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Abstract: We have developed a soft energy function, termed GEMSCORE, for the protein structure prediction,

which is one of emergent issues in the computational biology. The GEMSORE consists of the van der Waals, the

hydrogen-bonding potential and the solvent potential with 12 parameters which are optimized by using a generic

evolutionary method. The GEMSCORE is able to successfully identify 86 native proteins among 96 target proteins

on six decoy sets from more 70,000 near-native structures. For these six benchmark datasets, the predictive perform-

ance of the GEMSCORE, based on native structure ranking and Z-scores, was superior to eight other energy func-

tions. Our method is based solely on a simple and linear function and thus is considerably faster than other methods

that rely on the additional complex calculations. In addition, the GEMSCORE recognized 17 and 2 native structures

as the first and the second rank, respectively, among 21 targets in CASP6 (Critical Assessment of Techniques for

Protein Structure Prediction). These results suggest that the GEMSCORE is fast and performs well to discriminate

between native and nonnative structures from thousands of protein structure candidates. We believe that GEM-

SCORE is robust and should be a useful energy function for the protein structure prediction.

q 2008 Wiley Periodicals, Inc. J Comput Chem 29: 1364–1373, 2008
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Introduction

The protein structure prediction (PSP) remains one of the funda-

mental unsolved problems in the field of computational biology.1

A computational method for PSP involves two basic critical ele-

ments: an efficient method to search a large number of potential

structure candidates and a reliable energy function.1,2 The search

methods can be roughly divided into two categories: template-

based approaches (i.e. comparative modeling3,4 and fold recogni-

tion5,6) and template-free approaches (e.g. ab initio7,8). A good

energy function for PSP should screen a large number of poten-

tial solutions rapidly and simply while effectively discriminating

native or near-native structures from thousands of protein struc-

ture candidates.9,10 In general, the binding energy landscapes of

these scoring functions are often complex and exhibit a rugged

funnel shape. Therefore, an efficient search algorithm is required

to find a global solution for various scoring functions.

Energy functions are generally rooted in the thermodynamic

hypothesis-the native-state conformation, which occupies the

lowest energetic state,11 is the most stable among states. For a

PSP method, an energy function, which can accurately depict

the energy landscape of a protein conformation space, is an

essential requirement to distinguish the native structures from

lots of candidate conformations. Toward the aim of developing

such an energy function, various energy functions have been

developed for calculating the free energy, including knowledge-

based,10,12 empirical-based,13,14 physics-based,15–20 and solvent

potentials.21–23

Knowledge-based energy functions10,12 are generally derived

from distributions of experiment structural data available from

Protein Data Bank (PDB24). Reduced representation of protein

structures was usually used in knowledge-based energy functions

This article contains supplementary material available via the Internet at

http://www.interscience.wiley.com/jpages/0192-8651/suppmat

Correspondence to: J.-M. Yang; e-mail: moon@faculty.nctu.edu.tw

Contract/grant sponsor: National Science Council

Contract/grant sponsor: MOE

q 2008 Wiley Periodicals, Inc.



for simplification and reducing the computational time. To suit

for the reduced representation, these energy functions may con-

tain pseudo-potentials which are often lack of the physical

meanings. Physics-based energy functions are based on physical

mechanisms. They are often derived from ab initio quantum-

mechanical calculations according to the principles of physics.

One advantage of physics-based energy functions is the lucid

physical meaning of each individual term. Despite their perceived

advantages, physics-based energy functions have not been widely

adopted mostly due to the high-computation cost.15–20 In addi-

tion, to develop a physics-based energy function is often compli-

cate to optimize many potential parameters of each energy terms

influencing the performance of energy functions.

In this work, we developed a new energy function (GEM-

SCORE) that was modified from the energy function of GEM-

DOCK25,26 and added solvent potentials.21,22 The energy func-

tion, using the piecewise linear potential to soften the repulsive

term of Lennard-Jones potential, of GEMDOCK has a good per-

formance in flexible protein-ligand docking and drug screen-

ing.27,28 The short range repulsive interactions (e.g. Lennard-

Jones potential) tend to infinity at low interatomic separation

leading to rough energy surfaces with high energy barriers. A

soft scoring function has been applied for softening the repulsive

intermolecular potential to decrease the strong sensitivity of

interaction energies to local conformation changes.29–31 Gener-

ally, a soft scoring function has the benefit of being computa-

tionally efficient, conversely, it may increase the number of false

near-native solutions (structures). The tradeoff of its advantages

and limitations can be optimized.

The GEMSCORE has simplified energy terms based on phys-

ical mechanisms, including electrostatic, the van der Waals, the

hydrogen-bonding potential, and the solvent potential. To de-

velop a simple and fast soft energy function for PSP, we

adopted a reduced optimization scheme to reflect the contribu-

tions of the 12 energy terms, which are used in the GEM-

SCORE, for the near-native structures. A modified generic evo-

lutionary method (GEM), which was successfully applied on

some specific domains,25,32–34 was adopted to optimize these

term weights of the GEMSCORE.

