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Abstract

Let G be the set that contains precisely the graphs on n vertices with maximum degree 3 for which there exists a 4-cycle system
of their complement in Kn. In this paper G is completely characterized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A k-cycle system of a graph G is a partition of the edges of G into sets, each of which induces a cycle of length
k. Over the past 30 years there has been considerable interest in the problem of finding k-cycle systems for various
families of graphs. The classic result in this area is that of Sotteau [17], who found necessary and sufficient conditions
for the existence of a k-cycle system of Ka,b, the complete bipartite graph. Probably the best result follows after years
of activity in the literature (see for example [12,14]) from a recent pair of papers that completely settle the existence
problem for k-cycle systems for complete graphs, and for complete graphs with the edges in a 1-factor removed [1,16].
More recently, attention has focused on fixing k and allowing G to vary in non-symmetric ways. For example, it is now
known when it is possible to find k-cycle systems of G when G is formed from Kn by removing the edges of any tree
whenever k is 4 or 6 (see [9,2], respectively), and by removing the edges of any 2-regular graph whenever k is 3 [8], 4
[10], 6 [3], or n [4,6,15]. In this paper we solve the existence problem for 4-cycle systems of G for all the myriad of
graphs one can form from Kn by removing the edges of any subgraph of maximum degree 3.

This problem has also been of some statistical interest. Balanced sampling designs excluding contiguous units were
first introduced by Hedayat et al. [11]. In terms of this paper, they were interested in a 1-dimensional problem that
is equivalent to a 3-cycle decomposition of the complete graph with the edges in a 2-factor removed. Since then,
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2-dimensional variants have been considered, where the graph removed from Kn is a 4-factor [5]. One can also define
similar variants of the existence problem for neighbor designs, a statistical experimental design that is equivalent to a
decomposition of the complete graph into cycles of a fixed length [13], corresponding to antigens being placed around
the rim of petri dishes, surrounding an antiserum. Results in this paper relate directly to this generalization, allowing
for the situation where we do not need to see how some pairs of antigens react together. Another version allows one
antigen to be placed at the center of the petri dish, so the design corresponds to a decomposition of Kn into wheels [7].

A graph G is said to be a �3-graph if �(G)�3. G is said to be odd if all vertices have odd degree. A graph G on n
vertices is said to be n-admissible if:

(a) all vertices in Kn − E(G) have even degree and
(b) 4 divides

(
n
2

) − |E(G)|.

If the value of n is irrelevant then we can also refer to G as being simply admissible. Let G(n)= {G|G is an odd
�3-graph of order n for which there exists a 4-cycle system of Kn − E(G)}. Clearly if G ∈ G(n) then G is n-
admissible. Let G = ⋃

n�1G(n). In this paper we completely determine G (see Theorem 1), showing that there are
exactly two non-admissible graphs that are not in G.

Let G denote the complement of G. Let G ∨ H denote the graph formed from two vertex-disjoint graphs G and H
by joining each vertex in G to each vertex in H with one edge. Let G[A] denote the subgraph of G induced by A. It is
easy to see that the edges of Ka,b with vertex sets A and B can be partitioned into sets of size 4, each of which induces
a 4-cycle, if and only if both a and b are even; we let C(A, B) denote such a set of 4-cycles.

2. Some helpful results

The following result makes it easy to check if a given graph is admissible.

Lemma 1. If G is an odd �3-graph, then G is admissible if and only if the number of vertices of degree 1 is congruent
to |V (G)| modulo 4.

Proof. Suppose G is admissible. By (a), let |V (G)| = 4x + 2y with y ∈ {0, 1}. Let the number of vertices of degree
1 in G be z. Then 2|E(G)| = z + 3(4x + 2y − z) = 12x + 6y − 2z. By (b), 4 divides (4x + 2y)(4x + 2y − 1)/2 −
(6x + 3y − z) = 4(2x2 + 2xy − 2x − y) + 2y2 − z, so z ≡ 2y (modulo 4) as required. Similarly, if z ≡ 2y (modulo
4) then z ≡ 2y2 (modulo 4), so reversing the above argument shows that (b) is true. Of course (a) is true since every
graph that is odd must have an even number of vertices. �

It will be useful to define S = {n| there exists a 4-cycle system of Kn − E(G) for all admissible odd �3-graphs G
with |V (G)| = n}. An odd �3-graph of order n, G, is said to be maximal if there is no odd �3-graph of order n, say G′,
with the property that G′ can be formed from G by adding 4 new edges which induce a 4-cycle. Clearly the following
is true.

Lemma 2. If each maximal odd �3-graph on n vertices is in G(n), then n ∈ S.

In particular, since the complement of any subgraph of G induced by four vertices of degree 1 must contain a 4-cycle,
it follows that to prove that n ∈ S we need only consider the admissible odd �3-graphs that have at most 2 vertices
of degree 1. Therefore, throughout this paper, when we consider graphs with at least 10 vertices we assume that they
have at most 2 vertices of degree 1 (since 8 /∈S, all graphs on 8 vertices need to be considered).

