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Abstract—In this paper, a novel two-stage noise removal algo-
rithm to deal with impulse noise is proposed. In the first stage, an
adaptive two-level feedforward neural network (NN) with a back-
propagation training algorithm was applied to remove the noise
cleanly and keep the uncorrupted information well. In the second
stage, the fuzzy decision rules inspired by the human visual system
(HVS) are proposed to classify the image pixels into human per-
ception sensitive class and nonsensitive class, and to compensate
the blur of the edge and the destruction caused by the median fil-
ter. An NN is proposed to enhance the sensitive regions with higher
visual quality. According to the experimental results, the proposed
method is superior to conventional methods in perceptual image
quality as well as the clarity and smoothness in edge regions.

Index Terms—Fuzzy decision system, human visual system
(HVS), impulse noise, neural network (NN), noise removal.

I. INTRODUCTION

MAGES are often corrupted by impulse noise due to noisy
I sensors or channel transmission errors. The objectives of
noise removal are to suppress the noise, as well as possibly
to preserve the sharpness of edge and detail information. The
nonlinear filtering technique—standard median (SM) [1], [2]
filter—based on order statistic, has been demonstrated to be
generally superior to linear filtering (moving average) in sup-
pressing impulse noise. However, the median filter tends to
blur fine details and destroy edges while removing out the im-
pulse noise. To achieve better performance, the median filter
has been modified in many ways, such as weighted median
(WM) filters [3], [4], center weight median filters (CWM) [5],
adaptive-length median filters [6], recursive medians [7], [8],
and the alpha-trimmed mean filters [9]. These were expected
to increase the signal preservation but relatively decrease the
noise suppression ability. Applying these algorithms altogether
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across the whole image without identification would inevitably
remove the uncorrupted detail pixels, destroy the image quality,
and cause additional blur.

For that reason, decision-making schemes [10]-[13] were
proposed in which only the identified noisy pixels are processed.
Luo [14] proposed a method that uses the alpha-trimmed mean
only in impulse noise detection, and its value is replaced by a
linear combination of its original value and the median of its
local window. Besides, the switching schemes [15]-[20] pro-
vide adaptive decision to recover the noisy pixels based on
several filters that keep noise-free pixels unchanged. Also, the
weighting-average linear combinations of nonlinear median-
based filters through learning-rule optimization have been pro-
posed [21], [22]. Although satisfactory results have been ob-
tained, they tend to remove fine details or retain too much of the
noise due to undetection or misdetection of the noise [23], [24].
In addition, since the noisy pixels are replaced without taking
into account local features, details and edges are not recov-
ered satisfactorily, especially when the noise level is high. The
thresholding filtering [25], which is composed of new efficient
noise detectors, was proposed to prevent the misclassification
of noise-free pixels. A trilateral filter combined with an impulse
detector that detects the impulse noise according to the local
image static was also proposed [26]. The edge-directed noise
detection and suppression strategy was proposed to preserve
the details and edges [27]. Two-stage approaches that combine
noise identification and edge-preserving supplementary have
been proposed for trying to remove the noise cleanly and keep
the detail information well [28]-[32].

Since neural networks (NNs) have the ability to learn from
examples, and fuzzy systems have the ability to deal with un-
certainty, they also have a growing number of applications in
image noise removal in the past few years [33]-[44]. Zhang
et al. [33] proposed the fuzzy techniques to detect the impulse
noise and to remove the noise based on long-range correlation
within different parts of the image. Schulte et al. [34], [35] pro-
posed a fuzzy derivative estimation for noise detection and a
fuzzy smoothing of neighboring pixels for noise removal. Lee
et al. proposed a fuzzy image filter based on the genetic learning
process [36]. Neurofuzzy systems that combine both the advan-
tages of NNs and fuzzy systems have also been applied to noise
removal [38]-[44]. Yiiksel [43] proposed a hybrid filter obtained
by appropriately combining a median filter, an edge detector, and
aneurofuzzy network in which the internal parameters are adap-
tively optimized by training. These methods exhibit relatively
better performance but require more computation and memory
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cost. It is desired to improve the quality of noise removal and
reduce the time consumption at the same time.

In this paper, a novel two-stage noise removal algorithm to
deal with impulse noise is proposed. An easily implemented NN
is designed for fast and accurate noise detection such that var-
ious widespread densities of noisy pixels can be distinguished
from the detail edge pixels well. After suppressing the impulse
noise, the image quality enhancement is applied to compensate
the corrupted pixels to improve the visual quality of the resul-
tant images. It consists of fuzzy decision rules based on the
human visual system (HVS) for image analysis and an NN for
image quality enhancement. If a noise-corrupted pixel is in the
perception sensitive region, the proposed NN module is applied
to this pixel for further quality compensation. According to the
experimental results, the proposed two-stage impulse noise re-
moval technology is vastly superior to the conventional methods
in processing speed as well as quantitative and visual quality of
the processed images.

This paper is organized as follows. Section II introduces the
integral system architecture of the proposed impulse noise re-
moval algorithm. The procedure of impulse noise removal is pre-
sented in Section III. The HVS-directed image analysis method
and the NN for image compensation are proposed in Section I'V.
Section V presents the experimental results for demonstration,
and Section VI concludes the paper.
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II. SYSTEM ARCHITECTURE

Optimal noise removal should delete the visible noise as
cleanly as possible and maintain the detail information and natu-
ral appearance to obtain a natural-looking image. In order to re-
move the impulse noise cleanly from input images without blur-
ring the edge, we divide the process into two stages—impulse
noise removal and image quality enhancement. In the first stage,
the impulse noise is removed cleanly without losing too much
detail information, and then, the image quality enhancement is
applied to compensate the edge sharpness in the second stage.