Results and Discussion

Data Sets

A widely used approach to test energy functions for the PSP is to

partially sample the conformational spaces utilizing constructed

decoy sets. To optimize parameters of the GEMSCORE for dis-

criminating the native structures and nonnative structures, we

selected a decoy set which consists of 30 protein targets proposed

by Tsai et al.35 (Tables S1 and S2 in support material), as the

training set. Each target consists of 1867 decoy structures which

were based on Rosetta protocol and modified from Rosetta all-

atom decoy set36 and increasing the number of structures of near-

native structures. We filtered out the targets with incomplete resi-

dues and 30 targets were included in the training set.

After the parameters optimization (Table 1), six widely used

decoy sets are applied to evaluate the GENSCORE performance

and to compare with other methods. These decoy sets includes

25 targets in the EMBL misfolded set,37 seven targets in the

4state_reduced set (4state),38 10 targets in local-minima decoy

set (lmds),39 eight targets in the lattice_ssfit set (lattice),40 four

targets in the fisa decoy set,41 and 42 targets in the Rosetta all-

atom decoy set (RosettaAll).36 We also applied the GEMSCORE

on 21 CASP6 targets (Critical Assessment of Techniques for

Protein Structure Prediction Six) which were directly obtained

from CASP6 website. The training set and testing sets are col-

lected and summarized in Table S1 (in support material).

Energy Terms in GEMSCORE

The weights and descriptions of the energy terms used in the

GEMSCORE are listed in Table 1. The GEMSCORE was

enhanced and modified from the soft scoring function of our

previous works25,26 for PSP by adding the solvation potential,

which plays an important role in protein folding, and enhancing

the hydrogen-bonding potential. The GEMSCORE is given as

ETotal ¼ w1Eelect þ w2EvdW þ w3EbHB þ ESAS (1)

Table 1. The 12 Energy Terms Used in the GEMSCORE.

Energy

name

Parameter

name Weight Description

Eelect w1 3.83 Electrostatic energy

EvdW w2 1.00 van der Waals potential

EbHB w3 3.51 Hydrogen-bonding potential on backbone

ESAS-bC r1 0.94 Surface area of all C atoms on backbone

ESAS-sC r2 0.39 Surface area of all C atoms on sidechain

ESAS-sS r3 0.68 Surface area of all S atoms on sidechain

ESAS-bO r4 20.54 Surface area of all O atoms on backbone

ESAS-sO r5 0.27 Surface area of all O atoms on sidechain

ESAS-nO r6 20.58 Surface area of all negative charged

O atoms on sidechain in residues

Asp and Glu

ESAS-bN r7 21.5 Surface area of all N atom on backbone

ESAS-sN r8 20.34 Surface area of all N atom on sidechain

ESAS-pN r9 20.55 Surface area of all positive charged

N atoms on sidechain in residue His,

Arg, and Lys

Figure 1. The linear energy functions of the pairwise atoms for the

van der Waals interaction, hydrogen bond, and electrostatic potential

in the GEMSCORE.
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where Eelect is the electrostatic energy, EvdW is van der Waals

potential, EbHB is the hydrogen-bonding potential on the protein

backbone, and ESAS is the solvent potential. EvdW and EbHB are

a simplified atomic pair-wise potential function (see Fig. 1). The

values of the hydrogen-bonding potential on backbones should

be larger than the ones of the van der Waals potential. The

Table 2. The GEMSCORE Results with Different Combinations of Energy Terms.

GEMSCORE GEMSCORE without ESAS GEMSCORE without EbHB

GEMSCORE without

EbHB and ESAS

Za Z0b Rank Z Z0 Rank Z Z0 Rank Z Z0 Rank

EMBL N/A N/A 25/25c N/A N/A 18/25 N/A N/A 25/25 N/A N/A 20/25

4state 23.72 20.93 6/7 22.09 0.83 3/7 23.21 20.33 4/7 21.43 1.48 0/7

fisa 22.92 20.32 3/4 23.22 20.33 2/4 23.78 21.31 3/4 24.39 21.59 2/4

lmds 22.23 0.54 7/10 24.37 21.37 8/10 22.56 0.20 7/10 25.40 22.34 8/10

lattice 25.24 22.15 8/8 23.25 20.84 7/8 23.90 21.40 8/8 22.54 20.50 6/8

RosettaAll 25.19 22.39 37/42 24.69 22.34 35/42 24.96 22.45 41/42 24.81 22.53 39/42

a,bThe average Z score defined in the eqs. (5) and (6), respectively.
cThe first number is the number of native structures ranking in the first rank; the second number is total number of

target proteins in the decoy set.

Figure 2. The correlations between the GEMSCORE potentials and RMSD values of 24 target

proteins on three data sets: (A) 4state, (B) lmds, and (C) lattice sets. The RMSD of a native structure

is zero and it is indicated as a red dot.
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GEMSCORE considers the EvdW when the distance of a pair

atom is less than 6 Å. As shown in Table 1, the weight values

of Eelect (3.83) and EbHB (3.51) are much larger than EvdW (1.0).