The main result is proved inductively. One common tool used to effect such a proof is to remove four vertices of
degree 3 in G that induce a path, P. Such a subgraph can arise in several ways, depending on the neighborhood of P. In
the following result we consider four such cases. Let N(P ) denote the set of vertices that are each adjacent to at least
one vertex in P.

Lemma 3. Suppose that G is an admissible odd�3-graph on n vertices that contains an induced pathP=(a1, a2, a3, a4)

with dG(ai) = 3 for 1� i�4. Excluding those in P, let the neighbors of a1 be b1 and b2, of a2 be b3, of a3 be c3, and
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of a4 be c1 and c2 (possibly these vertices are not all distinct). Suppose that one of the following conditions is satisfied
by G:

(1) bi �= cj for 1� i, j �3 and
(a) |{b1, b2, b3}| = |{c1, c2, c3}| = 3 and {{b1, c3}, {b2, c2}, {b3, c1}} ∩ E(G) = ∅ or
(b) b2 = b3, c2 = c3, and {{b1, c2}, {b2, c2}, {b2, c1}} ∩ E(G) = ∅ or
(c) b2 = b3, |{c1, c2, c3}| = 3 and {{b1, c1}, {b2, c2}, {b2, c3}} ∩ E(G) = ∅;

(2) b1 = c1, |{b1, b2, b3, c1, c2, c3}| = 5, and {{b1, b3}, {b1, c3}, {b2, c2}} ∩ E(G) = ∅.

If n − 4 ∈ S then G ∈ G.

Proof. We consider the four cases in turn.
Case (1a): Suppose that b3 /∈ {b1, b2} and c3 /∈ {c1, c2}. Form G1 from G−V (P ) by adding the edges {b1, c3}, {b2, c2},

and {b3, c1}. Then dG1(v)=dG(v) for each v ∈ V (G1). So since n−4 ∈ S, by Lemma 1 there exists a 4-cycle system
(V (G)−V (P ), C1) of Kn−4 −E(G1). Let C2 =C1 ∪{(a1, a3, b1, c3), (a1, a4, b2, c2), (a2, a4, b3, c1), (a1, b3, a3, c1),

(a2, b1, a4, c3), (a2, b2, a3, c2)} ∪ C(V (P ), V (G) − N(P )). Then (V (G), C2) is a 4-cycle system of Kn − E(G).
Case (1b): Suppose b2 = b3 and c2 = c3. Form a graph G1 from G − V (P ) by adding the edges {b2, c2}, {b1, c2},

and {b2, c1}. Then, as before, there exists a 4-cycle system (V (G) − V (P ), C1) of Kn−4 − E(G1). Define C2 = C1 ∪
{(a2, b1, a3, c1), (a1, a4, b2, c2), (a1, a3, b2, c1), (a2, a4, b1, c2)} ∪ C(V (P ), V (G) − N(P )). Then (V (G), C2) is a
4-cycle system of Kn − E(G).

Case (1c): Suppose b2 = b3 and c3 /∈ {c1, c2}. Since |V (G)| is even, G contains another vertex z. Form G1 from G−
V (P ) by adding the edges {b1, c1}, {b2, c2}, and {b2, c3}. Then, as before, let (V (G)−V (P ), C1) be a 4-cycle system of
Kn−4 −E(G1). Let C2 =C1 ∪{(a1, a4, b2, c3), (a1, a3, b2, c2), (a2, a4, b1, c1), (a2, b1, a3, c2), (a1, c1, a3, z), (a2, c3,

a4, z)} ∪ C(V (P ), V (G) − (N(P ) ∪ {z})). Then (V (G), C2) is a 4-cycle system of Kn − E(G).
Case 2: Suppose b1 = c1. Since |V (G)| is even, G contains another vertex z. Form G1 from G−V (P ) by adding the

edges {b1, b3}, {b1, c3}, and {b2, c2}. As before, there exists a 4-cycle system (V (G) − V (P ), C1) of Kn−4 − E(G1).
Define C2 = C1 ∪ {(a1, b3, a3, z), (a1, c3, a2, a4), (a1, c2, b2, a3), (a2, b2, a4, z), (a2, b1, a3, c2), (a4, b3, b1, c3)} ∪
C(V (P ), V (G) − (N(P ) ∪ {z})). Then (V (G), C2) is a 4-cycle system of Kn − E(G). �

3. The main result

The following result handles the small cases, of which there are many! For example, if G is connected, cubic and has
12 vertices then it is one of the 85 such graphs—the proof handles these in a neat way. Lemma 2 is useful throughout
this section.

Proposition 1. If G is a cubic graph with at most 12 vertices, then G ∈ G if and only if G /∈ {G1, G2} (see Fig. 1).

