
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 7279–7293

www.elsevier.com/locate/jcp
An immersed boundary method for interfacial flows
with insoluble surfactant

Ming-Chih Lai a,*, Yu-Hau Tseng a, Huaxiong Huang b

a Department of Applied Mathematics, National Chiao Tung University, 1001, Ta Hsueh Road, Hsinchu 300, Taiwan
b Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J 1P3

Received 15 September 2007; received in revised form 1 February 2008; accepted 16 April 2008
Available online 26 April 2008
Abstract

In this paper, an immersed boundary method is proposed for the simulation of two-dimensional fluid interfaces with
insoluble surfactant. The governing equations are written in a usual immersed boundary formulation where a mixture
of Eulerian flow and Lagrangian interfacial variables are used and the linkage between these two set of variables is pro-
vided by the Dirac delta function. The immersed boundary force comes from the surface tension which is affected by the
distribution of surfactant along the interface. By tracking the interface in a Lagrangian manner, a simplified surfactant
transport equation is derived. The numerical method involves solving the Navier–Stokes equations on a staggered grid
by a semi-implicit pressure increment projection method where the immersed interfacial forces are calculated at the begin-
ning of each time step. Once the velocity value and interfacial configurations are obtained, surfactant concentration is
updated using the transport equation. In this paper, a new symmetric discretization for the surfactant concentration equa-
tion is proposed that ensures the surfactant mass conservation numerically. The effect of surfactant on drop deformation in
a shear flow is investigated in detail.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we propose an immersed boundary method for the simulation of two-dimensional fluid inter-
faces with insoluble surfactant. Surfactant are surface active agents that adhere to the fluid interface and affect
the interface surface tension. Surfactant play an important role in many applications in the industries of food,
cosmetics, oil, etc. For instance, the daily extraction of ore rely on the subtle effects introduced by the presence
of surfactant [5]. In a liquid–liquid system, surfactant allow small droplets to be formed and used as an emul-
sion. Surfactant also play an important role in water purification and other applications where micro-sized
bubbles are generated by lowering the surface tension of the liquid–gas interface. In microsystems with the
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presence of interfaces, it is extremely important to consider the effect of surfactant since in such cases the cap-
illary effect dominates the inertia of the fluids [20].

The immersed boundary (IB) method proposed by Peskin [14], has been applied successfully to blood–valve
interaction and other biological problems. The IB formulation employs a mixture of Eulerian and Lagrangian
variables, where the immersed boundary is represented by a set of discrete Lagrangian markers embedding in
the Eulerian fluid domain. Those markers can be treated as force generators to the fluid while being carried by
the fluid motion. The interaction between the Lagrangian force generators (markers) and the fluid motion,
described by variables defined on the fixed Eulerian grid, is linked by a properly chosen discretized delta func-
tion. Most IB applications in the literature belong to the fluid–structure problems, and they can be found in a
recent review of Peskin [15]. However, there is comparatively less work on the application of the IB method to
viscous, incompressible multi-phase flow problems. Perhaps the most successful one is the front-tracking
method proposed by Tryggvason et al. [21,22] which uses an approach similar to the immersed boundary
method.

In the case of interfacial flows with surfactant, Ceniceros [4] used a hybrid level set and front tracking
approach to study the effects of surfactant on the formation of capillary waves. Lee and Pozrikids [12] used
Peskin’s immersed boundary idea to study the effects of surfactant on the deformation of drops and bubbles in
Navier–Stokes flows. The surfactant convection–diffusion equation in these papers is based on the formulation
proposed by Wong et al. [23], and the conservation of total mass of surfactant on the interface has not been
rigorously investigated numerically.