The first-stage, the two-level NN noise removal procedure,
is shown in Fig. 1. Inside the first level, only the noisy pixels
identified by the NN detection are processed with the 3 x 3
median filter. The second-level noise removal procedure is used
to detect and remove the misclassified and the detected but
unremoved noise pixels in the first-level noise removal process
with an adaptive median filter. The 3 x 3 window [see Fig. 3(a)]
is applied at this stage to obtain the features corresponding to the
pixel P(0,0) for noise detection. The more detailed discussion
is given in Section III.

Fig. 2 shows the schematic block diagram of the second-
stage image quality enhancement system. The proposed sys-
tem consists of a fuzzy decision module, an angle evalua-
tion module, and an adaptive compensation module. A fuzzy
decision module based on the HVS classifies each reference
pixel O(0, 0) [as shown in Fig. 3(b)] as sensible delineated
edge or not. Based on this classification, the proposed adap-
tive NN compensation module is applied to the sensible de-
lineated edge region. When the adaptive NN compensation
is actuated, the angle evaluation module will compute the
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Fig. 3. Two sliding (overlapping) window blocks. (a) The 3 x 3 window
applied to the first stage for impulse noise removal. (b) The 4 x 4 window
applied to the second stage for image quality enhancement.

dominant orientation of the original image located in the sliding
block as the input data of the proposed NN. The 4 x 4 window
[see Fig. 3(b)] is applied at this stage to obtain the features
corresponding to the pixel O(0, 0) for HVS-based image com-
pensation. The weighted compensation of O(0, 0) is applied to
the noise-corrupted pixel F'(m, n) at the position (m, n) in the
sensible delineated edge region and can be presented as

2 2
Fim,n) = > > 0(i,5)Wal(i, j) )

i=—1j=-1

where W is derived from an NN after offline training. The NN
is trained according to the edge angle of the reference image
pixel to obtain the corresponding weights.

III. IMPULSE NOISE REMOVAL

A. Impulse Noise Model

Impulse noise is when the pixels are randomly misfired and
replaced by other values in an image. The image model contain-
ing impulse noise can be described as follows:

N, ;, with probabilit
X, = { ij P yDp ?)

Sij, with probability 1 —p

where S;; denotes the noiseless image pixel and IV;; denotes
the noise substituting for the original pixel (OP). With the noise
ratio p, only p percent of the pixels in the image are replaced
and others keep noise uncorrupted. In a variety of impulse noise
models for images, fixed- and random-valued impulse noises
are mostly discussed. Fixed-valued impulse noise, known as the
“salt-and-pepper” noise, is made up of corrupted pixels whose
values are replaced with values equal to the maximum or min-
imum (255 or 0) of the allowable range with equal probability
(p/2). The random-valued impulse noise is made up of corrupted
pixels whose values are replaced by random values uniformly
distributed in the range within [0, 255]. In this paper, both fixed-
and random-valued impulse noises are adopted as the noise
model to test the system robustness.

B. NN for Noise Detection

Since the residual noise will strongly affect human perception,
precise noise detection is the first important step for the noise
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removal. It is found that noise is more annoying in smooth and
edge areas [45], [46]. Most algorithms work well on low noise-
density images but fail to detect noise pixels in the edge region.

The decision-based algorithms for noise detection can be di-
vided into three types. The first type is to detect whether the
pixel is contaminated by noise according to the local features.
Florencio er al. [10] proposed a decision measure based on the
second-order statistic called normalized deviation to detect the
noise by threshold. Zhang et al. [18] proposed a detection tech-
nique by four convolutions using the 1-D Laplacian operator.
The second-type decision measure considers the differences of
adjacent pixel values in the rank-ordered median filtering se-
quence [12], [13]. The third-type approach, called switching
schemes [15], [16], first applies several types of rank-ordered
filters, and then, detects the noise pixels by their relationships
with the gray level of the origin pixel.

In this paper, an NN with high precision and capability of
dealing with images corrupted by various noise densities is pro-
posed for noise detection. It is a 3-layer NN with one hidden
layer, as shown in Fig. 4. The input layer consists of three nodes
corresponding to the gray-level difference (GD), average back-
ground difference (ABD), and accumulation complexity differ-
ence (ACD) in the 3 x 3 sliding window. The second layer is
the hidden layer that consists of six nodes, and the bipolar sig-
moid function is used as the activation function. The weighting
vectors between the first and second layers, and between the
second and third layers, are denoted as S and R, respectively.
The output layer includes one node that represents the identified
attribution of the pixel: “noise” or “non-noise,” and the bipolar
sigmoid function is also used as the activation function. The
three features in the input layer are discussed as follows.

1) Gray-Level Difference (GD): The GD represents the ac-
cumulated variations between the central pixel for identification
and each surrounding local pixel. It is defined by

GD=> >  [P0,0)= PG, j) 3)

where P (0, 0) is the reference pixel and P (i, j) is the surround-
ing local pixel.

The feature GD is mainly considered to detect the noise over
a flat area. It is expected that the corrupted pixels would yield
much bigger differences as compared with the uncorrupted pix-
els. However, the pixels in edge and texture areas will also get
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high GD values so that the obscure region identification be-
tween the noise, edge, and texture pixels relies on the other two
assistant features, ABD and ACD.