Proof. The result is trivial if n = 4.
If n = 6 then G must have either 2 or 6 vertices of degree 1. So G is a 1-factor, or consists of the 2 components

K2 and K4, or is induced by the edge set {{1, 2}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, {5, 6}}. In each case the required
decomposition is easy to find.

Fig. 1. The two exceptional cases.
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Suppose that n = 8. Then G has 0, 4, or 8 vertices of degree 1. If G contains a component isomorphic to K2
then the result follows by deleting this component, applying the solution when n = 6, then adding three 4-cycles
between the six vertices and the replaced K2. If G consists of two components isomorphic to K4 then the result
follows from a 4-cycle system of K4,4. If G is connected and has four vertices of degree 1 then G has edge set
{{1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {5, 6}, {5, 7}, {6, 8}}, or {{1, 5}, {2, 6}, {3, 7}, {4, 8}, {5, 6}, {6, 7}, {7, 8}, {5, 8}}. In
either case, G contains two vertices u and v of degree 1 whose neighbors w and x, respectively, are non-adjacent. Delete
u and v and join w and x to form a graph on six vertices that by the case n = 6 has a 4-cycle system; to this system
add the 4-cycle (u, v, w, x) and then the 4-cycles in a 4-cycle system of K2,4. Finally we consider the case where G is
connected and has 0 vertices of degree 1. All connected non-isomorphic cubic graphs on at most 12 vertices are listed
on Gordon Royle’s website: http://www.cs.uwa.edu.au/gordon/remote/cubics/index.html. There are five such graphs
on eightvertices. It is easy to establish that three of them are in G(8) and the two depicted in Fig. 1 (graphs 2 and 5 in
the Royle list) are not.

Suppose that n=10. As in the previous case, if G is disconnected then one component must be either K2 or K4, so the
result follows by using previous cases unless one of the components is one of the graphs in Fig. 1. If it is G1 then the 4-
cycles in {(1, 7, 3, 6), (2, 5, 4, 8), (1, 3, 8, 9), (8, 6, 2, 10), (2, 4, 7, 9), (7, 5, 1, 10), (10, 3, 9, 4), (10, 5, 9, 6)} provide
the required system. If it is G2, then the 4-cycles in {(1, 7, 2, 6), (3, 8, 5, 9), (3, 10, 4, 6), (1, 3, 5, 10), (2, 4, 9, 8),
(4, 7, 10, 8), (2, 10, 6, 9), (1, 9, 7, 5)} provide the required system.

If n = 10 and G is connected then proceed as follows. If G contains two vertices say 9 and 10 of degree 1 with
dG(9, 10)�4 then delete 9 and 10 and join their neighbors u and v, respectively, to form G′. If G′ �= G1, G2 then adding
the 4-cycle (9, 10, u, v) to 4-cycle systems of K8 −E(G′) and of K2,6 (with bipartition {9, 10} and {1, . . . , 8}−{u, v})
provides the result. If G′=G1 then note that removing 8-cycle (a1, a2, . . . , a8)=(1, 3, 7, 5, 2, 4, 8, 6) from K8−E(G′)
leaves two 4-cycles c1 and c2. Since for some i we have u = ai+1 and v = ai+3, ai+4, or ai+5 (reducing the
sum modulo 8), to c1 and c2 add the six 4-cycles in {(ai+5, 9, ai+7, 10), (9, ai+2, ai+1, ai+8), (9, ai+4, ai+5, ai+6),
(10, ai+2, ai+3, ai+4), (10, ai+6, ai+7, ai+8), (9, 10, ai+1, ai+3)}, {(ai+2, 9, ai+8, 10),(ai+3, 9, ai+6, 10) (9, ai+5,

ai+6, ai+7), (10, ai+1, ai+8, ai+7),(ai+1, ai+2, ai+3, ai+4),(9, 10, ai+5, ai+4)}, or {(ai+3, 9, ai+7, 10), (9, ai+2, ai+1,

ai+8), (9, ai+4, ai+5, ai+6),(10, ai+2, ai+3, ai+4), (10, ai+6, ai+7, ai+8), (9, 10, ai+1, ai+5)}, respectively, to form
the required 4-cycle system. If G′ = G2 then this approach does not work. Fortunately, each of the two vertex-
permutations (1, 5)(2, 4)(3)(6, 8)(7) and (1)(2)(3, 5)(4)(6, 7)(8) are automorphisms of G2, so there exist automor-
phisms of G2 acting transitively on the edges in G2[{1, . . . , 5}], on the edges in {{1, 8}, {3, 7}, {5, 6}}, and on the edges
in G2[{6, 7, 8}]. So we need only consider the three cases: where (u, v) = (1, 2), where (u, v) = (1, 8), and where
(u, v) = (6, 8). In these cases the result follows: from Lemma 2, Case 1(c) with (a1, a2, a3, a4, c1) = (8, 7, 3, 2, 5)

when (u, v) = (1, 2); by Lemma 2, Case 1(c) with (a1, a2, a3, a4, c1) = (8, 7, 3, 2, 5) when (u, v) = (1, 8); and by the
4-cycles in {(9, 1, 6, 8), (9, 2, 6, 4), (9, 3, 1, 5), (9, 7, 1, 10), (10, 2, 4, 7), (10, 3, 8, 4), (10, 5, 3, 6), (2, 8, 5, 7)} when
(u, v) = (6, 8).