James and Lowengrub [9] have proposed a surfactant-conserving volume-of-fluid method for interfacial
flows with insoluble surfactant. Instead of solving the surfactant concentration equation based on Stone’s
derivation [19] directly, the authors relate the surfactant concentration to the ratio of the surfactant mass
and surface area so that they are tracked independently. The method has been applied to study the axis-
symmetric drop deformation in extensional flows. Recently, Xu et al. [25] develop a level-set method for
interfacial Stokes flows with surfactant. Their method couples surfactant transport, solved in an Eulerian
domain [26] with Stokes flow field, solved by the immersed interface method [11] with jump conditions
across the interface. However, the method does not conserve the mass automatically and numerical scaling
is used to enforce the conservation of surfactant on the interface numerically. Recently, Muradoglu and
Tryggvason [13] have proposed a front-tracking method for computation of interfacial flows with soluble
surfactant. They consider the axis-symmetric motion and deformation of a viscous drop moving in a circu-
lar tube.

In this paper, we propose an immersed boundary method to simulate the interfacial problems with insol-
uble surfactant. By tracking the interface in a Lagrangian manner, the surfactant concentration equation
becomes much simpler than the one in [23]. Our numerical method involves solving the Navier–Stokes equa-
tions on a staggered grid by a semi-implicit pressure increment projection method where the immersed inter-
facial forces are calculated at the beginning of each time step. A new symmetric discretization for the
surfactant concentration equation is proposed so that the total mass of surfactant is conserved numerically.
The effect of surfactant on drop deformation in a shear flow is then investigated in detail.

The rest of the paper is organized as follows. In Section 2, we present the governing equations which
includes the immersed boundary formulation and the surfactant concentration equation in Lagrangian coor-
dinates on the interface. The numerical method is described in Section 3 which includes an algorithm of solv-
ing the Navier–Stokes equations and a conservative scheme for the surfactant equation. The effect of
surfactant on drop deformation in a shear flow is investigated numerically in Section 4. Some concluding
remarks and brief discussion on future directions are given in Section 5.

2. The governing equations

Consider an incompressible two-phase flow problem consisting of fluids 1 and 2 in a fixed two-dimensional
square domain X ¼ ½a; b� � ½c; d� ¼ X1 [ X2 where an interface R separates X1 from X2. Here, we assume the
interface is a simple closed curve immersed in the fluid domain, and is contaminated by the surfactant so that
the distribution of the surfactant changes the surface tension accordingly. In each fluid region, the Navier–
Stokes equations are satisfied as
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qi
oui

ot
þ ðui � rÞui

� �
¼ r � Ti þ qig; in Xi; ð1Þ

r � ui ¼ 0; in Xi; ð2Þ
u ¼ ub; in oX; ð3Þ
where for i ¼ 1; 2 in each fluid domain, Ti ¼ �piIþ liðrui þruT
i Þ is the stress tensor, pi is the pressure, ui is

the fluid velocity, qi is the density, li is the viscosity, and g is the gravitational constant.
It is well-known that, across the interface R, the velocity is continuous
½u�R ¼ ujR;2 � ujR;1 ¼ 0 ð4Þ
and the normal stress jump is balanced by the interfacial force F (defined only on R) as
½Tn�R þ F ¼ 0; ð5Þ

where n is the unit normal vector on R directed towards fluid 2. Since it is not easy to solve the Navier–Stokes
equations (1) and (2) in X with jump conditions (4) and (5) on R, especially when the interface is moving. In
order to formulate the problem using the immersed boundary approach, we simply treat the interface as an
immersed boundary that exerts force F to the fluids and moves with local fluid velocity. In this paper, we con-
sider the case of equal viscosity l1 ¼ l2 ¼ l, equal density q1 ¼ q2 ¼ q, and neglect gravity. However, the cur-
rent formulation can be extended straightforwardly to general two phase flow with different density and
viscosity. The present interfacial force term in delta function formulation and the surfactant concentration
equation are the same as the single phase problem. The major difference comes from the Navier–Stokes for-
mulation and their numerics.

2.1. Immersed boundary formulation

Throughout this paper, the interface R is represented by a parametric form ðX ðs; tÞ; Y ðs; tÞÞ; 0 6 s 6 Lb,
where s is the parameter of the initial configuration of the interface, which is not necessarily the arc-length.