2) Average Background Difference (ABD): Averaging the
surrounding pixels as the background luminance (BL) of the
sliding block to compare with the central pixel is another assis-
tant feature to detect the noise. This feature, called the ABD,
representing the overall average variation with the central pixel
in the block, is defined by

ThaXia  Pld)
(57.1)876( ,0) . (4)

ABD = |P(0, 0) —

The corrupted pixels will yield bigger differences as com-
pared with the clean ones. For the pixels in the texture area, the
GD value is large but the ABD feature will be small.

3) Accumulation Complexity Difference (ACD): Accumu-
lating the difference between each pixel in the 3 x 3 sliding
block and its four neighboring pixels as defined next shows the
structure information of the block

ACD = Y > [4x P(i, j) — P(i— 1, j)

i=—1j=-1
- P@+1,j)-PG,j—-1)—-P3G j+1). S

In the edge area, the summation is lower than that in the
noise-pixel area, though the GD difference might be similar.
So, it provides an assistant feature between the edge and noise
pixels.

In order to train the proposed NN for noise detection, the
512 x 512 of the gray-scale Lena image with 20% of impulse
noise generated uniformly within [0, 255] is used as a reference
pattern for training. Also, 3000 noisy pixels and 3000 uncor-
rupted pixels uniformly distributed in the image are adopted as
the training data. We also establish a noise table corresponding
to these 6000 training data as the desired output for supervised
training. The desired output for noise pixels is 1, and that for
the clean pixels is —1. The goal is to reduce the mean square er-
ror (MSE) to 0.1. The backpropagation learning method is used
to derive the updating rules of weights. In our experiments, six
nodes in the hidden layer are enough to achieve this goal and the
learning rate was 0.1. Experimental results show that our NN
owns the highest detection precision of other compared methods
and our detection procedure also gives a better tradeoff between
the undetection and misdetection rates. More detailed results
will be demonstrated in Section V.

C. Noise Removal Algorithm

As per the proposed two-level noise removal procedure shown
in Fig. 1, after the first level, we can estimate the image noise
density to decide whether the second level is necessary or not by
the precise detection procedure. By the experiments, we observe
that when the noise density is below 10%, only a one-level noise
removal process is enough. As the noise density increases, more
misidentified and residual noises will occur. In this case, the
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second-level noise removal process is necessary to detect and
remove the residual noises.

Since the local characteristics may influence the correct-
ness of the detection part and the median filter may still retain
some noises, the residual noise pixels are detected and removed
with an adaptive median filter in the second level. If there are
more than 30% noisy pixels in this image, it is identified as a
highly corrupted region and the 5 x 5 median filter is applied
for processing. Otherwise, the noisy pixel is processed by the
3 x 3 median filter. The proposed adaptive two-level noise re-
moval algorithm is very effective to suppress the impulse noise
as well as to preserve the sharpness of edges and detail infor-
mation.

IV. IMAGE QUALITY ENHANCEMENT

It is well known that conventional median filtering techniques
often suffer from blurring details and cause artifacts around
edges. In order to compensate the edge sharpness, image quality
enhancement is applied to the modified pixels. Since the process
of the first stage has removed the visible noise as cleanly as
possible, the second stage focuses the image enhancement on the
edge region. For image analysis, we make use of the properties
of the HVS to obtain the features of images. Therefore, we
can realize which region would be worth quality enhancement,
since human eyes would be usually more sensitive to this region.
For sensitive regions, we propose an adaptive NN to enhance
the visual quality to match the characteristics of human visual
perception.

A. HVS-Directed Image Analysis

Many researches have been made on discovering the char-
acteristics of the HVS for years. The perceptual redundancies
inherent in a still image are basically due to the inconsistency
in sensitivity of the HVS to stimuli of varying levels of contrast
and luminance changes in the spatial domain. The noise is much
more annoying to the human perception in the smooth and edge
areas that have lower, just noticeable, distortion (JND) values
compared with the JND in the texture area [47]. The magnitude
difference between the object and the background, as well as
different structures of images, also cause different visual per-
ceptions for the HVS. In this paper, a novel fuzzy decision
system inspired by the HVS is proposed to classify the image
into human perception sensitive and nonsensitive regions.

There are three input variables: visibility degree (VD); struc-
tural degree (SD); and complexity degree (CD), and one output
variable (Mo) in the proposed fuzzy decision system.

1) Visibility Degree (VD): The ability of human eyes to tell
the magnitude difference between an object and its background
depends on the BL. Fig. 5 shows the actual visibility thresh-
olds called JND corresponding to different BLs, and they were
verified by a subjective experiment [47]. The experiments were
conducted in a dark room and a square area was located in the
center of a flat field of constant gray level. Through varying
the amplitude of the object, the visibility threshold for each
gray level was determined when the object was just noticeable.
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According to Fig. 5, we can find that the visibility threshold is
lower when the BL is within the interval from 70 to 150, and
the visibility threshold will increase if the BL becomes darker
or brighter away from this interval. In addition, a high visibility
threshold will occur when the BL is in a very dark region.