If n = 10 and dG(9, 10)�3, then G is one of the graphs in Fig. 2. In each case except when G is G3 or G4,
the vertices have been labeled so that the result follows from Lemma 2, case 1(a) or (c) (as indicated below the
graph). If G=G3 or G4 then the 4-cycles in {(1, 2, 7, 8), (1, 4, 7, 6), (1, 5, 3, 7), (2, 4, 8, 5), (2, 6, 3, 8), (1, 9, 2, 10),
(3, 9, 4, 10), (5, 9, 6, 10)} or {(1, 2, 6, 5), (1, 4, 9, 6), (1, 7, 2, 8), (1, 9, 2, 10), (2, 4, 10, 5), (3, 6, 7, 9), (3, 5, 8, 10),

(3, 7, 4, 8)}, respectively, provide the result.
Now, suppose that n= 12 and G is connected. According to the Royle list, there are 85 possibilities for G. For exam-

ple, the 4-cycles in S1= {(1, 4, 2, 5), (3, 7, 4, 8), (5, 11, 6, 12), (1, 8, 6, 10), (4, 10, 9, 11), (2, 6, 3, 9), (2, 10, 3, 11),

(1, 3, 5, 9), (2, 7, 5, 8), (1, 11, 8, 12), (4, 6, 7, 12), (7, 9, 12, 10)} form a 4-cycle system of K12−G where G happens to
be graph 15 in the list, containing the edges in {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}, {1, 7}, {2, 12}, {3, 12}, {4, 9},
{5, 10}, {6, 9}, {7, 8}, {7, 11}, {8, 9}, {8, 10}, {10, 11}, {11, 12}}. This set S1 of cycles has been carefully selected. Each
of the first six cycles (a, b, c, d) listed have the property that the edges {a, c} and {b, d} are in E(G). So we could
replace this 4-cycle with (a, c, b, d) to form another 4-cycle system of K12 − G1 for some other graph G1, and then
replace it with (a, c, d, b) to form another 4-cycle system of K12 − G2 for some third graph G2. So we can get
36 graphs by making all such switches. Of course there will be many repetitions, so we test for isomorphism using
NAUTY, but hopefully most of the 85 graphs can be obtained in this way. In fact, doing this produces 4-cycle systems
for all such graphs except for those numbered 1, 2, 3, 4, 5, 6, 9, 11, 12, 16, 17, 20, 23, 32, 39, 46, 56, and 67 in the
Royle list. Similarly one can switch cycles using the first 4 and the 7th cycle in S1 to get graphs 11, 17, and 56. If
we start with the set of four-cycles S2={(5, 9, 6, 12), (7, 10, 8, 11), (2, 4, 7, 5), (1, 8, 2, 9), (1, 3, 5, 11), (1, 5, 10, 6),

http://www.cs.uwa.edu.au/gordon/remote/cubics/index.html
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Fig. 2. Graphs on 10 vertices.

(1, 7, 12, 10), (2, 6, 8, 12), (2, 10, 4, 11), (3, 6, 4, 8), (3, 7, 9, 11), (3, 9, 4, 12)} then all edges occur in a 4-cycle ex-
cept for those in {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 1}, {1, 4}, {2, 7},
{3, 10}, {5, 8}, {6, 11}, {9, 12}; these edges induce graph 5 in the Royle list. In S2 the first four cycles can be switched
to produce up to 34 possible graphs for which there exists a 4-cycle system of the complement in K12. Among these,
graphs 1, 2, 3, 4, 5 and 12 in the Royle list appear. Next let S3 ={(2, 10, 3, 11), (5, 11, 6, 12), (4, 7, 10, 8), (1, 3, 12, 9),

(1, 7, 2, 8), (1, 4, 12, 10), (1, 5, 9, 11), (2, 4, 6, 9), (2, 6, 8, 12), (3, 5, 10, 6), (3, 7, 5, 8), (4, 9, 7, 11)}, thus avoiding
the edges in {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 1}, {1, 6}, {2, 5},
{3, 9}, {4, 10}, {7, 12}, {8, 11} which induce graph 6. The first four cycles can be switched, thereby producing graphs
6, 9, 16, 20, 23, and 39 in the Royle list. We also get graph 67 by replacing the first, fourth and fifth cycles in S3 with
(2, 3, 11, 10), (1, 12, 9, 3), and (1, 2, 7, 8). The edges in the 4-cycles in {(1, 3, 8, 9), (1, 6, 4, 12), (1, 7, 3, 11), (1, 8,