In general, the total EvdW value is typical about 10–15 times of

the total EbHB value in the GEMSCORE and the ratio is reduced

to �3 if the weight values are considered.

The GEMSCORE uses the atomic solvation parameter (ASP)

proposed by Wesson and Eisenberg21,22 to approximate to the

solvation energy. The ASP is defined as

ESAS ¼
XN
i¼1

riAi; (2)

where ri is the ASP for atom type i, and Ai the solvent-accessi-

ble surface area of the atom type i. A probe radius of 1.4 Å is

used to calculate an atomic solvent-accessible surface area. Wes-

son and Eisenberg22 classified atoms into five types including C,

uncharged O or N, S, O2, and N1. According to an atom on the

sidechain or the backbone, we further divided atoms into nine

atom types: atom C on backbone or sidechain, S, atom O on

backbone or sidechain, O2, atom N on backbone or side-chain,

and N1 (Table 1).

The GEM method was applied to optimize the parameters of

these 12 energy terms in the GEMSCORE based on 30 target

proteins in the training set (Table S2 in support material). We

set the GEM parameters, including the initial step sizes (size r
5 0.8 and w 5 0.2.), the family competition length (L 5 2), the

population size (N 5 200), and the recombination probability

(pc 5 0.3) according to the experiments of various parameters

(see Methods). The GEM optimization stops when either the

convergence below certain threshold value or the iterations

exceed a maximal preset value, which was set to 200. Therefore, T
a
b
le

3
.
C
o
m
p
ar
is
o
n
s
th
e
G
E
M
S
C
O
R
E
w
it
h
O
th
er

W
o
rk
s
o
n
F
iv
e
T
es
ti
n
g
D
at
a
S
et
s.

D
ec
o
y
se
t

G
E
M
S
C
O
R
E

F
u
ji
ts
u
k
a

et
al
.1
8

K
ri
sh
n
am

o
o
rt
h
y
4
4

H
u
4
5

Z
h
an
g
4
3

Z
h
u
et

al
.1
7

Z
h
o
u
4
2

L
ee

an
d
D
u
an

1
9

B
h
at
ta
ch
ar
y
ay

et
al
.2
3

K
F
F

K
D
F

D
F
IR
E
-S
C
M

D
F
IR
E
-a
ll
at
o
m

E
M
B
L
m
is
fo
ld

2
5
/2
5
a
(N

/A
b
)

N
/A

c
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

2
5
/2
5
(N

/A
)

2
4
/2
5
(N

/A
)

N
/A

4
st
at
e

6
/7

(2
3
.5
8
d
)

5
/7

(2
2
.3
6
)

3
/7

(2
.6
1
)

6
/7

(3
.1
9
)

5
/7

(2
.6
9
)

6
/7

(3
.9
4
)

6
/7

(3
.4
9
)

N
/A

(2
3
.9
6
)

6
/7

(3
.4
9
)

N
/A

(2
4
.9
5
)

4
/7

(2
2
.8
9
)

lm
d
s

7
/1
0
(2

2
.9
5
)

4
/6

(2
3
.8
5
)

2
/1
0
(1
.0
9
)

4
/1
0
(1
.2
9
)

3
/1
0
(1
.1
4
)

3
/1
0
(2
.5
6
)

7
/1
0
(0
.9
0
)

N
/A

(2
1
.7
5
)

7
/1
0
(0
.6
7
)

N
/A

(2
4
.4
9
)

4
/8

(2
2
.7
5
)

la
tt
ic
e

8
/8

(2
6
.5
4
)

N
/A

5
/8

(3
.5
4
)

4
/8

(3
.0
1
)

5
/8

(3
.7
6
)

8
/8

(6
.1
9
)

8
/8

(9
.4
7
)

N
/A

(2
4
.0
8
)

8
/8

(8
.9
4
)

N
/A

(2
6
.7
5
)

6
/8

(2
4
.0
6
)

fi
sa

3
/4

(2
2
.9
2
)

N
/A

N
/A

N
/A

N
/A

3
/4

(4
.7
0
)

3
/4

(4
.8
0
)

N
/A

(2
3
.0
9
)

3
/4

(4
.4
9
)

N
/A
(2

2
.0
9
)

N
/A

a
T
h
e
fi
rs
t
n
u
m
b
er

is
th
e
n
u
m
b
er

o
f
n
at
iv
e
st
ru
ct
u
re
s
ra
n
k
in
g
in

th
e
fi
rs
t
ra
n
k
;
th
e
se
co
n
d
n
u
m
b
er

is
to
ta
l
n
u
m
b
er

o
f
ta
rg
et

p
ro
te
in
s
in

th
e
d
ec
o
y
se
t.

b
T
h
e
av
er
ag
e
Z
-s
co
re

is
n
o
t
av
ai
la
b
le

b
ec
au
se

o
f
o
n
ly

o
n
e
d
ec
o
y
st
ru
ct
u
re

in
th
e
E
M
B
L
m
is
fo
ld
ed

d
ec
o
y
se
t.

c
T
h
e
d
at
a
is

n
o
t
av
ai
la
b
le

in
th
e
o
ri
g
in
al

p
ap
er
.

d
T
h
e
v
al
u
e
in

p
ar
en
th
es
es

is
th
e
av
er
ag
e
Z
sc
o
re

o
f
a
d
ec
o
y
se
t.