In order to obtain the input variables corresponding to each
sliding block, as shown in Fig. 3(b), two index parameters called
BL and difference (D) are defined at first. BL is the average
luminance of the sliding block proposed to approximate the
actual BL and can be calculated by

1 2 2

BL:§§§:§:O@J)XB@j) (6)

=—1j=-1

where
2 2 2 1
o 2 0 2 1
BG=1, 5, 4 1 (7
1 1 1 1

and the denominator 23 in (6) is the weighted sum of all ele-
ments in (7) for normalization. The weighting coefficients of B
decrease as the corresponding distance away from the reference
pixel increases to estimate the average BL. Feature D is the
difference between the maximum and minimum pixel values in
the sliding block and can be calculated by

D = max (0(i, j)) — min (O(, ))- ®)

A nonlinear function V' (BL) is also designed to approximate
the relation between the visibility threshold and BL (as Fig. 5),
and can be represented as

V(BL) — 20.6667003]3[4 + eOAOOSBL. (9)

The parameter of 20.66 is obtained by substituting O for BL in
the nonlinear approximation equation by setting the coefficient
of 0008 BL to be 1.

The first input variable of the fuzzy decision system, VD, is
defined as the difference between D and V' (BL) and can be
represented as

VD = D — V(BL). (10)

If VD > 0, it means the magnitude difference between the
object and its background exceeds the visibility threshold and
the object is sensible. Otherwise, this object is not sensible.

d%bonux
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00

(a) (b)

Fig. 6. Illustration of the relation between the SD parameter and the distribu-
tion of pixels in a sliding block.
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Fig.7. Portions of (a) the sliding block including texture structure, and (b) the
sliding block including edge structure.

The other two input variables, SD and CD, are used to indicate
whether the pixels in the sliding block own the edge structure.

2) Structural Degree (SD): SD shows if the sliding block
is a high contrast region, and the pixels in the block can be
obviously separated into two clusters. It is calculated by

SD
_ |max (O, j)) — mean(O(i, j)) — [mean(O(, j)) — min(O(, 5))]|
max(0(i, 7)) — min(0(, 7))

1)

where

122
mean(O0(i, 7)) = — iy 7). 12
ean(O(i, ) = 15 7_;];10(2, )R (b))

An illustration of (11) is shown in Fig. 6. According to Fig. 6,
(11) can be expressed as |07 — 02|/(01 + 02). So, the SD has
been normalized to [0, 1] and this rule can also be applied to
images with a different intensity range. If SD is small (close to
0), and o9 and o7 are close [see Fig. 6(a)], it means the pixels
in the block can be separated into two even clusters. The block
may contain edge or texture structure. On the contrary, if SD is
a large value, 0 < |07 — 09| [see Fig. 6(b)], it means the pixel
number of one cluster and that of the other cluster are not even;
thus, the block may contain noise.

3) Complexity Degree (CD): Fig. 7(a) and (b) shows a tex-
ture structure and a delineated edge structure in a sliding block,
respectively. In these two plots, pixel numbers of the two clus-
ters are the same. Therefore, the SD values corresponding to
these two structures are close. Since the proposed NN is used
to compensate the sensitive regions, such as Fig. 7(b), a CD
input variable based on the differential process is employed to
tell the delineated edge structure from the texture structure. It is



868

ity s,
N r S M B
l vb 032 036 04 SD
(@) (b)
A
Hen Hyo
S M B [0)} NN

© (@

Fig. 8. (a)-(d) Membership functions of fuzzy sets on input variables VD,
SD, CD, and output variable Mo, respectively.

calculated by

D= > Y 40(G,) —[0'(i+1,5)+0'(i —1,5)

i=—1j=—1

+0'(1,j+1)+0'(i,j —1]| (13)

where O'(i, j) is the binarized version of O(4, j). Assuming
mean(O) is the mean gray value of the sliding block, O’(i, 7)
is defined as

0. = {

In (13), each pixel in the 4 x 4 sliding block takes the 4-
directional local gradient operation and the CD is the summation
of the 16 local gradient values. If the CD is a large value, it means
the block may contain texture structure. On the contrary, if the
CD is a small value, the block may contain delineated edge
structure.

In the proposed HVS-based fuzzy decision system, the input
variable VD has two fuzzy sets, negative (n) and positive (p).
The input variable SD has three fuzzy sets, small (S), medium
(M), and big (B). The input variable CD has three fuzzy sets, S,
M, and B. The membership functions corresponding to the VD,
SD, and CD are shown in Fig. 8(a)—(c), respectively. In order to
determine the fuzzy membership functions, seven nature images
were used to generate the model. The images were separated
into smooth, texture, and edge regions by the admission of the
majority (seven of ten subjects). Then, the ranges of VD, CD,
and SD proposed in (10), (11), and (13) corresponding to these
regions were evaluated. Finally, the membership functions of the
VD, CD, and SD could be designed according to the distribution
ranges of the parameters in these regions, respectively. Mo is the
output variable, and the membership functions corresponding to
Mo are shown in Fig. 8(d). It has two fuzzy sets, NN and OP.

Seven fuzzy decision rules are used in the proposed fuzzy
system and represented as follows:

1) If VD is N then Mo is OP;

2) If SD is B then Mo is OP;

3) If CDis B then Mo is OP;

4) If VD is P and SD is S and CD is S then Mo is NN;

1, ifO(4, j) > mean(O)

14
0, otherwise. (14
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5) If VD is P and SD is S and CD is M then Mo is NN;

6) If VD is P and SD is M and CD is .S then Mo is NN;

7) If VD is P and SD is M and CD is M then Mo is OP.

The numerical value of Mo after defuzzification is compared
with a threshold value, Th, where Th is preferably set as the
value 5 by experiments. When Mo > Th, the adaptive NN
compensation module with angle evaluation would be chosen;
otherwise, the OP value would be used.