2, 10), (2, 3, 10, 7), (2, 6, 5, 11), (2, 9, 3, 12), (4, 5, 12, 11), (4, 7, 5, 8), (4, 9, 5, 10), (6, 7, 12, 10), (6, 8, 11, 9)} av-
oid the edges in graph 32. Finally, the edges in the 4-cycles in {(1, 3, 8, 4), (1, 5, 10, 7), (1, 8, 12, 10), (1, 11, 2, 12),

(2, 4, 7, 9), (2, 5, 8, 10), (2, 6, 3, 7), (3, 5, 7, 11), (3, 9, 5, 12), (4, 6, 8, 11), (4, 9, 6, 10), (6, 11, 9, 12)} avoid the
edges in graph 46.

It remains to suppose that n=12 and G is disconnected. Then G has 0, 4, 8, or 12 vertices of degree 1. First, if G has a
component K2, then the result follows by deleting this component, using the solution when n=10 and adding a 4-cycle
system of K2,10. Second, if G has a component of order 4, then it must be K4. If the rest of G is G′ �= G1, G2 (see
Fig. 1) then this can be handled by combining 4-cycle systems of G′ and K4,8. Otherwise, G′ is either G1 or G2. Observe
that both G1 and G2, can be decomposed into the two Hamiltonian cycles in: {(a1, a2, . . . , a8), (b1, b2, . . . , b8)} =
{(1, 7, 3, 6, 8, 2, 4, 5), (1, 3, 8, 4, 7, 5, 2, 6)} or {(1, 7, 2, 8, 4, 6, 3, 5), (1, 3, 8, 5, 7, 4, 2, 6)} for G1 or G2, respectively.
Now, let V (K4)={9, 10, 11, 12}. Then the 4-cycle system of K4∨G′ is {(9, a1, a2, a3), (10, a3, a4, a5), (9, a5, a6, a7),

(10, a7, a8, a1), (9, a2, 10, a4), (9, a6, 10, a8), (11, b1, b2, b3), (12, b3, b4, b5), (11, b5, b6, b7), (12, b7, b8, b1), (11,

b2, 12, b4), (11, b6, 12, b8)}.
Finally, we consider the case that G has two components of order 6. Let the two components be H1 and H2. If H1

has x1 vertices of degree 1 and x1 ≡ 2 (mod 4) and H2 has x2 vertices of degree 1 and x2 ≡ 2 (mod 4), then the 4-cycle



2906 C.-M. Fu et al. / Discrete Mathematics 308 (2008) 2901–2909

system of H1 ∨ H 2 can be obtained by combining 4-cycle systems of H 1, H 2, and K6,6, respectively. Therefore, it is
left to consider the case when xi ≡ 0 (mod 4). Clearly, if H1 (or H2) has four vertices of degree 1, then we can join
these four vertices by a 4-cycle. That is, it suffices to consider the case when H1 and H2 are cubic graphs of order 6.
This implies that each of H 1 and H 2 is either a 6-cycle or a vertex-disjoint union of 3-cycles. Thus, the proof will be
concluded by verifying C4|C6 ∨ 2C3, C4|C6 ∨ C6, and C4|2C3 ∨ 2C3.

Starting with C6 ∨ 2C3, we let V (C6 ∪ 2C3) = {ai, bi |i ∈ Z6}. Then the 4-cycle system of C6 ∨ 2C3 can be
obtained as follows: {(ai, bi, ai+3, bi+1), (ai, ai+1, bi, bi+2)|i ∈ Z6}. (Note that the 6-cycle is (a0, a1, a2, a3, a4, a5)

and 2C3 = (b0, b2, b4) ∪ (b1, b3, b5).)
Next, let V (C6∪C6)={ai, bi |i ∈ Z6}. The 4-cycle system of C6∨C6 is obtained as follows: {(b0, a0, a1, a2), (b2, a2,

a3, a4), (b4, a4, a5, a0), (a1, b0, b1, b2), (a3, b2, b3, b4), (a5, b4, b5, b0), (b0, a3, b1, a4), (b2, a0, b1, a5), (b4, a1, b1,

a2), (b3, a0, b5, a1), (b3, a2, b5, a3), (b3, a4, b5, a5)}.
Finally, let V (2C3∪2C3)={ai, bi, ci, di |i ∈ Z3}. Then the 4-cycle system of 2C3∨2C3 is the following collection of

4-cycles: {(a1, a2, b2, b1), (a1, a3, d3, d1), (a1, b2, c1, b3), (a1, d2, c1, d3), (c1, c2, d2, d1), (c1, c3, b3, b1),(a2, a3, b2,

b3), (a2, d3, c3, b1), (b3, a3, b1, c2), (b2, c2, d1, c3), (d2, d3, c2, c3), (d1, a2, d2, a3)}. �

Moving on to the general setting, we begin with the disconnected case.

