s, will be equal to zero initially. After performing the first
scan, we will obtain all 1-items associated with their supports
and s will be raised to one. Afterward, we equally share
the 40 memory units to generate candidate 2-itemsets and
candidate 3-itemsets, including at most 40/(2 × 2) = 10
candidate 2-itemsets and at most �40/(2 × 3)� = 6 can-
didate 3-itemsets. Since Ĉ1,1(5) = 10, we will generate
candidate 2-itemsets from top five 1-items. Moreover, since
Ĉ1,2(4) = 4 and Ĉ1,2(5) = 10,we can select top four 1-items

to directly generate their candidate 3-itemsets. The second
scan will be performed to examine the supports of all those
generated candidates. We then insert each itemset into Tk

iff the support of the itemset exceeds s = 1 . Once |Tk | >

10, we remove the itemset with the smallest support from
Tk . As a result, we obtain the set of high-support itemsets
{B}, {F}, {A}, {D}, {AF}, {B F}, {AB}, {B D}, {DF}, and
{AB F} while updating s to five, which is equal to supk(2)

shown in Fig. 8b.
We then generate candidates for the next scan. Since the

set of 3-itemsets L3 in Tk is not empty, the third scan will be
executed as an upward search, with itemset-lengths between
3 and 4. Explicitly, |L3| is equal to 1, leading to no can-
didate 4-itemset can be generated from top one 3-itemset
[∵ Ĉ3,1(1) = 0]. In addition, since in the second scan, we
have tested candidate 3-itemsets which are directly generated
from top four 1-items, i.e., {A}, {B}, {D} and {F}, we can
find that no candidate 3-itemset needs to be generated. Since
we still have a remaining memory space, we directly gener-
ate candidate 4-itemsets from 2-itemsets. However, accord-
ing to Theorem 1, there will be no candidate 4-itemsets
generating from five discovered 2-itemsets [∵ Ĉ2,2(5) =
0]. As such, no candidate can be generated, and thus the
program ends. The final set of top-ten itemsets consists of
{A}, {B}, {D}, {F}, {AB}, {AF}, {B D}, {B F}, {DF} and
{AB F}, which are consistent with the result shown in Table 2.
Importantly, only two database scans are required by MTK.
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(a) The procedure of the candidate generation (b) The view of the support distribution plot
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Fig. 9 The illustrative example of discovering top-k closed itemsets

Note that a level-wise based algorithm needs at least three
scans in this case even though the minimum support can be
specified in advance. Hence the efficiency of the MTK algo-
rithm and the merit of δ-stair search are shown. ��

Example of top-k closed itemsets with the memory con-
straint: We perform the MTK_Close algorithm to retrieve top
ten closed itemsets under the constraint that only 26 memory
units can be utilized to store candidate itemsets, as shown
in Fig. 9 . Explicitly, after the first database scan, we can
generate six candidate 2-itemsets from top four 1-items (∵
�26/(2 × 2)� = 6, Ĉ1,1(4) = 6), and can generate four can-
didate 3-itemsets from top four 1-items (∵ �26/(2 × 3)� =
4, Ĉ1,2(4) = 4). Thus after the second scan, we identify
their supports, and insert the itemsets into T Ck if their sup-
ports exceed the up-to-date minimum support s. Importantly,
the 1-item {A} will be removed from T Ck when we insert
2-itemsets {AF} since their supports are the same. Similarly,

2-itemsets {AB} and {AD} will also removed when we insert
3-itemsets {AB F} and {ADF}, respectively. As a result, after
the second database scan, we update s equal to four, and
identify closed itemsets {B}, {F}, {D}, {A f }, {B F}, {B D},
{DF}, {AB F}, {ADF} and {B DF}.