B. Angle Evaluation

As Mo > Th, the fuzzy system identifies the reference pixel
as sensible delineated edge and the trained adaptive NN model is
chosen for quality enhancement according to its corresponding
edge angle. The angle evaluation is performed to determine the
dominant orientation of the sliding block. The flow diagram of
angle evaluation is shown in Fig. 9 to compute the orientation
angle of each neighborhood of the original image pixel. When
the orientation angle of O(i, 7) denoted as A(i, j) is computed,
the luminance values of the OPs nearby O(i, j) are used for the
following computations:

Dz(i,j) =0@G—1,j—1)+20G —1,5)+ 0@ — 1,5+ 1)
—(0@+1,7-1)+203G+1,5)+ 0@ +1,5+1))
(15)

Dy(i,7) =0 —1,j—1)+20(,j — 1)+ 0@+ 1,5 —1)
—(O0@G—1,j+1)+200G,j+1)+0@G+1,j+1))

(16)
A, §) = —% {taua‘1 (M)}

where —1 <¢ < 2and -1 < j <2,

The obtained angle of each pixel in the sliding window is
quantized into eight quantization sectors such as 6 = 22.5 x k
(in degrees), where £ = 0, 1, ..., 7. Assuming 6 is the quan-
tized angle for most pixels in the window; it is regarded as

A7)
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vl()M

Fig. 10. Proposed feedforward NN for image quality enhancement.

the dominant orientation of the reference edge pixel. The cor-
responding weighting coefficient W) derived from the offline
training NN is adopted for compensation filtering.

C. NN-Based Image Compensation

The function of the proposed NN is to obtain the weights
Wy defined in (1), where 6 represents the quantized dominant
orientation of the reference pixel. Thus, the proposed NN is
used to obtain eight sets of weighting matrices through training.
Each weighting matrix W} can be represented as

W-1-1 W-10 W-11 W-12
.. wo-—1 Woo Wo1 wWo2
Wy (i, j) = (13)
w11 w10 w11 wi2
w21 w20 W21 w32

In order to use supervised learning algorithms to train the
proposed NN, several clean image portions with dominant ori-
entation are used as training patterns. Assuming a clean image
portion is denoted as I, the noise-corrupted version of I has
been processed by the proposed noise removal method in the first
stage and the filtered result is denoted as I’. According to Fig. 10,
let I'(i, j) be the reference pixel, where O(0,0) = I'(i, j), and
it is classified as an edge pixel with dominant orientation 6 after
angle evaluation. The input of the NN can be defined as IP = 6
and the network output is the compensated pixel value of I’ (4, 5).
The pixel value of I (7, j) obtained from the clean original image
is used as the desired output of the NN for training.

When the input—output patterns are given, the following task
is to train an NN to match the input—output relations. A new
four-layer NN, as shown in Fig. 10, is proposed for image com-
pensation. The bipolar sigmoid function is used as the activation
function. The input layer consists of one node corresponding to
6. The second layer consists of M nodes denoted as g(z; ), where
M is 200 in our experiments, and the weighting vector between
the first and the second layer is denoted as U. The third layer
includes 16 nodes, and the weighting vector between the sec-
ond and the third layers is denoted as V. The output value of
each node in the third layer is denoted as y(s;) and represents
an element of the weighting matrix W) given in (18), where
y(si) =wjk, i =40+ 1) +k+2, 1 <I <16, -1 <j<
2, and —1 < k < 2. The fourth layer is the output layer with
one output node, and its output value represents the compen-
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sated pixel value of I'(i, 7). The vector between the third and
the fourth layers is denoted as I;. It represents the vector of
the 16 neighborhood pixels of the reference pixel I'(7, j) with
dominant orientation 6 as follows:

rh, 71 rrGi—1,5-1)7
Igs I'(i,5 —1)
Ly | | rG+1i-
Ty=|1Iy | =|T'6+25-1) (19)
I I'(i—1,5)
_Iéw_ _[’(i—|—2,j+2)_

Then, the system estimation output can be calculated by

16

Y = Zy(sd) Iy,

z=1

(20)

and the corresponding desired output D can be obtained by

D = I(i, ). 1)

It should be noted that the weighting vectors that need to be
updated in the training stage are only U and V. If a reference
pixel I' (4, ) is given, the neighborhood pixel vector I of I'(i, j)
can be regarded as an extra input vector for compensation. This
unique operating rule is the major difference between the pro-
posed NN and the common feedforward NNs and is specially
designed for the image-compensation application.

In the training stage, the updating rules of weights, v,;, € V.
and u, € U, can be derived by the backpropagation learning
method as

Vap (t+1) = vap () +0(D = Y) [T, (1 +y(sa)) (1 —y(s54))/2]
x 9(Zy) (22)

16
’U,b(t + 1) = ub(t) + 77{ Z |:(D — Y)(Iél)
i=1

X

(1+y(s))(d—ylsi) H
2 Yib

x [(1+9(Z))(1 - g(Z))/2]1P.

where 7 is the learning constant that determines the rate of
learning.