Proposition 2. Suppose that G is an admissible, odd �3-graph that is disconnected. If n − 4 ∈ S then G ∈ G.

Proof. If one component of G is a copy of K4 defined on the vertex set A, then since n − 4 ∈ S there exists a 4-cycle
system (V (G)\A, C1) of Kn−4 − E(G1), where G1 = G[V (G)\A]. Then (V (G), C1 ∪ C(V (G)\A, A)) is a 4-cycle
system of Kn − E(G).

Otherwise, each vertex in v is incident with an edge that occurs in no 3-cycle. Since we can assume that G has at
most two vertices of degree 1, such an edge exists in each component that joins two vertices of degree 3; let {a1, a2}
and {a3, a4} be two such edges that occur in different components of G. For 1� i�4, let bi,1 and bi,2 be the other two
neighbors of ai . Let A = {a1, a2, a3, a4} and B = {bi,j | 1� i�4, 1�j �2}.

Since n−4 ∈ S, by Lemma 1 there exists a 4-cycle system (V (G)\A, C1) of Kn−4−E(G), where G1 is formed from
G−A by adding the edges {bi,j , bi+2,j } for 1� i, j �2. Since n−4 ∈ S, there exists a 4-cycle system (V (G)\A, C1) of
Kn−4 −E(G). Let C2 =C1 ∪{(a1, b3,1, b1,1, a3), (a1, b4,1, b2,1, a4), (a2, b3,2, b1,2, a4), (a2, b4,2, b2,2, a3), (b1,1, a2,

b3,1, a4), (b1,2, a2, b4,1, a3), (b2,1, a1, b4,2, a3), (b2,2, a1, b3,2, a4)} ∪ C(A, V (G)\(A ∪ B)). Then (V (G), C2) is a
4-cycle system of Kn − E(G). �

Now we provide the final piece of the puzzle.

Proposition 3. Let n�14. Suppose that G is a connected, admissible, odd �3-graph on n vertices. If n − 4 ∈ S then
G ∈ G.

Proof. We consider several cases in turn. Recall that we are assuming that G contains at most two vertices of degree 1.
Case 1: Suppose G contains no 3-cycle and no 4-cycle.
Let a be a vertex of degree 3 with neighbors b1, b2, and b3 that also have degree 3. For 1� i�3 let ci,j for 1�j �2 be

the neighbors of bi . Being in Case 1, all 10 vertices defined so far must be distinct, and the only possible edges joining
those vertices in G must be of the form {ci,j , ck,l} where i �= k. Let V1 be the set of these 10 vertices. Form a graph G1
from G[V (G)\{a, b1, b2, b3}] by adding the edges {ci,1, ci,2} for 1� i�3. Then by Lemma 1, G1 is an admissible odd
�3-graph, on n−4 vertices, so since n−4 ∈ S we know G1 ∈ G. Let (V (G)−{a, b1, b2, b3}, C1) be a 4-cycle system
of Kn−4−E(G1). Define C2=C1∪{(a, c1,1, b3, c2,1), (a, c1,2, b2, c3,1), (a, c2,2, b1, c3,2), (b1, b2, c3,2, c3,1), (b2, b3,

c1,2, c1,1), (b1, b3, c2,2, c2,1)} ∪C({a, b1, b2, b3}, V (G)\V1).Then (V (G), C2) is a 4-cycle system of Kn − E(G).
Case 2: Suppose G contains a 3-cycle but no 4-cycle.
Let � = (a1, a2, a3) be a 3-cycle in G chosen so that the neighbor of a3 outside � has degree 3; let this neighbor

of a3 be b. Note that G[{a1, a2, a3, b}] has exactly four edges since G has no 4-cycles. Naming further vertices, let
c1, c2, c3,1, and c3,2 be neighbors of a1, a2, b, and b, respectively. Being in Case 1, all eight vertices defined so far
are distinct (for example, c1 �= c2; for otherwise (a1, a3, a2, c1) is a 4-cycle in G). Let V1 be the set of these eight
vertices.
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Suppose that c1 is not adjacent to one of c3,1 and c3,2, say c3,1, and that c2 is not adjacent to the other, c3,2. Then let
G1 be formed from G − {a1, a2, a3, b} by adding the edges {c1, c3,1} and {c2, c3,2}. By Lemma 1, G1 is an admissible
odd �3-graph, so since n − 4 ∈ S, there exists a 4-cycle system (V (G)\{a1, a2, a3, b}, C1) of Kn−4 − E(G). Define
C2 = C1 ∪ {(a1, b, c1, c3,1), (a2, b, c2, c3,2), (a1, c2, a3, c3,2), (a2, c1, a3, c3,1)} ∪ C({a1, a2, a3, b}, V (G)\V1). Then
(V (G), C2) is a 4-cycle system of Kn − E(G).