Using the non-dimensionalization process [9,25], we can write down our governing equations in the usual
immersed boundary formulation as follows.
ou

ot
þ ðu � rÞuþrp ¼ 1

Re
r2uþ 1

ReCa
f; ð6Þ

r � u ¼ 0; ð7Þ

fðx; tÞ ¼
Z

R
Fðs; tÞdðx� Xðs; tÞÞds; ð8Þ

oXðs; tÞ
ot

¼ uðXðs; tÞ; tÞ ¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx; ð9Þ

Fðs; tÞ ¼ o

os
ðrðs; tÞsðs; tÞÞ; ð10Þ

sðs; tÞ ¼
oX
os
oX
os

�� �� : ð11Þ
The dimensionless numbers are the Reynolds number (Re) describing the ratio between the inertial force and
the viscous force, and the capillary number (Ca) describing the strength of the surface tension. Eqs. (8) and (9)
represent the interaction between the immersed interface and the fluids. In particular, Eq. (8) describes the
force (f) acting on the fluid due to the interfacial force (F), which is defined only on the interface and must
be balanced by the normal stress as shown in Eq. (5). Here, r is the surface tension, and s is the unit tangent
vector on the interface. Eq. (9) states that the interface moves with the fluid velocity which is consistent with
(4). The present formulation employs a mixture of Eulerian (x) and Lagrangian (X) variables which are linked
by the two-dimensional Dirac delta function dðxÞ ¼ dðxÞdðyÞ.
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The interfacial force F arises from the surface tension and its form is derived from Laplace–Young condi-
tion [10]. One can further take derivatives explicitly so that
Fðs; tÞ ¼ o

os
ðrsÞ ¼ or

os
sþ r

os

os
¼ or

os
sþ rjn

oX

os

����
����; ð12Þ
where j is the curvature of the interface and n is the unit outward normal. The first term on the right-hand side
of Eq. (12) is the Marangoni force (the tangential force) and the second one is the capillary force (the normal
force). (Note that, we have different sign convention in the capillary term since the sign of curvature is different
from that in the literature [8,9,12,25]. For circular interface, the present curvature is negative.) Note also that if
the surface tension is a constant, then the force only exerts in the normal direction. However, when the inter-
face is contaminated by the surfactant, the distribution of the surfactant changes the surface tension accord-
ingly. Generally speaking, the higher the surfactant concentration, the less the surface tension. The relation
between surface tension and surfactant concentration can be described by the Langmuir equation of state
[17]. As in [4], the following linear approximation of Langmuir equation is used
rðCÞ ¼ rcð1� bCÞ; ð13Þ

where C is the surfactant concentration, rc is the surface tension of a clean interface, and b satisfying
0 6 b < 1 is a dimensionless number that measures the sensitivity of surface tension to changes in surfactant
concentration.

In order to close the system, we still need one more equation for surfactant concentration evolution. As
mentioned before, surfactant are insoluble to the buck fluids so they are simply convected and diffused along
the interface. Since there is no exchange between the interface and the bulk fluids, the total mass of the sur-
factant must be conserved. The equation of surfactant concentration is derived in next subsection.

2.2. Surfactant concentration equation

The basic equation for surfactant transport equation along a deforming interface has been derived by Scri-
ven [18], Aris [2], and Waxman [24]. All three papers derived the surfactant equation relying heavily on dif-
ferential geometry. Stone [19], however, presented a simple derivation of the time-dependent convective–
diffusion equation for surfactant transport along a deforming interface. In this subsection, we present a
slightly different derivation from Stone for the surfactant transport equation which will be used as one of
our governing equations for numerical computation. Our derivation is in the same spirit of the immersed
boundary approach. A more detailed derivation for surfactant concentration equation along a two-dimen-
sional parametric deforming surface in three-dimensional fluid domains can be found in our recent work [7].