Thirty nature images were used to train the proposed NN for
image compensation. The edge regions in these training images
are separated into eight different quantized angles. The varia-
tions may be caused by the quantization error (11.25°) and the
characteristics of different images and regions. In addition, the
vector between the third and fourth layers of the NN for image
quality enhancement represents the 16 neighborhood pixels of
the reference pixel, and it is the filtered results of the first stage
(noise removal). This will also cause the variation and nonlin-
earity in the training. In order to reduce the cost function (MSE)
to 1% of the intensity range, i.e., 255 x 0.01 = 2.5, 200 nodes
in the first hidden layer were required to achieve this goal with

(23)
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TABLE I
COMPARATIVE RESULTS OF VARIOUS NOISE DETECTION ALGORITHMS APPLIED
TO RANDOM-VALUED NOISE-CORRUPTED IMAGES WITH 25% NOISE DENSITY

Total Correct
Name Algorithms Classification | Undetection | Mis-detection
S.K. Mitra [13] 59.40 % 68.04 % 31.45 %
Lena G. Pok [12] 88.89 % 24.12 % 6.69 %
S. Zhang [18] 89.52 % 3.00 % 12.97 %
The proposed 92.58 % 14.48 % 5.06 %
S.K. Mitra [13] 59.50 % 68.60 % 3113 %
Boat G. Pok [12] 87.22 % 26.60 % 8.19%
S. Zhang [18] 88.81 % 4.72 % 13.33 %
The proposed 89.40 % 14.64 % 9.25 %
S.K. Mitra [13] 58.89 % 67.32 % 3237 %
Goldhill G. Pok [12] 88.49 % 25.48 % 6.85 %
S. Zhang [18] 89.16 % 3.48 % 1329 %
The proposed 90.92 % 15.60 % 6.90 %
S.K. Mitra [13] 59.07 % 68.64 % 3171 %
Peppers G. Pok [12] 88.43 % 24.00 % 7.42 %
S. Zhang [18] 88.91 % 4.64 % 1325 %
The proposed 91.90 % 14.64 % 5.92 %
S.K. Mitra [13] 58.83 % 68.56 % 32.04 %
Sailboat G. Pok [12] 86.96 % 28.52 % 7.88 %
S. Zhang [18] 87.98 % 6.84 % 13.74 %
The proposed 87.26 % 15.20 % 11.92 %

the learning rate = 0.2 in our experiments. However, if we re-
lease the goal (MSE) to achieve from 2.5 to 5, the hidden nodes
in the first hidden layer can be reduced to 80 without affecting
the visual quality heavily. When the training process is finished,
eight different input values, 6, can be inputted to the trained
network, and the corresponding weighting matrices Wy can be
obtained to build a look-up table combined with (1) for image
compensation to reduce the computational cost.

V. EXPERIMENTAL RESULTS
A. Impulse Noise Detection

We first demonstrate the performance of the proposed NN
for noise detection. Three algorithms [12], [13], [18] were im-
plemented to compare with our NN and the detection results
as shown in Table I. Three detection measures are defined as
follows: “Total Correct Classification” [48] means the noisy
pixels and uncorrupted pixels are correctly identified. “Undetec-
tion” [25] means noise pixels that lead to residual noise are not
identified. “Misdetection” [25] means clean pixels are misiden-
tified such that an unnecessary filtering operation causes image
blurring.

Experimental results show that our NN owns the highest de-
tection precision of the other methods and the network is trained
by only using the Lena image with 20% of random-valued noise
as the training data. For Zhang’s method [18], though the low
misdetection can preserve the detail information, a large number
of residual noises will damage the image seriously. On the con-
trary, for Pok’s method [12], the high misdetection will blur the
edge sharpness. Our detection procedure gives a better tradeoff
between the undetection and misdetection. Besides, our two-
level impulse noise removal construction (see Fig. 1) will fur-
ther eliminate the residual noise pixels to get a near noise-free
image.

B. Impulse Noise Removal

The performance of our algorithm has been examined on a
variety of noise-corrupted testing images corrupted by various
noise densities. The peak signal-to-noise ratio (PSNR) defined
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TABLE 11
COMPARATIVE RESULTS IN PSNR OF DIFFERENT ALGORITHMS APPLIED TO
IMAGE “ELAINE” CORRUPTED BY VARIOUS RATES OF RANDOM-VALUED

IMPULSE NOISE
Filters 5% [10% | 15% |20 % | 25 % | 30 % | 35% | 40% | 45% | 50%
Median [1]_|[32.65 [ 32.29] 31.70] 30.79 | 29.67 | 28.06 | 26.48 | 24.70] 23.15 | 21.52
R-Median [2] || 32.53 | 32.12 | 31.55 | 31.03 | 30.46 | 29.58 | 28.85 | 27.91 | 26.67| 25.49
Tri-State [15] | 40.29 | 37.29 | 35.23 | 33.58 | 32.27 30.58 | 29.11 | 27.70| 26.13 | 24.55
PBM [23] 3937 37.56 | 35.79 | 34.39 | 33.20 | 31.55 | 30.15 | 28.71 | 26.95 | 25.30

Li’s [28] 32.83[32.45[31.98[31.04|30.81|29.09 | 27.47 | 25.75| 24.18 | 22.48
Trilateral [27] [38.53|36.71 | 35.42|34.17 | 33.18 | 32.37| 31.81 | 31.25] 30.51 | 29.82
Zhang’s [33] ||37.44[36.08 [ 34.89[34.01 [33.12[32.30 [ 31.54 [ 30.75 [ 29.46 | 28.13

Luo [14] 39.96 (37.91 [ 36.52  35.21 [ 34.03 [ 33.00 | 31.87 [ 30.44 | 28.67 | 26.82

FRINRM [35] |38.63 | 36.58 | 35.37 | 34.19 | 33.38 | 32.56 | 31.83 | 31.09 | 30.35 | 29.04
Ist Stage of The
Proposed
Method
The Proposed
Two-Stage
Method