Next notice that since G contains no 4-cycles, it follows that neither c1 nor c2 can be joined to both of c3,1 and c3,2,
nor can they have a common neighbor. Therefore, it now suffices to finish this case by considering the possibility that
{{c1, c3,1}, {c2, c3,1}} ⊆ E(G) and {{c1, c3,2}, {c2, c3,2}} ∩ E(G) = ∅. Then P = (a3, b, c3,1, c2) is an induced path in
G that satisfies condition (1c) in Lemma 2. So G ∈ G.

Case 3: Suppose G contains a 4-cycle.
Let (a1, a2, a3, a4) be a 4-cycle in G. We consider several subcases in turn. Let A = {a1, a2, a3, a4}.
(1) Suppose {{a1, a3}, {a2, a4}} ⊆ E(G). Then G[A] is a component in G, contradicting that G is connected.
(2) Suppose {a1, a3} ∈ E(G) and {a2, a4} /∈ E(G). Let b2 and b4 be the third neighbors of a2 and a4, respectively.
If b2 �= b4 and {b2, b4} /∈ E(G) then let G1 be formed from G − A by adding the edge {b2, b4}. Since n − 4 ∈ S,

let (V (G)\A, C1) be a 4-cycle system of Kn−4 − E(G1), and let C2 = C1 ∪ {(a1, b2, a3, b4), (a2, a4, b2, b4)} ∪
C(V (G)\(A ∪ {b2, b4}), A). Then (V (G), C2) is a 4-cycle system of Kn − E(G).

If b2 �= b4 and {b2, b4} ∈ E(G), then let c2 and c4, be the third neighbors of b2 and b4, respectively. If c2 = c4 then
let d be the third neighbor of c2, and let e1 and e2 be neighbors of d; apply Lemma 2 with P = (e1, d, c2, b2) using
condition (1b) or (1c) depending on whether {e1, e2} ∈ E(G) or not. If one of b2 and b4 has degree 1, then let the
other, bx (so x ∈ 2, 4) be adjacent to c which is adjacent to d1 and d2; apply Lemma 2 to P = (d1, c, bx, ax) using
condition (1c) or (1a) depending on whether or not {d1, d2} ∈ E(G). So now suppose that c2 �= c4. If c2 or c4 has
degree 1, then proceed as above. If either c2 or c4, say cx (so x ∈ {2, 4}) has a neighbor d /∈ {c2, c4} that is not also
adjacent to the other c vertex, then apply Lemma 2 with P = (d, cx, bx, ax) using condition (1a). Otherwise c2 and c4
have a common neighbor d that has a third neighbor e that has two further neighbors f1 and f2 that are different from
all the vertices defined so far (since n�14 and G is connected); apply Lemma 2 to P = (f1, e, d, c2) using condition
(1a–c), depending on whether {c2, c4} ∈ E(G) and/or {f1, f2} ∈ E(G).

If b2 = b4 then let c be the third neighbor of b2. If c has degree 1 in G then we have just defined a component in
G, contradicting the assumption that G is connected. If c has degree 3, then let the neighbors of c be d1 and d2. Then
P = (a2, b2, c, d1) satisfies condition (1a) or (1c) of Lemma 2, depending on whether d1 and d2 are adjacent or not.
So again the result follows.

(3) We can now assume that A induces a 4-cycle in G. Let B be the set of vertices in V (G)\A that are adjacent to
vertices in A. We consider the values of |B| in turn. For 1� i�4 let bi be adjacent to ai ; so B = {bi |1� i�4} where
b1, . . . , b4 need not all be distinct.

(3i) Suppose that |B| = 4. First suppose that the complement of G[B] contains a 1-factor. Without loss of gener-
ality we may assume that either both {b1, b3} and {b2, b4} are not edges in G, or both {b1, b4} and {b2, b3} are not
edges in G.

If both the edges {b1, b3} and {b2, b4} do not occur in G then form G1 by adding them to G[V (G)\A]. Since
n − 4 ∈ S, let (V (G)\A, C1) be a 4-cycle system of Kn−4 − E(G1). Let C2 = C1∪ {(a1, a3, b1, b3), (a2, a4, b2, b4),
(a1, b2, a3, b4), (a2, b1, a4, b3)} ∪C(V (G)\(A ∪ B), A). Then (V (G), C2) is a 4-cycle system of Kn − E(G).

If both the edges {b1, b4} and {b2, b3} do not occur in G then form G1 by adding them to G[V (G)\A]. Since
n − 4 ∈ S, there exists a 4-cycle system (V (G)\A, C1) of Kn−4 − E(G1). Let {z1, z2} ⊂ V (G)\(A ∪ B). Let C2 =
C1∪{(a1, b4, b1, a3), (a2, b3, b2, a4), (b2, a3, b4, z1), (b4, a2, b1, z2), (b1, a4, b3, z1), (b3, a1, b2, z2)}∪C(V (G)\(A∪
B), A), where z1 and z2 are any two vertices in V (G)\(A ∪ B). Then (V (G), C2) is a 4-cycle system of Kn − E(G).