Let LðtÞ be an interfacial segment where the surfactant concentration (the mass of the surfactant per unit
length) is defined. Since the surfactant remain on the material element and do not transport or diffuse to the
surrounding bulk fluids, the mass on the segment is conserved
d

dt

Z
LðtÞ

Cðl; tÞdl ¼ 0; ð14Þ
where dl is the arc-length element. To apply the time derivative more easily, we rewrite the above equation in
terms of the initial parameter s as
d

dt

Z
Lð0Þ

Cðs; tÞ oX

os

����
����ds ¼ 0: ð15Þ
By taking the time derivative inside the integral, we obtain
Z
Lð0Þ

oC
ot

oX

os

����
����þ C

o

ot
oX

os

����
����

� �
ds ¼ 0: ð16Þ
Note that, in our present formulation, both the interface and surfactant concentration are tracked in a
Lagrangian manner. Thus, the time derivative of the first term in Eq. (16) is exactly the material derivative
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of Stone’s derivation [19]. The time derivative of the second term is due to interface stretching. Now we need
to compute the rate of the stretching factor, and using Eq. (9), we have
o

ot
oX

os

����
���� ¼ oX

os
o
os

oX
ot

� �
þ oY

os
o
os

oY
ot

� �
j oX

os j
¼

oX
os

ou
os þ oY

os
ov
os

j oX
os j

¼
oX
os ru � oX

os

� �
þ oY

os rv � oX
os

� �
j oX

os j
¼ ou

os
� s

� �
oX

os

����
����

¼ ðrs � uÞ
oX

os

����
����: ð17Þ
Here, the notation rs � u means the surface divergence which is used commonly in the literature. Since the
material segment is arbitrary, we thus have
oC
ot
þ ðrs � uÞC ¼ 0: ð18Þ
If we allow surfactant diffusion along the interface, we obtain the surfactant transport-diffusion equation as
oC
ot
þ ðrs � uÞC ¼

1

Pes

o

os
oC
os

�
oX

os

����
����

�� �
oX

os

����
����; ð19Þ
where Pes is the surface Peclet number [9]. We note that surface diffusion is also written in terms of initial
parameter s.

Let us summarize this section by pointing out the differences and similarities between our present surfactant
equation (19) and the ones derived in the literature [19,23]. As we discussed before, the present time derivative
is exactly the material derivative with the material parameter s fixed, while the time derivative used in [19] is
keeping the material coordinates X fixed. Wong et al. [23] argued that the time derivative term in Stone’s sur-
factant equation causes ambiguity in numerical discretization since the material coordinates is time-dependent
as well. Wong et al. [23] provide an alternative derivation for the surfactant equation, where the concentration
time derivative is applied by keeping the material parameter s fixed. This is exactly what we have done here. It
is interesting (but not surprising) to conclude that the surfactant concentration equation in [23] can be simpli-
fied to our present form (19) by substituting Eq. (9) into their equation.

3. Numerical method

In this paper, the fluid flow variables are defined on a staggered marker-and-cell (MAC) mesh introduced
by Harlow and Welsh [6]; that is, the pressure is defined on the grid points labelled as x ¼ ðxi; yjÞ ¼
ðði� 1=2Þh; ðj� 1=2ÞhÞ for i; j ¼ 1; 2 . . . ;N , the velocity components u and v are defined at ðxi�1=2; yjÞ ¼
ðði� 1Þh; ðj� 1=2ÞhÞ and ðxi; yj�1=2Þ ¼ ðði� 1=2Þh; ðj� 1ÞhÞ, respectively, where the spacing h ¼ Dx ¼ Dy.
For the immersed interface, we use a collection of discrete points sk ¼ kDs; k ¼ 0; 1; . . . M such that the
Lagrangian markers are denoted by Xk ¼ XðskÞ ¼ ðX k; Y kÞ. The surfactant concentration Ck, surface tension
rk are defined at the ‘‘half-integer” points given by skþ1=2 ¼ ðk þ 1=2ÞDs. Without loss of generality, for any
function defined on the interface /ðsÞ, we approximate the partial derivative o/

os by
Ds/ðsÞ ¼
/ðsþ Ds=2Þ � /ðs� Ds=2Þ

Ds
: ð20Þ
By using this finite difference convention, the interface stretching factor can be approximated by j DsXk j, and
thus the unit tangent vector sk are also defined at the ‘‘half-integer” points.