Figure 3. The GEMSCORE for four bad target proteins: (A) 3icb,

(B) 1fc2_C, (C) 1b0n_B, and (D) 1bba. The protein 3icb contains

two calcium ions; the protein 1fc2_C or the protein 1b0n_B is a

part (i.e. a chain or a domain) of a protein; and the protein 1bba is

an NMR structure.
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GEM generated 800 solutions in one generation and terminated

after it exhausted 160,000 solutions in the worse case. These pa-

rameters were decided after experiments conducted to recognize

complexes of test decoy systems with various values.

ASPs of nine atom types are shown in Table 1. The parame-

teric values of an atom on the backbone and sidechain are dif-

ferent for all atom types, including N, O, and C. The parameter

values of N (21.5) and C (0.94) on the backbone are the most

negative and the most positive, respectively. The values of two

charged atoms, N1 (20.55) and O2 (20.58), are similar. In

addition, the atom accessible surface areas were calculated from

30 native structures in the training set. The accessible surface

areas, on average, of N1 (in Arg and Lys) and O2 (in Asp and

Glu) are �55 and �36 Å2, respectively. The ASPs and accessi-

ble surface areas are similar to the results proposed by Wesson

and Eisenberg.22

GEMSCORE Results on Six Benchmarks

Table 2 and Figure 2 show the results of the GEMSCORE on

96 targets in six test decoy sets (Table S1 in support material).

The GEMSCORE successfully identified 86 native proteins as

the first rank among these 96 proteins. The GEMSCORE with-

out ESAS yielded the worst performance (73 native proteins as

the first rank) and the GEMSCORE without EbHB obtained the

best performance (89 native proteins as the first rank). The origi-

nal soft scoring function of the GEMDOCK gets 75 native pro-

teins as the first rank. The GEMSCORE using all energy terms

yielded the best performance for the 4state data set among the

methods with different combinations of energy terms. The per-

formance of the GEMSCORE was decreased for the EMBL,

4state, and RosettaAll data sets if the GEMSCORE discarded

atomic solvation potentials (Table 2). We found that the GEM-

SCORE using nine atom types for atomic solvation potentials

outperformed it using five atom types.22 For the 4state data set,

the original soft scoring function of the GEMDOCK is unable to

recognize the native structure as the first rank but the GEM-

SCORE with ESAS and with EbHB yields 3 and 4, respectively,

native structures as the first rank. Figure 2 shows that many

structures in the 4state data set are near the native structures

(\4 Å), in contrast, only few structures in both lmds and lattice

date sets are less than 4 Å. These results imply that the hydro-

Table 4. Comparisons the GSMSCORE with Related Works on the 4state, lmds, and Lattice Sets.

PDB ID GEMSCORE Fujitsuka et al.18 Krishnamoorthy44

Hu45

Zhu17 Zhou42 Lee19 Bhattacharyay23KFF KDF

4state

1ctf 1/25.41a 1/–2.50 7/2.62 1/3.64 1/3.14 –/–3.33 1/3.86 –/–4.26 1/–3.53

1r69 1/23.14 1/–2.50 3/2.90 1/3.77 1/3.79 –/–3.63 1/4.23 –/–5.35 1/–3.68

1sn3 1/22.95 1/–3.20 113/1.04 1/2.15 27/1.79 –/–5.70 1/3.79 –/–6.33 1/–2.52

2cro 1/23.42 1/–2.30 1/3.04 3/2.57 1/2.66 –/–3.55 1/3.29 –/–5.11 2/–3.01

3icb 39/–1.40 3/21.60 1/2.90 1/2.56 1/2.68 –/–1.97 4/2.28 –/–2.86 1/–2.26

1/–3.21b

4pti 1/24.24 1/22.70 1/3.18 1/4.17 1/2.79 –/–5.09 1/3.62 –/–5.35 5/–2.51

4rxn 1/24.56 12/21.70 5/–2.58 1/3.45 1/1.99 –/–4.43 1/3.33 –/–5.36 4/–2.71

lmds

1b0n-B 110/20.82 N/A 28/1.48 406/–0.94 19/2.05 –/–2.55 430/–1.17 –/–0.61 439/1.18