39.60 [ 36.84 | 36.25 | 34.89  33.63 | 32.76 | 31.63 | 30.42 | 28.86 | 27.11

39.27(36.85(36.05 | 34.85 | 33.70 | 32.85 | 31.80 | 30.66 | 29.16 | 27.42

TABLE 1T
COMPARATIVE RESULTS IN FOM OF DIFFERENT ALGORITHMS APPLIED TO
IMAGE “ELAINE” CORRUPTED BY VARIOUS RATES OF RANDOM-VALUED
IMPULSE NOISE

Filters 5% 1 10% [ 15%|20% | 25% [ 30 % | 35% | 40% | 45% | 50%
Median [1] ] 0.69 [ 0.67 [ 0.71 | 0.59 [ 0.56 [ 0.64 | 0.60 [ 0.68 | 0.60 [ 0.60
R-Median [2] || 0.51 | 0.47 | 051 | 0.54 [ 0.62 [ 0.60 | 0.58 [ 0.54 | 0.52 | 0.58
Tri-State [15] | 0.96 [ 0.94 [ 0.92 [ 0.91 [ 0.90 [ 0.89 [ 0.88 | 0.87 | 0.86 | 0.86
PBM [23] 0.93 | 0.91 [ 092091 [ 0.90 | 0.89 | 0.85 | 0.87 | 0.84 | 0.82
Li's [28] 0.91 | 0.93 [ 0.91 [ 0.90 | 0.88 | 0.87 | 0.86 | 0.84 | 0.84 | 0.84
Trilateral [27] || 0.94 | 0.94 | 0.93 | 0.90 | 0.89 | 0.89 | 0.88 | 0.87 | 0.86 | 0.87
Zhang’s [33] | 0.94 [ 0.93 [ 0.92 [ 0.92 [ 0.90 [ 0.90 [ 0.89 | 0.88 | 0.88 | 0.87
Luo [14] 0.93 | 0.93 [ 092091 [ 091 | 0.90 | 0.89 | 0.89 | 0.88 | 0.87
FRINRM [35] || 0.94 | 0.93 | 0.89 | 0.85 | 0.83 | 0.71 [ 0.69 | 0.63 | 0.62 | 0.54
Ist Stage of The
Proposed 097 | 094 [ 093 | 093 | 092 | 0.90 | 0.90 | 0.89 | 0.87 | 0.86
Method
The Proposed

Two-Stage | .95 | 093 | 093 | 0.92 | 0.91 | 0.90 | 0.90 | 089 | 087 | 0.86
Method

as

SN 2552

n—=
N A
Zn:l (p _p)2

is used as a quantitative performance indication, where n is the
total number of pixels in an image. The numbers indicate the
overall image quality with errors between the original and simu-
lation results pixel-by-pixel. The figure of merit (FOM) [49] was
also utilized to compare edge preservation performances of dif-
ferent noise reduction schemes. The FOM [49] ranges between
0 and 1, and is defined by

PSNR = 10 log, (24)

1 N

max{](ﬂ Nideal} ; 1+ dzza

FOM = (25)

where N and Nigeal are the number of detected and ideal edge
pixels, respectively, d,is the Euclidean distance between the ith-
detected edge pixel and the nearest ideal edge pixel, and « is a
constant typically set to 1/9. FOM value is unity for ideal edge
detection.

Our proposed method is compared with several existing meth-
ods, and various images with fixed- or random-valued impulse
noises are used for testing. Tables II-IV show the quantitative
comparison of the proposed method and the existing methods
with respect to images corrupted with random-valued impulse
noise. According to these quantitative comparisons, the parti-
tion belief median (PBM) [23], trilateral filter [27], and the pro-
posed method can produce better and more robust quantitative
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TABLE IV
COMPARATIVE RESULTS IN PSNR AND FOM OF DIFFERENT ALGORITHMS
APPLIED TO VARIOUS KINDS OF IMAGES CORRUPTED WITH 25% OF
RANDOM-VALUED IMPULSE NOISE

Filters Lena Peppers Goldhill Elaine Camera Boat

PSNR [ FOM | PSNR [ FOM | PSNR | FOM [ PSNR | FOM | PSNR | FOM | PSNR | FOM
Median [1] [29.84 | 0.79 |29.34 | 0.75 | 28.37 | 0.78 | 29.67 | 0.57 | 24.07 | 0.83 | 28.95 | 0.83
R-Median [2]§30.17 ] 0.76 | 29.33 | 0.67 | 28.71 | 0.67 | 30.46 | 0.62 | 24.01 | 0.76 | 28.87 | 0.82
Tri-State [151§31.59] 0.75 | 30.58 | 0.66 | 30.50 | 0.88 | 32.27 | 0.90 | 25.13 | 0.77 | 30.74 | 0.80

PBM 23] 33.07] 0.85 [31.35 | 0.87 | 31.18 | 0.91 | 33.20] 0.90 [ 24.71 ] 0.86 [ 31.38 | 090
s 128] 3040 0.73 | 29.19] 0.83 [ 29.66 ] 0.86 [ 30.81] 0.89 [ 2491 0.69 [29.97 0.75
Trilateral [27)[ 31.46 | 0.75 | 30.86 | 0.85 | 30.44 | 0.88 | 33.18 [ 0.89 | 24.16] 0.78 [ 29.00| 086
Zhang's 133] [31.54] 0.87 | 29.86 | 0.86 [ 29.03] 0.90 [ 33.12 [ 0.90 [ 23.09| 0.86 | 27.82 0.89
Luo(14]_|[33.22]0.85 | 31.42 | 0.87 | 31.34 | 0.91 | 34.03 ] 0.82 [ 25.39] 091 [30.29] 0.88
FRINRM 1351 33.83 | 0.70 [ 30.85 | 0.68 | 31.61| 0.90 | 33.38 | 0.85 | 26.30 | 0.91 | 31.04 ] 0.89