Let Dt be the time step size, and n be the superscript time step index. At the beginning of each time step, e.g.,
step n, the variables Xn

k ¼ Xðsk; nDtÞ, Cn
k ¼ Cðskþ1=2; nDtÞ, un ¼ uðx; nDtÞ, and pn�1=2 ¼ pðx; ðn� 1=2ÞDtÞ are all

given. The details of the numerical time integration are as follows.

1. Compute the surface tension and unit tangent on the interface as
rn
k ¼ rcð1� bCn

kÞ; ð21Þ

sn
k ¼

DsX
n
k

jDsX
n
k j;

ð22Þ
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both of which hold for skþ1=2 ¼ ðk þ 1=2ÞDs. Then we define the interface force as

Fn
k ¼ Dsðrn

ks
n
kÞ; ð23Þ

at point Xk.
2. Distribute the force from the markers to the fluid by
f nðxÞ ¼
X

k

Fn
kdhðx� Xn

kÞDs; ð24Þ

where the smooth version of Dirac delta function in [15] is used.
3. Solve the Navier–Stokes equations. This can be done by the following second-order accurate projection

method [3], where the nonlinear term is approximated by the Adams–Bashforth scheme and the viscous
term is approximated by the Crank–Nicholson scheme.
ðu � rhÞunþ1=2 ¼ 3

2
ðun � rhÞun � 1

2
ðun�1 � rhÞun�1; ð25Þ

u� � un

Dt
þ ðu � rhÞunþ1=2 ¼ �rpn�1=2 þ 1

2Re
r2

hðu� þ unÞ þ fn

ReCa
; ð26Þ

u� ¼ ub; on oX; ð27Þ

r2
h/

nþ1 ¼ rh � u�
Dt

;
o/
on
¼ 0; on oX; ð28Þ

unþ1 ¼ u� � Dtrh/
nþ1; ð29Þ

pnþ1=2 ¼ pn�1=2 þ /nþ1 �rh � u�
2Re

: ð30Þ

Here rh is the standard centered difference operator on the staggered grid. One can see that the above Na-
vier–Stokes solver involves solving two Helmholtz equations for velocity u� and one Poisson equation for
pressure. These elliptic equations are solved using the fast Poisson solver provided by the public software
package Fishpack [1].

4. Interpolate the new velocity on the fluid lattice points onto the marker points and move the marker points
to new positions.
Unþ1
k ¼

X
x

unþ1dhðx� Xn
kÞh2; ð31Þ

Xnþ1
k ¼ Xn

k þ DtUnþ1
k : ð32Þ
5. Update surfactant concentration distribution Cnþ1
k . Since the surfactant is insoluble, the total mass on

the interface must be conserved. Thus, it is important to develop a numerical scheme for the surfactant
concentration equation to preserve the total mass. This can be done as follows.
Firstly, let us rewrite the surfactant concentration equation (19) by multiplying the stretching factor on
the both sides of the equation as
oC
ot

oX

os

����
����þ ðrs � uÞ

oX

os

����
����C ¼ 1

Pes

o

os
oC
os

oX

os

����
����

� ��
: ð33Þ

Then substitute Eq. (17) of rate of stretching factor into the above equation, we have

oC
ot

oX

os

����
����þ o

ot
oX

os

����
����C ¼ 1

Pes

o

os
oC
os

�
oX

os

����
����

� �
: ð34Þ
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Now we discretize the above equation by the Crank–Nicholson scheme in a symmetric way as