1bba 498/2.91 N/A 488/–1.93 500/–3.58 487/–1.83 N/A 501/–16.3 –/4.99 N/A

1ctf 1/26.25 1/24.70 205/0.20 1/3.62 1/3.31 –/–4.38 1/3.54 –/–5.12 1/–3.42

1dtk 1/22.61 2/22.30 1/2.63 59/0.64 185/–1.11 –/–3.51 1/2.62 –/–6.10 N/A

1fc2 494/2.16 N/A 4/2.06 501/–3.08 486/–1.87 –/–0.22 501/–5.72 –/–3.38 409/0.91

1igd 1/25.89 1/26.20 372/–0.71 1/5.18 1/3.93 –/–5.80 1/5.16 –/–6.16 1/–2.87

1shf-A 1/25.22 N/A 189/0.32 5/2.14 12/1.82 –/–7.53 1/6.68 –/–8.26 1/–2.90

2cro 1/25.49 1/24.00 1/3.88 2/2.65 1/3.24 –/–5.97 1/4.70 –/–8.03 1/–3.42

2ovo 1/23.20 1/24.10 46/0.99 1/3.11 38/1.21 –/–4.51 1/3.21 –/–6.00 16/–1.67

4pti 1/25.08 17/21.80 7/1.98 1/3.14 108/0.62 –/–7.04 1/3.96 –/–6.24 6/–2.24

lattice

1beo 1/28.44 N/A 1/5.35 15/2.45 1/3.94 –/–4.86 1/12.09 –/–7.95 1/–3.67

1ctf 1/28.38 N/A 1/4.18 1/3.76 1/5.35 –/–3.22 1/10.05 –/–6.98 1/–5.04

1dkt-A 1/23.31 N/A 89/1.67 17/2.42 8/2.64 –/–5.89 1/6.87 –/–6.40 8/–2.73

1fca 1/25.61 N/A 1/4.91 56/2.00 98/1.76 –/–5.89 1/7.18 –/–8.30 1/–7.38

1nkl 1/28.35 N/A 1/4.38 1/3.60 1/3.51 –/–3.97 1/9.29 –/–2.60 1/–4.54

1pgb 1/28.94 N/A 14/2.58 1/3.95 1/4.91 –/–2.66 1/11.87 –/–9.55 1/–4.01

1trl-A 1/23.91 N/A 1179/20.23 56/1.97 18/2.67 –/–4.27 1/12.09 –/–5.49 101/–1.61

4icb 1/25.41 N/A 1/5.47 1/3.92 1/5.31 –/–1.85 1/10.05 N/A 1/–3.50

aThe first number is the number of native structures ranking in the first rank; the second number is total number of

target proteins in the decoy set. The larger of the absolute value of a Z–score, the better of this method is.
bThe result of adding two calcium ions into the Protein 3icb.

1368 Chiu, Hwang, and Yang • Vol. 29, No. 9 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



gen-bonding potential of the backbone and atomic solvent poten-

tials are important to discriminate the native structures from the

near-native structures.

Hydrogen-bonding interactions are important for the protein

folding, protein–protein interactions, and many other biological

functions. Here, the GEMSCORE discarded the hydrogen-bond-

ing potentials of sidechain–sidechain and sidechain–backbone

interactions according to the following observations: (1) The

performance of the GEMSCORE was decreased when we con-

sidered all kinds of hydrogen-bonding potentials (Table S3 in

supporting material) on the 4state set; (2) The protein structures

mainly were decided by the backbone conformations which are

often determined by the secondary structures, such as a-helixs
and b-strands. The hydrogen bond on the backbone is the essen-

tial force for the secondary structures; (3) The sidechain confor-

mation is generally more flexible than the one of on the back-

bone for protein structures. As shown in Table S3, the GEM-

SCORE yielded the worst performance when it considered only

the hydrogen-bonding potentials of sidechain–sidechain interac-

tions.

Figure 2 shows the correlations between the GEMSCORE

potentials and the root mean square deviation (RMSD) between

the native structure and decoy structures in three data sets:

4state, lmds, and lattice sets. The native structures are indicated

as the red dots and the respective RMSD values are zero. Figure 2

shows that our energy function is able to identify native and

near-native structures from lots of decoy structures.

The factors causing the GEMSCORE to misidentify for 10

targets among these 96 test targets can be roughly divided into

four categories. In the first category, the protein structure con-

tains metal irons which were removed from the structure, such

as the target 3icb (Fig. 3A). Protein 3icb in the 4state set is a

vitamin D-dependent calcium-binding protein and contains two

calcium ions, which locate in the loop section of native struc-

ture. Lack of Ca21 at loop could cause unstable loop and fold

into misfolded structure. The GEMSCORE is able to discrimi-

nate the native structure from nonnative structures when these

two Ca21 atoms were added in the structure. In the second cate-

gory, the target structure is a part (i.e. a chain or a domain) of a

protein structure (complex), such as target 1fc2 in the fisa set

and the target 1b0n-B in the lmds set (Figs. 3B and 3C). In the

third category, the target structure (e.g. 1b0n-B) misses the coor-

dinates of some residues in crystal structures. In the final cate-

gory, the target protein is an NMR structure. The GEMSCORE

obtained the successful percentages on NMR structures and

X-ray structures are 70.4% (19/27 structures) and 94.2% (65/69

structures), respectively. The GEMSCORE identified 37 native

structures from 42 native protein targets in the RosettaAll set.

All of those misidentified targets are NMR structures. The pro-

tein 1bba, which was misidentified by the GEMSCORE in the

lmds set, is also an NMR structure (Fig. 3D).