Ist Stage of
The Proposed [ 32.95 [ 0.80 [30.53 | 0.88 | 30.69 | 0.92 | 33.32 | 0.92 | 24.83 | 0.86 [29.76 | 0.89
Method
The Proposed
Two-Stage [|33.00 | 0.84 [31.32 0.86 | 30.73 | 0.91 | 33.48 [ 0.91 |24.72| 0.85 | 31.10 | 0.89
Method

0) & W

Fig. 11.  (a) Original image. (b) Lena with 20% of fixed-valued impulse noise.
(c) The 3 x 3 standard median filter. (d) The 3 x 3 recursive median filter.
(e) PBM filter. (f) Li’s edge preserving method with threshold = 32. (g) Trilateral
filter with five iterations. (h) Zhang’s fuzzy techniques. (i) Luo’s method. (j)
FRINRM. (k) First stage of the proposed method. (1) The proposed two-stage
method.

performance than the other methods. In Table II, we can find
the trilateral filter [27], the Zhang’s method [33], the Luo’s
method [14], and the fuzzy random impulse noise reduction
method (FRINRM) [35], and our proposed method can produce
better PSNR performance. It can also be found that if the noise
rate of the image for compensation is higher than 20%, the sec-
ond stage of the proposed method will obviously improve the
metric performance. In Table III, we can find that the FOMs of

O ® O

Fig. 12. (a) Original image. (b) Boat with 25% of random-valued impulse
noise. (¢) The 3 x 3 standard median filter. (d) The 3 x 3 recursive median filter.
(e) PBM filter. (f) Li’s edge preserving method with threshold = 32. (g) Trilat-
eral filter with five iterations. (h) Zhang’s fuzzy techniques. (i) Luo’s method.
(j) FRINRM. (k) First stage of the proposed method. (1) The proposed two-stage
method.

the FRINRM [35] are not as good as its PSNR performance. Ac-
cording to Table IV, we can find that the PSNR performance of
Zhang’s fuzzy approach [33] is not robust and varies depending
on the image characteristics.

Fig. 11 shows the experimental results of different noise re-
moval techniques applied to the “Lena” with 20% fixed-valued
noise. Fig. 12 shows the processed results of “Boat” with 25%
random-valued impulse noise. We can find that the Li’s edge-
preserving filtering method [28] can retain more edge sharpness
but cannot remove the noise very well. The edge-preserving
filtering method might even misjudge some noisy pixels as the
edge and then increase the size of some noises. Generally, the
threshold adjustment for different images is another problem
that needs to be solved in these methods. The PBM filter [23] per-
forms well in most regions except for the noises along the edge
area. In addition, the PBM filter should be trained separately to
determine the filter parameter for images with fixed-valued or
random-valued noise, respectively. The fuzzy approach [33] can
remove the noise well but it destroys some edges and detail infor-
mation very much, especially for the images with high-density
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noise. In addition, it is very time consuming to find the ultimate
remote window for noise cancellation, and the coefficients need
to be adjusted depending on the image and noise types. The tri-
lateral filter [27] cannot remove the noises along the edges very
well, since the linear-type weighted average filtering algorithm
is not suitable for removal of nonlinear-type impulse noise. In
addition, this solution would require a deep statistical study for
the automatic selection of control parameters and the best way
to do so is still not clear. Luo’s method [14] and FRINRM [35]
also cannot remove the noises along the edges very well and
destroy some edges and detail information.

Above all, most of the algorithms cannot find the balance
between noise removal and edge sharpness very well, and they
meet the same problem that as the noise rate increases, their
noise suppression ability decreases due to noise misidentifi-
cation, edge destroying, and blurring. Obviously, the proposed
method produces effective and robust results over various noise-
corrupted images with different noise densities, and achieves
a better result both in noise reduction and detail preservation
than the other methods. Our HVS-based image enhancement
algorithm produces a more visually natural looking image with
smooth and sharp edges even though it might lose some su-
periority in the quantitative metric compared with the original
image. The proposed method applies noise removal to the iden-
tified noisy pixels, and the image quality enhancement process
is also applied to the noise-corrupted pixels in the visual sensi-
tive region only, so the computation time can be greatly reduced.
According to all the experimental results, it is demonstrated that
the proposed method is superior to the existing methods both in
perceptual image quality and time consumption.

VI. CONCLUSION

In this paper, a novel two-stage noise removal algorithm was
proposed to deal with impulse noise. In the first stage, a two-
level noise removal procedure with NN-based noise detection
was applied to remove the noise cleanly and keep the uncor-
rupted information as well as possible. In the second stage, a
fuzzy decision rule inspired by the HVS was proposed to clas-
sify pixels of the image into human perception sensitive and
nonsensitive classes. An NN is proposed to enhance the sensi-
tive regions to perform better visual quality. According to the
experimental results, the proposed method is superior to the
conventional methods in perceptual image quality, and it can
provide a quite a stable performance over a wide variety of
images with various noise densities.
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