Cnþ1
k � Cn

k

Dt

DsX
nþ1
k

�� ��þ DsX
n
k

�� ��
2

þ jDsX
nþ1
k j � jDsX

n
k j

Dt
Cnþ1

k þ Cn
k

2

¼ 1

2Pes

1

Ds
ðCnþ1

kþ1 � Cnþ1
k Þ=Ds

ðjDsX
nþ1
kþ1j þ jDsX

nþ1
k jÞ=2

� ðCnþ1
k � Cnþ1

k�1Þ=Ds

ðjDsX
nþ1
k j þ jDsX

nþ1
k�1jÞ=2

 !
þ 1

2Pes

� 1

Ds
ðCn

kþ1 � Cn
kÞ=Ds

ðjDsX
n
kþ1j þ jDsX

n
k jÞ=2

� ðCn
k � Cn

k�1Þ=Ds
ðjDsX

n
k j þ jDsX

n
k�1jÞ=2

� �
: ð35Þ

Since the new interface marker location Xnþ1
k is obtained in the previous step, the above discretization re-

sults in a symmetric tri-diagonal linear system which can be solved easily. More importantly, the total mass
of surfactant is conserved numerically; that is,X

k

Cnþ1
k jDsX

nþ1
k jDs ¼

X
k

Cn
k jDsX

n
k jDs: ð36Þ

(Note that, the summation is exactly the mid-point rule discretization for the integral in Eq. (15).) The
above equality can be easily derived by taking the summation of both sides of Eq. (35) and using the peri-
odicity of those quantities.

4. Numerical results

The effect of surfactant on the deformation of a drop is of considerable interest in polymer and emulsion
industries. It is also a good theoretical model for illustrating subtle physics in viscous interfacial flow. In this
section, the immersed boundary method is applied to study the effect of surfactant on drop deformation in
Navier–Stokes flows.

Following the set up in [25], we consider a computational domain X ¼ ½�5; 5� � ½�2; 2� where a circular
drop of radius one is initially located at the center of the domain. We apply a steady shear flow to the drop;
that is, we set the boundary condition ub ¼ ð0:5y; 0Þ, for �2 6 y 6 2. For comparison purposes, both clean
(without surfactant) and contaminated (with surfactant) drops are used in these computations. Using the
equation of state given by Eq. (13), b ¼ 0 implies no contamination, in which case we do not need to solve
the surfactant equation (19). Throughout this paper, we set rc ¼ 1 so the clean interface has a uniform surface
tension r ¼ rc. For the contaminated case, the initial surfactant concentration is uniformly distributed along
the interface such that Cðs; 0Þ ¼ 1. Unless otherwise, we set the Reynolds number Re ¼ 10, the capillary num-
ber Ca ¼ 0:5, the surface Peclet number Pes ¼ 10, and the parameter b ¼ 0:25.

4.1. Convergence test of fluid velocity and surfactant concentration

Before we proceed, we first carry out the convergence study of the present method. Here, we perform dif-
ferent computations with varying Cartesian mesh h ¼ Dx ¼ Dy ¼ 0:04; 0:02; 0:01; 0:005. The Lagrangian mesh
is chosen as Ds � h=2 and the time step size is Dt ¼ h=8. The solutions are computed up to time T ¼ 1.

Since the analytical solution is not available in these simulations, we choose the results obtained from the
finest mesh as our reference solution and compute the L2 error between the reference solution and the solution
obtained from the coarser grid. Table 1 shows the mesh refinement analysis of the velocity u, v, and the
Table 1
The mesh refinement analysis of the velocity u, v, and the surfactant concentration C

h ku� urefk2 Rate kv� vrefk2 Rate kC� Crefk2 Rate

0.04 4.9739E�03 – 4.1656E�03 – 1.4551E�02 –
0.02 2.1476E�03 1.21 1.8169E�03 1.20 6.3542E�03 1.20
0.01 6.9859E�04 1.62 6.2180E�04 1.55 2.2329E�03 1.51
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surfactant concentration C. One can see that the error decreases substantially when the mesh is refined, and
the rate of convergence is about 1.5. Notice that, the fluid variables are defined at the staggered grid and the
surfactant concentration is defined at ‘‘half-integer” grid, so when we refine the mesh, the numerical solutions
will not coincide with the same grid locations. In these runs, we simply use a linear interpolation to compute
the solutions at the desired locations. We attribute this is part of the reason why the rate of convergence
behaves less than second-order.