Compare GEMSCORE and Other Approaches

In general, it is neither straightforward nor completely fair to

compare the results of different scoring methods given that each

employs different accuracy measures, optimization methods, and

test complexes. Tables 3 and 4 show the results of the GEM-

Table 5. The GEMSCORE Results on 21 Targets in CASP6.

Target Id

PDB

code

No. of predicted

structures No. of residues

RMSD

Z-score of the

native structure RankaMinb Maxc Averaged

T0240 1u07 44 90 5.38 23.68 15.87 22.12 1

T0266 1wdv 64 152 1.60 16.89 2.58 21.84 1

T0271 1vgg 34 161 2.65 79.31 10.51 21.17 1

T0274 1wgb 47 159 3.15 29.71 4.75 21.88 1

T0275 1wjg 74 137 2.59 16.74 4.67 21.59 2

T0277 1wj8 71 119 1.53 61.88 4.89 21.82 2

T0282 1xfk 35 332 4.31 22.00 8.54 22.21 1

T0200 1t70 49 255 6.98 21.59 13.67 22.86 1

T0267 1wk4 40 175 2.80 18.01 5.71 21.62 1

T0263 1wd6 52 101 3.47 39.27 8.61 22.01 1

T0212 1tza 43 126 5.07 23.66 14.3 23.51 1

T0239 1rki 47 98 10.68 23.35 14.16 23.73 1

T0281 1whz 57 70 1.59 27.79 9.98 21.77 4

T0201 1s12 47 94 4.91 18.84 10.92 21.86 1

T0242 2blk 46 116 11.55 18.73 14.99 22.91 1

T0273 1wdj 32 187 11.87 57.65 18.31 24.05 1

T0211 1xpw 47 144 3.89 28.04 8.53 22.16 1

T0213 1te7 54 103 4.84 19.42 10.11 21.16 6

T0214 1s04 48 110 2.11 55.78 13.83 22.67 1

T0224 1rhx 56 87 3.85 18.73 6.92 28.93 1

T0230 1wcj 52 104 7.94 24.14 12.4 22.35 1

aThe rank of the native structure.
dMinimum RMSD, maximum RMSD, and average RMSD between the native structure and predicted structures.
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SCORE and eight comparative methods on five data sets, includ-

ing the EMBL misfolded set (25 proteins), 4state set (7 pro-

teins), lmds set (10 proteins), lattice set (6 proteins), and fisa set

(4 proteins). These eight related works consist of knowledge-

based and empirical energy functions,42–44 solvation potentials,23

and physics energy functions.17–19,45 We compared these meth-

ods based on two wide-used performance factors which are the

ranks and Z-scores (see material and method) of the native struc-

tures. The GEMSCORE achieved equal performance with the

best of eight comparative energy functions and was better than

other methods.

Most of these scoring functions are unable to identify the

native structures from decoy structures for three targets [e.g.

1bon-B, 1bba, and 1fc2 (see Fig. 3)] which are also misidenti-

fied by the GEMSCORE (Table 4). The top best three methods

(the GEMSCORE and two related works42,43) identify the wrong

native structure for the target 3icb in the 4state data set. For this

target, the GEMSCORE can identify the native structure if two

Ca21 atoms were added into the structure. These results suggest

that most of scoring functions are unable to recognize the native

structures with following properties: the structure is a part of a

protein and the structure missing resides or important atoms

(e.g. metal irons).

GEMSCORE Results on CASP6 Targets

Despite the success of the GEMSCORE on the above test sets,

the discrimination of the native structure against the decoy sets

is the first test towards PSP. For the real-world PSP, the recogni-

tion of the near-native structures is the more important property

of an energy function for de novo structure prediction. Here, the

GEMSCORE was evaluated for 21 targets in CASP6 (Critical

Assessment of Techniques for Protein Structure Prediction) and

it can distinguish the 17 native structures from 21 protein targets

(Table 5). Figure 4 shows the correlations between the GEM-

SCORE potentials and RMSD values between native structure

and predicted structures for 21 these targets. For each target, the

native structure was obtained from PDB and the predicted struc-

Figure 4. The correlations between the GEMSCORE potentials and RMSD values of 21 targets in the

CASP6. The RMSD of a native structure is zero and it is indicated as a dot. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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tures were collected from the website http://www.predictioncenter.

org/casp6/tar/predictions/. The domain targets and incomplete

crystal structures were discarded and 21 targets were selected.

On average, �50 predicted structures were collected for each

target and the minimum and maximum RMSD between the pre-

dicted structures and the native structure were also provided.

The GEMSCORE recognized 17 native structures as the first

rank and two native structures as the second rank (Table 5). In

the future, we will test the GEMSCORE using a diverse set of

real-world PSP targets to systematically improve prediction

accuracy.

Conclusion

We have developed a simple and efficient energy function,

GEMSCORE, for the PSP. The GEMSCORE is able to identify

86 native proteins that are the first rank among 96 target pro-

teins from more 70,000 structures on six well-known bench-

marks. For these six benchmark datasets, the predictive perform-

ance of the GEMSCORE, based on native structure ranking and

Z-scores, yields very comparable accuracies with the best of

eight energy functions and is better than other energy functions.