Since the set of 3-itemsets in T Ck is not empty, we per-
form the third scan as an upward search. Note that we cannot
generate any candidate 4-itemset from discovered 3-item-
sets [∵ Ĉ3,1(3) = 0]. In addition, no candidate 3-itemset
will be generated from discovered 2-itemsets since all 3-
itemsets with support exceeding sup(X2,6) were also dis-
covered in the second scan, where sup(X2,6) = 4 and X2,6 is
{AD}, which is maintained in nT Ck (see Sect. 4.2). There-
fore, the remaining memory space can be utilized to gen-
erate candidates with shorter itemset-lengths, i.e., candidate
2-itemsets in this case. We then generate all candidate 2-
itemsets from 1-items whose supports exceed s, and find
four candidate 2-itemsets (excluding those tested in previous
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scans) need to be tested. The remaining memory is also uti-
lized to directly generate candidate 3-itemsets. Note that five
1-items have supports exceeding s, i.e., {B}, {F}, {A}, {D},
and {C}, and at most ten candidate 3-itemsets will be gen-
erated [∵ Ĉ1,2(5) = 10]. Thus excluding those 3-itemsets
tested in previous scans, at most six candidate 3-itemsets will
be included, which can be generated without exceeding the
memory constraint (four candidate 2-itemsets and six can-
didate 3-itemsets totally occupy 26 memory units). Finally,
we have the set of candidates tested in the third scan. The
2-itemset {BC} will be inserted into T Ck after the third scan
and the up-to-date threshold s will not be raised because the
minimum support in T Ck is still equal to four.

The candidates for the next scan is then generated. Origi-
nally, the fourth scan will be executed as a downward search
since no 4-itemset is identified. However, all 1-items,
2-itemsets, 3-itemsets with support exceeding s were discov-
ered after the third scan. Moreover, only three 3-itemsets are
discovered and Ĉ3,1(3) = 0, indicating that no candidate
4-itemset can be generated. As a result, the program ends
with three database scans, and the set of closed itemsets,
which is consistent with the result in Table 2, are obtained
finally. ��

5 Experimental studies

The simulation model of our experimental studies is
described in Sect. 5.1. In Sect. 5.2, we conduct empirical
studies based on synthetic and real datasets to assess the per-
formance of the MTK algorithm. The MTK_Close algorithm
is evaluated in Sect. 5.3.

5.1 Simulation model

Datasets: Both real and synthetic datasets are evaluated in
our studies. Among them, real datasets include seven bench-
mark datasets from different application domains,7 and one
large dataset from a 3C chain store in Taiwan. Those data-
sets are summarized in Table 3, where Is denotes the distinct
items in the dataset, |D| denotes the number of transactions,
|S| denotes the data size, Tmax denotes the maximum itemset-
length, and Tavg denotes the average itemset-length. For eval-
uating the scalability of MTK and MTK_Close algorithms,
a set of synthetic data are generated by the IBM dataset gen-
erator [2], where the average transaction lengths vary from
5 to 30. Each synthetic dataset consists of 1,000,000 trans-
actions with 5,000 distinct items and with frequent patterns
having average length of 4, to simulate sparse and dense retail
datasets.

7 Downloaded from the website, http://fimi.cs.helsinki.fi/data/, of the
ICDM workshop on Frequent Itemset Mining, 2003.

Table 3 Parameters of real datasets

Name Is |D| |S| Tmax Tavg

3C_Chain 130,108 8,000,000 1.1 GB 87 5.4

Web_docs 5,267,656 1,692,082 1.4 GB 71,427 177.2

Accident 468 340,183 34 MB 51 33.8

Mushroom 119 8,124 1 MB 23 23

Retail 16,470 88,162 4 MB 76 10.3

Kosarak 41,270 990,002 31 MB 2,498 8.1

BMS-POS 1,657 515,596 10 MB 164 6.5

Webview1 497 59,601 1 MB 267 2.5

Simulation environment: All programs of the simulation
are coded by C++ and performed on Windows XP in a 1.7 GHz
IBM compatible PC with 2 GB of memory. We utilize
Intel VTune™ Performance Analyzer to assess the exact
memory usage required by each algorithm. We compare the
efficiency of MTK with several algorithms. The first one is
the FPGrowth algorithm [12] and the second one is the DHP
algorithm [19], both with unlimited memory consumption,
which will be denoted by “FPGrowth(∞)” and “DHP(∞)”
in experimental figures, respectively. The third one is the
Naive algorithm described in Sect. 2, which is denoted by
“naive” in experimental figures. Both the hash pruning and
the selective scan techniques, which are devised in the MTK
algorithm, are also applied in the Naive algorithm to reduce
its required number of database scans. To give the best credit
to DHP, FPGrowth, and the Naive algorithm, supmin(Tk) is
assigned to these three algorithms in advance in such a way
that they will efficiently generate the same set of top-k fre-
quent itemsets [note that assigning supmin(Tk) prior to the
mining process is impractical and is only for the comparison
purpose]. In addition, the fourth algorithm is the BOMO algo-
rithm [6], which is downloaded from the author’s website.
BOMO is able to retrieve most N frequent i-itemsets, where
i can be in a range specified by users. Inherently, BOMO is
not designed for mining pure top-k frequent itemsets (N is in
general smaller than 100 in their cases). For fair comparison,
we modify the code to collect k most frequent i-itemsets,
where i starts from one and will be progressively increased
until top-k itemsets are retrieved. Same as the DHP algo-
rithm, BOMO will be compared to other algorithms without
the constraint of the memory size, to show its best efficiency
of mining top-k frequent itemsets.