4.2. Clean vs. contaminated interface

To examine the effect of the surfactant on interfacial dynamics, we compare a drop with and without sur-
factant in a steady shear flow. When the surfactant are present in the interface, the surface tension can be
reduced significantly, cf. equation of state (13). Throughout the rest of this paper, we use a uniform Cartesian
mesh h ¼ Dx ¼ Dy ¼ 0:02, and a Lagrangian grid with size Ds � h=2. The time step size is set to be Dt ¼ h=8.

Fig. 1 shows the time evolution plots of drop deformation in a steady shear flow field. Here, we consider
three different values of b in Eq. (13); namely, b ¼ 0 (dotted, clean interface), b ¼ 0:25 (dash-dotted), and
b ¼ 0:5 (solid). As expected, the magnitude of drop deformation increases when the value of b increases, as
in the case of Stokes flow [25]. Fig. 2 shows the vorticity plot for the drop with surfactant near the left and
the right tips. One can see that two vortices with positive and negative signs are generated near the drop tips.

During the drop deformation, the Lagrangian markers will gradually sweep into the tips and cause clus-
tered distribution near the tips. If the markers become too crowdedly or too coarsely distributed, it will affect
the numerical accuracy. Thus, in order to maintain the numerical stability and accuracy, we need to perform
grid redistribution if necessary. The detail is given as follows.

In each time step, we compute the distance between two adjacent markers. If the distance is within an inter-
val ½0:25h; h�, then we basically keep the original resolution. However, if the distance is smaller than 0:25h,
then we remove some of the markers. Similarly, when the distance is larger than h, we add more points
between these two markers. In general, we just keep the distance between two adjacent markers in a reasonable
range. One important thing during the grid redistribution process is to keep the mass conservation of the sur-
factant. This can be done in a local way. For instance, in the segment of adding more grid points, we simply
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Fig. 1. The time evolution of a drop in a shear flow with clean (b ¼ 0, ‘����’) and contaminated interface (b ¼ 0:25, ‘-� -� -� -�’, b ¼ 0:5,
‘–––––’).
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distribute the surfactant mass into those points uniformly. On the other hand, in the segment of removing grid
points, we add up those surfactant mass to be a new surfactant concentration in the new combining segment.
Thus, the overall surfactant mass is conserved exactly without any scaling.

Plots of the corresponding surfactant concentration (left column) and surface tension (right column) vs.
arc-length are given in Fig. 3. For the surfactant concentration plot, we omit the case of clean interface since
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Fig. 3. Distributions of the surfactant concentration (left) and the corresponding surface tension (right). Notations and parameters are
same as in Fig. 1.
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the concentration is zero everywhere on the interface. It can be seen from this figure, the drop is elongated by
the shear flow so that the total length of the interface is increased from the rest state. Since there is no surfac-
tant transferred between the interface and the fluid, the surfactant concentration is diluted on a portion of the
interface, partly due to the elongation of the interface, but mainly because it is swept to the drop tips. As a
result, the smallest surface tension occurs at the drop tips. One can also see that the value of b affects the sur-
factant concentration by shifting the distributions slightly along the drop length. Once again, we confirm the
same qualitative behavior as in [25].

In Fig. 4, the corresponding capillary (defined as rjj oX
os j=ðReCaÞ, left column) and the Marangoni forces

(defined as or
os =ðReCaÞ, right column) are plotted vs. the arc-length for different cases of b. Since the capillary

force depends on the curvature and surface tension, we see that the largest capillary force occurs at the drop
tips due to the high curvature there. For clean interface, the Marangoni force is obviously zero.