Experiments show that the GEMSCORE is efficient to discrimi-

nate between native and nonnative structures from thousands of

protein structure candidates. We believe that the GEMSCORE is

robust and can be a useful energy function for the PSP.

Methods

Figure 5 shows the flowchart of developing the GEMSCORE for

PSP. We selected 30 proteins (56,010 structures, Table S2 in

supporting material) from the Rosetta data as the training set for

parameter optimized by using the GEM method. After the

weights of energy potentials were optimized, other six data sets

were used to evaluate the GEMSCORE performance and to

compare with previous works.

Energy Terms in GEMSCORE

The GEMSCORE was enhanced and modified from the soft

scoring function of the GEMDOCK for PSP by adding solvation

potentials and enhancing hydrogen-bonding potentials [eq. (1)].

The GEMSCORE consists of is the electrostatic energy (Eelect),

van der Waals potential (EvdW), hydrogen-bonding potential on

the protein backbone (EbHB), and the solvent potential [ESAS, eq.

(2)]. The electrostatic energy (Eelect) is defined as

Eelect ¼
PN

i¼1

PN
j¼1 332

qiqj
4r2ij

, where rij is the distance between the

atoms i and j, qi and qj are the formal charges of atoms i and j,
and 332 is a factor that converts the electrostatic energy into kil-

ocalories per mole. To increase the tolerance of our new energy

function for near-native structures, we set the low bound of the

electrostatic energy to 210 (see Fig. 1).

The van der Waals potential (EvdW) and hydrogen-bonding

potential on backbone (EbHB) are a simplified atomic pair-wise

potential function. In this energy model, these two potentials are

calculated by the same function form but with different parame-

ters. The energy model is given as

FðrBij

ij Þ ¼

V6 � V6r
Bij

ij

V1

if r
Bij

ij � V1

V5ðrBij

ij � V1Þ
V2 � V1

if V1 < r
Bij

ij � V2;

V5 if V2 < r
Bij

ij � V3

V5 � V5ðrBij

ij � V3Þ
V4 � V3

if V3 < r
Bij

ij � V4

0 if r
Bij

ij > V4

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(3)

r
Bij

ij is the distance between the atoms i and j with the interaction

type Bij forming by the atomic pairwise where Bij is a state of

either van der Waals potential or hydrogen-bonding potential on

the backbone. The parameters of these different potentials,

V1,. . ., V6, are given in Figure 1.

Objective Function of GEM

The GEMSCORE has four energy potentials (i.e. Eelect, EvdW,
EbHB, and ESAS) with 12 parameters (Table 1) defined in eqs.

(1) and (2). The GEM was used to find the most suitable energy

weights of these 12 parameters by minimizing the objective

function given as

S ¼
XM
i

ðf ðziÞ þ f ðz0iÞÞ (4)

where i is the i-th protein; M is the number of proteins in a

training set (M is 30 in this paper, Table S2 in supporting mate-

Figure 5. Overview of the GEMSCORE for protein structure

prediction.
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rial); f(Zi) is the normalized Z-score of the energy value, which

is calculated by the eq. (1), of the protein i; f(Z0) is a related Z0-
score of the protein i.

A good energy function is able to correctly distinguish native

structures from non-native structures and to be judged by the

size of energy gap between native and nonnative structures. A

mostly used measure for assessing this quality is the Z-score
defined as Z ¼ ðEnative � hEiÞ=r, where Enative is the energy

value of a native structure of a protein; hEi and r are the mean

and standard deviation of energy values of all nonnative struc-

tures in a decoy set, respectively. While we seek the weights of

an energy function, we makes Z-scores of all proteins in the

training set simultaneously low enough. We normalize the Z-
score of the protein i by

f ðZiÞ ¼ 1

1þ exp�Zi
; (5)

where f(Zi) maps the Z-score of the protein i into a value rang-

ing from 0 to 1.

To consider the energy value of a native structure, the lowest

among structures in a decoy set, we added a related measure Z0-
score given as Z0 ¼ ðEnative � ElowestÞ=r where Elowest is the low-

est energy value among the nonnative structures in the decoy set

and r is the standard deviation of energy value of all nonnative

structures. The Z0-score gives a quantitative measure of how

well separated the native structure from its lowest energy neigh-

bor in the decoy set. The Z0-score of the protein i is normalized

by

f ðZ0
iÞ ¼

1

1þ exp�Z0
i

(6)

The Z-scores and Z0-scores of 30 target proteins in the train-

ing set are shown in Table S2 (in supporting material).

Generic Evolutionary Method

The GEM method was used to minimize the objective function

to find out optimal weights for 12 energy terms of GEMSCORE.

The core idea of the GEM method was to design multiple opera-

tors that cooperate using the family competition model, which is

similar to a local search procedure. This approach has been suc-

cessfully applied for some specific problems, such as protein-

ligand docking, drug screening, and protein side-chain predic-

tion.25,32–34 GEM is a multioperator approach that combines

three mutation operators: decreasing-based Gaussian mutation

and self-adaptive Cauchy mutation. It incorporates family com-

petition and adaptive rules for controlling step sizes to construct

the relationship among these three operators. To balance the

search power of exploration and exploitation, each of operators

is designed to compensate for the disadvantages of the other.