For examining the performance of the MTK_Close algo-
rithm to retrieve top-k closed itemsets, we also implement
the start-of-the-art algorithm, namely the TFP algorithm pre-
sented in [22]. Originally, algorithm TFP is designed to
retrieve top-k closed itemsets with the constraint of the
minimum itemset-length. In our consideration, determining
the minimum itemset-length incurs another inconvenience to
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Fig. 10 The number of required database scans in six real datasets
(δ = 2)

users, which conflicts the purpose of mining top-k itemsets to
release users from the determination of subtle parameters. As
such, the minimum itemset-length in TFP is set as one in our
comparison. Note that as validated in [22], algorithm TFP
outperforms traditional methods of mining closed itemsets
such as the CHARM algorithm [26]. Hence we only com-
pare the performance of MTK_Close and TFP due to their
similar purposes.

In our implementation of MTK and MTK_Close, several
pre-computed variables are specified as: (1) the structure TB,
i.e., the sorted array to indicate the upper number of candi-
dates, is a three-dimensions integer array with size [50][6]
[1000] (around 2 MB in our implementation); (2) the avail-
able memory consumption is specified as either 100 or
250 MB, which are the reasonable memory sizes permitted
for a single mining process in the multi-task mining system;
(3) with roughly probing in advance, the factor Φ, which is
used to approximate the memory overhead of a candidate
itemset, is set equal to 2 so that we have the reasonable map-
ping between the real specified memory constraint and the
upper number of candidates.8

5.2 Experiments on mining top-k frequent itemsets

We first investigate the efficiency of the MTK algorithm
on real datasets. Figure 10 shows the number of database
scans required by DHP, Naive and MTK (with δ = 2) in six
small real datasets under variant numbers of k. The BOMO
and FPGrowth algorithms are not shown since they always
require two scans to build the FP-tree in memory. As can be
seen, the number of database scans required by MTK is iden-
tical to that required by the Naive algorithm in most cases,
indicating that the efficiency of MTK is nearly optimal (as
indicated by Remark 3, Naive is one of the most efficient

8 Note that Φ = 2 is a conservative estimation of the mapping, and
thus the upper memory occupied by MTK and MTK_Close is a little bit
smaller than the specified 100 or 250 MB.

level-wise algorithm for mining top-k itemsets under the
memory constraint). In addition, we can observe that MTK
and Naive sometimes have the number of database scans
smaller than that required by the DHP algorithm, particularly
when the upper available memory is 250 MB. It is because
that MTK and Naive can concurrently generate itemsets of
various lengths if the memory space is affordable. The result
shows that, even though the memory consumption is con-
strained in the MTK algorithm, it still can be executed with-
out compromising the execution efficiency.

We then investigate the performance of MTK with δ vary-
ing from 1 to 6. Specifically, we apply these two large real
datasets, Webdocs and 3C_Chain, to study in passing the effi-
ciency of MTK on data with long transactions (Webdocs) and
data with sparse, short transactions (3C_Chain). In Fig. 11,
we can see that when δ = 2 or 3, the resulting number of
database scans of MTK under different sizes of k is equal to
that of the Naive algorithm (the optimal result of the level-
wise top-k mining algorithms). Oppositely, when δ = 1, or δ

is large, we find that the number of database scans increases
a lot. That shows the drawback of the horizontal first search
approach and the vertical first search approach described in
Sect. 3.1. As can be seen, δ = 2 or 3 is the best choice of
δ since the merit of the horizontal first search approach and
the vertical first search approach are integrated into MTK
while their drawbacks are diminished.