In Fig. 5, we present four different plots: namely, (a) total mass of the surfactant; (b) the error of total mass,
mðtÞ � mð0Þ; (c) total area of the drop; (d) total length of the drop interface. Clearly, the present method pre-
serves the total surfactant mass and the errors reach machine precision. However, there is a slight area losing
or fluid leakage in the drop as shown in Fig. 5c. It seems that the drop without surfactant has a more serious
leakage than the ones with surfactant. It is well-known that the fluid leakage often appears in the simulation of
immersed boundary method. In [16], Peskin and Printz proposed an improved volume (area in 2D) conserva-
tion scheme for the immersed boundary method by constructing a discrete divergence operator based on the
interpolation scheme. Here, however, the area loss is not that significant, thus no modification is applied. Once
again, we can see from Fig. 5d that the drop with surfactant has larger deformation than the one without sur-
factant due to the increase of total length of the interface.

4.3. Linear vs. nonlinear equation of state

In this test, we use the same set up as in the previous one except that a simplified form of nonlinear Lang-
muir equation of state rðCÞ ¼ rcð1þ lnð1� bCÞÞ is used and compared with the results of the linear equation
of the state. In Fig. 6, the evolution of the drop under steady shear flow is shown at different times using the
linear (dotted) and nonlinear (solid) equations of state with b ¼ 0:5. Once again, our results are consistent
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Notations and parameters are same as in Fig. 1.
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with those in [25], i.e., drop deformation increases when the nonlinear equation of state is used. The corre-
sponding surfactant concentrations and surface tensions are shown in Fig. 7. One can easily see that the non-
linear equation of state generates smaller surface tension at drop tips which leads to a larger deformation. As
shown in Fig. 8, the capillary forces are roughly similar but the Marangoni force for the nonlinear case is
slightly larger at the drop tips. The four different plots for both linear and nonlinear cases including the total
mass of the surfactant, the error of total mass, the total area of the drop, and the total length of the drop are
shown in Fig. 9.
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4.4. Effect of capillary number on drop deformation

As the last test, we perform the study on how different capillary numbers affect the drop deformation. Here,
we fix the Reynolds number Re ¼ 10 and the surface Peclet number Pes ¼ 10. We vary the capillary number as
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Ca ¼ 0:05; 0:25; 0:5; 1:0 and perform our runs up to time T ¼ 4. As confirmed in previous literature such as
[12], a larger capillary number means a smaller surface tension (with the viscosity fixed) so the drop under
shear flow can deform more substantially. This is exactly what we see in our simulation as illustrated in
Fig. 10. We also make runs by varying the different surface Peclet number while keeping the Reynolds and
capillary numbers fixed. However, the effect of surface Peclet number is not as significant as the effect of
the capillary number on drop deformations, so we omit the results here.

5. Conclusion

In this paper, we have developed an immersed boundary method for two-dimensional fluid interfacial prob-
lems with insoluble surfactant. The governing equations are formulated in a usual immersed boundary frame-
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work where a mixture of Eulerian fluid and Lagrangian interfacial variables are used, with the linkage between
those two different variables is provided by Dirac delta function. The immersed boundary force comes from
the surface tension which is affected by the distribution of surfactant along the interface. By tracking the inter-
face in a Lagrangian manner, a simplified surfactant concentration equation can be obtained. The numerical
method involves solving the Navier–Stokes equations on a staggered grid by a semi-implicit pressure incre-
ment projection method where the immersed interfacial forces are calculated at the beginning of each time
step. Once the velocity values and interfacial configurations are obtained, a new symmetric discretization
for the surfactant concentration equation is used such that the total mass of surfactant is conserved
numerically.

As a next step, we will generalize the present algorithm to simulate two phase flows with distinct densities
and viscosities. In particular, we plan to study the effect of soluble surfactant on drop detachment from a solid
surface, i.e., a problem with moving contact points/lines. Finally, we plan to generalize the current work to 3D
simulations.
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