The GEM minimizing the objective function is briefly

described as follows: It randomly generates a starting population

with N solutions with 12 parameter values of energy terms used

in the GEMSCORE (Table 1). Each solution is represented as a

set of 3n-dimensional vectors (xi, ri, wi), where n is the number

of energy terms of an energy function and i 5 1,. . .,N, where N

is the population size. n is 12 in this work. The vector x is the

adjustable variables representing a particular weights of 12

energy terms to be optimized. r and w are the step-size vectors

of decreasing-based Gaussian mutation and self-adaptive Cauchy

mutation. For each generated solution x, we can calculate the fit-

ness value of this solution by using the objective function

defined in eq. (4).

After the GEM method initializes the solutions, it enters the

main evolutionary loop which consists of two stages. Each stage

is realized by generating a new quasi-population (with N solu-

tions) as the parent of the next stage. These stages apply a gen-

eral procedure ‘‘FC_adaptive’’ with only different working popu-

lation and the mutation operator. The FC_adaptive procedure

employs two parameters, namely, the working population (P,
with N solutions) and mutation operator, to generate a new

quasi-population.

The main work of FC_adaptive is to produce offspring and

then conduct the family competition. Each individual in the pop-

ulation sequentially becomes the ‘‘family father.’’ With a proba-

bility pc, this family father and another solution that is randomly

chosen from the rest of the parent population are used as parents

for a recombination operation. Then the new offspring or the

family father (if the recombination is not conducted) is operated

by differential evolution to generate a quasi-offspring. Finally,

the working mutation is operates on the quasi-offspring to gener-

ate a new offspring. For each family father, such a procedure is

repeated L times, called the family competition length. Among

these L offspring and the family father, only the one with the

lowest scoring function value survives. Since we create L chil-

dren from one ‘‘family father’’ and perform a selection, this is a

family competition strategy. This method avoids the population

prematureness but also keeps the spirit of local searches. Finally,

the FC_adaptive procedure generates N solutions because it

forces each solution of the working population to have one final

offspring.

In the following, genetic operators are briefly described. We

use a 5 (xa, ra, wa) to represent the ‘‘family father’’ and b 5
(xb, rb, wb) as another parent. The offspring of each operation is

represented as c 5 (xc, rc, wc). The symbol xsj is used to denote

the j th adjustable optimization variable of a solution s, V j [
{1,. . .,12}.

Recombination Operators

GEM implemented modified discrete recombination and interme-

diate recombination. A recombination operator selected the

‘‘family father (a)’’ and another solution (b) randomly selected

from the working population. The former generates a child as

follows:

xci ¼
xai with probability 0:8
xbi with probability 0:2

�

The generated child inherits genes from the ‘‘family father’’

with a higher probability 0.8. Intermediate recombination works

as: wc
i 5 wa

i 1 b(wb
i 2 wa

i )/2, where w is r or w based on the

mutation operator applied in the FC_adaptive procedure. The in-

termediate recombination only operated on step-size vectors and
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the modified discrete recombination was used for energy term

vectors (x).

Mutation Operators

After the recombination, a mutation operator, the main operator

of GEM, is applied to mutate adjustable variables (x). Gaussian
and Cauchy Mutations: Gaussian and Cauchy Mutations are

accomplished by first mutating the step size (w) and then mutat-

ing the adjustable variable x:

w0
i ¼ wiAð�Þ

x0i ¼ xi þ w0
iDð�Þ

where wi and xi are the ith component of w and x, respectively,
and wi is the respective step size of the xi where w is r or w. If
the mutation is a self-adaptive mutation, A(�) is evaluated as

exp[s0 N(0,1) 1 sNi(0,1)] where N(0,1) is the standard normal

distribution, Ni(0,1) is a new value with distribution N(0,1) that
must be regenerated for each index i. When the mutation is a

decreasing-based mutation A(�) is defined as a fixed decreasing

rate c 5 0.95. D(�) is evaluated as N(0,1) or C(1) if the mutation

is, respectively, Gaussian mutation or Cauchy mutation. For

example, the self-adaptive Cauchy mutation is defined as

wc
i ¼ wa

i exp½s0Nð0; 1Þ þ sNið0; 1Þ�
xci ¼ xai þ wc

i CiðtÞ:

We set s and s0 to ð ffiffiffiffiffi
2n

p Þ�1
and ð

ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
n

pp
Þ�1

, respectively,

according to the suggestion of evolution strategies.46 A random

variable is said to have the Cauchy distribution (C(t)) if it has

the density function: f ðy; tÞ ¼ 1=p

t2 þ y2
;�1 < y < 1. In this

work, t is set to 1. Our decreasing-based Gaussian mutation uses

the step-size vector r with a fixed decreasing rate c 5 0.95 and

works as

rc ¼ cra;

xci ¼ xai þ rcNið0; 1Þ:
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