We also observe the maximum memory consumption and
the execution time of different algorithms with various k,
where the results are shown in Figs. 12 and 13 by apply-
ing the Webdocs and 3C_Chain real datasets. To ensure the
execution can be finished within an acceptable execution
time, k will be limited between 2,000 and 12,000, which
is the reasonable setting of the desired number of frequent
itemsets.

Importantly, BOMO cannot handle the whole dataset since
the complete FP-tree cannot be built in our system (2 GB
memory). The Webdocs and 3C_Chain datasets are thus
applied to BOMO via sampling (reduced to 500 and 700 MB,
respectively) so as to have the FP-tree in the main memory at
the cost of its resulting precision. As can be seen in Fig. 12,
the memory requirement of DHP drastically increases as k
increases, in both datasets. In addition, the memory required
by FPGrowth slightly increases as k increases, but the
required memory is large as compared to DHP when k is
small, which confirms the study in [11]. On the other hand,
the maximum memory consumption of MTK and BOMO
will be fixed, but the one of BOMO is much larger than MTK
since BOMO builds a complete FP-tree initially (note that
the result of BOMO is based on sampling, indicating that a
larger memory is required while the whole dataset is applied).
Apparently, the effectiveness of BOMO is acquired at the
cost of the large memory consumption, which may not be
guaranteed below the available memory. In our experiments,
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Fig. 11 The number of database scans under varied δ in large real datasets (k = 10, 000)
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Fig. 12 The memory requirement of different algorithms with various k (δ = 2)

Fig. 13 The execution time of
different algorithms with
various k (δ = 2 )
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its maximum memory consumption is around 1.3 GB, which
is not affordable for most PCs.

Moreover, as shown in Fig. 13, BOMO cannot efficiently
retrieve top-k frequent itemsets since BOMO retrieves top-
k frequent itemsets while also finding a lot of itemsets not
belonging to top-k frequent itemsets, which is similar to
the phenomenon of the horizontal first search approach in
Sect. 3.1. Actually, the major reason lies in that BOMO is
not specifically devised for mining top-k frequent itemsets
despite it has the most similar goal. In contrast, MTK has
the excellent efficiency, which is close to that of DHP (even

better than that of DHP when k is small or the available
memory size is large). Importantly, we can see that MTK
and DHP outperform FPGrowth when k ≤ 10,000. As also
validated in many previous studies [11,14,18,27], the per-
formance of level-wise search algorithms is better than that
of depth-first search algorithms when the minimum support
is not very small. Our result also confirms the conclusion. In
general, users may be interested in less than 10,000 frequent
itemsets (it is not prevalent to make marketing decisions
according to more than 10,000 itemsets), and k ≤ 10,000
usually corresponds to a reasonable minimum support (not a
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Fig. 14 The execution time
under various transaction
lengths (δ = 2)
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too small one) either in the dense database (Web_docs) or in
the spare database (3C_Chain). In such cases, MTK can not
only achieve the high mining efficiency but also constrain
the memory usage. Although when k > 10, 000, FPGrowth
results in a better efficiency than MTK in the dense database
(Web_docs) at the cost of a large memory consumption, MTK
still has a better feasibility because MTK can constrain the
memory usage without much comprising the mining effi-
ciency. In addition, FPGrowth must have the minimum sup-
port with respect to top-k itemsets in advance, which is infea-
sible and only for the comparison purpose. Apparently, both
considering the efficiency and the practicability, MTK will
be the best algorithm to retrieve top-k frequent itemsets in
the presence of the memory constraint.

Furthermore, it can be seen that, even though only 100 MB
memory can be utilized, the MTK algorithm still leads to
the prominent efficiency as compared to other algorithms.
The reason is that the maximum memory consumption in
a level-wise algorithm usually appears to generate candidate
2-itemsets and 3-itemsets. Formally, MTK may pay for one or
two more database scans to generate 2-itemsets and
3-itemsets but may only use one database scan to concur-
rently generate-and-test 5-itemsets, 6-itemsets and 7-itemsets
and so on. It is attributed to the merit of the selective scan
technique, showing the prominent applicability of the MTK
algorithm.

To more precisely demonstrate the above investigation,
we study the scalability of the MTK algorithm by applying
synthetic datasets, where the results are shown in Fig. 14.
Interestingly, we can see that the execution time of MTK only
slightly increases as the average transaction length increases
either when k = 10, 000 or when k = 100, 000. In contrast,
the execution time of DHP drastically increases. It is mainly
attributed to that MTK can fully utilize the available mem-
ory. Thus MTK requires similar numbers of database scans in
various average transaction lengths since candidates with var-
ious long itemset-lengths can be generated-and-tested in the
same scan. In MTK, the execution overhead with respect to
the long average transaction length results from the increase
of the number of combinations in each transaction, which

indeed can be efficiently executed in memory and leads to
the better efficiency than DHP. Furthermore, the execution
time of FPGrowth steady increases as the average trans-
action length increases. In practice, while the database is
dense (the average transaction length is long) and k is large
(k = 100, 000), the execution time of MTK is larger than that
of FPGrowth. However, MTK still has the competitive effi-
ciency in such cases. It is worth mentioning that FPGrowth is
executed with unbounded memory and the minimum support
to retrieve top-k itemsets is given in advance, thus degrading
its applicability. As a consequence, the result on synthetic
data also validates both the practicability and the efficiency
of MTK.

5.3 Experiments on mining top-k closed itemsets

We here investigate the performance of the MTK_Close algo-
rithm, as compared to the state-of-the-art algorithm, TFP
[22]. Basically, TFP constructs a complete FP-tree in mem-
ory with the minimum support equal to zero initially. For fair
comparison, the minimum itemset-length constraint [22] is
not imposed on this experiment. In Fig. 15, we show the per-
formance of these two algorithms with k varying from 100 to
100,000 in six real datasets. It is clear to see that MTK_Close
outperforms TFP when k is small, but TFP sometimes out-
performs MTK_Close when k is large. The reason is that the
set of top-k itemsets and the set of top-k closed itemsets are
apparently different to each other only when the minimum
support is small [27], corresponding to a large k. Therefore
the minimum support to retrieve top 100,000 itemsets may
be relatively small and FP-tree based approaches are advan-
tageous in such cases. Nevertheless, k is generally required
less than 100,000 in real cases (users will not make their mar-
keting decisions from more than 100,000 frequent itemsets).
Therefore MTK_Close still has the competitive efficiency in
practice.

On the other hand, as shown in Fig. 16, the memory usage
required by TFP is extremely large while the database is large
(same as the experiment on the BOMO algorithm, the Web-
docs and 3C_Chain datasets are reduced to 500 and 700 MB
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Fig. 15 The performance of
mining top-k closed itemsets
with various k (δ = 2)
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Fig. 16 The upper memory
consumption of different top-k
closed mining algorithms with
various k (δ = 2 )
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by sampling, respectively, to ensure the complete FP-tree
can be constructed in memory). Note that TFP prunes the
FP-tree on the fly after the tree were constructed in memory,
and thus its upper memory usage is equal to the size of a
complete FP-tree. In contrast, MTK_Close can retrieve top-k

closed itemsets in the available memory. Figure 17 shows
the corresponding execution time as k varies from 2,000 to
12,000. As can be seen, MTK_Close still has the competitive
efficiency, showing its prominent advantages to be a practical
algorithm for mining top-k closed itemsets.
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Fig. 17 The execution time of
top-k closed mining algorithms
with various k (δ = 2 )
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6 Conclusions

In this paper, we have studied a practically important mining
problem, namely mining top-k frequent/closed itemsets in the
presence of the memory constraint. To achieve this, we pro-
posed the MTK/MTK_Close algorithms, which are devised as
level-wise search algorithms based on an effective approach
to constrain the number of candidates that will be generated-
and-tested in each database scan. Since the minimum sup-
port to retrieve top-k frequent itemsets cannot be known in
advance, a novel search approach, called the δ-stair search, is
devised in MTK and MTK_Close to efficiently retrieve top-k
frequent/closed itemsets. As demonstrated in the empirical
study on real data and synthetic data, instead of only pro-
viding the flexibility of striking a compromise between the
execution efficiency and the memory consumption, MTK can
both achieve high efficiency and have a constrained memory
bound, showing its prominent advantage to be a practical
algorithm of mining frequent patterns.
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