If the complement of G[B] contains no 1-factor then since G[B] has maximum degree at most 2 it must contain a
3-cycle, say (b2, b3, b4). Since G is connected, let c1 and c2 be the two other neighbors of b1. Then P = (c1, b1, a1, a2)

satisfies condition (1c) or (1a) of Lemma 2, depending on whether c1 and c2 are adjacent or not. So again the result
follows.

(3ii) Suppose that |B| = 3. We can assume that either b3 = b4 or that b2 = b4.
First suppose that b3 = b4. If neither {b1, b3} nor {b2, b3} are edges in G then let G1 be formed by adding them

to G[V (G)\A]. Since n − 4 ∈ S there exists a 4-cycle system (V (G)\A, C1) of Kn−4 − E(G1). Let C2 = C1 ∪
{(a1, a3, b2, b3), (a2, a4, b1, b3), (b1, a2, z, a3), (b2, a1, z, a4)} ∪ C(V (G)\(A ∪ B ∪ {z}), A), where z is any vertex in
V (G)\(A ∪ B). Then (V (G), C2) is a 4-cycle system of Kn − E(G).
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Otherwise, if b3 = b4 then it now follows that one of {b1, b3} or {b2, b3} must be an edge in G (we can assume it is
{b2, b3} by symmetry). Either b1 has degree 3 or it has degree 1 in G. If b1 has degree 3, then let its two other neighbors
be c1 and c2 (possibly c2 = b2). If dG(b1) = 3 and c2 �= b2 then P = (c1, b1, a1, a4) satisfies condition (1a) or (1c) of
Lemma 2 depending on whether c1 is adjacent to c2 or not. If dG(b1) = 3 and c2 = b2 then since G is connected, c1
must have two neighbors d1 and d2; then P = (d1, c1, b1, a1) satisfies condition (1c) or (1a) of Lemma 2 depending
on whether d1 is adjacent to d2 or not. If b1 has degree 1, then let c be the remaining neighbor of b2, and let d1 and d2
be the other two neighbors of c (all vertices defined in this situation are necessarily distinct because for each vertex all
three incident edges have been defined). Then P = (d1, c, b2, a2) satisfies condition (1c) or (1a) of Lemma 2 depending
on whether d1 is adjacent to d2 or not, so the result follows.

Next suppose that b2 = b4. If either {b1, b2} or {b2, b3} is in G (by symmetry we assume {b2, b3} ∈ E(G)) then
(a2, a3, a4, b2) is a 4-cycle in G where N(a2, a3, a4, b2) contains only two further vertices, namely a1 and b3; so this
case is handled when we consider |B| = 2. Therefore, we can assume that neither {b1, b2} nor {b2, b3} is an edge in G.
If dG(b1) = 1 = dG(b3) then let c be the remaining neighbor of b2, and let d1 and d2 be the other neighbors of c. Then
P = (d1, c, b2, a4) satisfies condition (1c) or (1a) of Lemma 2 depending on whether d1 and d2 are adjacent or not. So
suppose dG(b1) = 3. Let c1 and c2 be neighbors of b1, and let c3 be the other neighbor of b2, where possibly c2 = c3.
Then P = (c1, b1, a1, a2) satisfies condition (1c) or (1a) of Lemma 2, depending on whether c1 and c2 are adjacent
or not.

(3iii) Suppose that |B| = 2. Then we have three cases to consider.
Suppose that {a1, b1}, {a2, b1}, {a3, b3}, and {a4, b3} are edges in G. Since G is connected, {b1, b3} /∈ E(G), so let

the remaining neighbors of b1 and b3 be c1 and c3, respectively. If c1 = c3 then P = (a1, b1, c1, d) is a path satisfying
condition (1c) of Lemma 2, where d is the third neighbor of c1. If c1 �= c3 then P = (a1, b1, c1, d1) satisfies condition
(1b) or (1c) of Lemma 2, where d1 /∈ {b1, c3} is a neighbor of c1.

Next, suppose that {a1, b1}, {a2, b2}, {a3, b1}, and {a4, b2} are edges in G. Since G is connected, {b1, b2} /∈ E(G).
Let the remaining neighbors of b1 and b2 and c1 and c2, respectively. Then the rest of this case follows the previous
case, using P = (a1, b1, c1, d1) and Lemma 2 to obtain the result.

Finally, suppose that b1 is adjacent to a1, a2, and a3, and {a4, b4} ∈ E(G). Then P = (c4, b4, a4, a3) satisfies
condition (1c) or (1a) of Lemma 2, where c4 �= a4 is a neighbor of b4. �

We can now collect all the pieces.

Theorem 1. Let G be a graph on n vertices, where n is even and �(G)�3. Then there exists a 4-cycle system of
Kn − E(G) if and only if

1. all vertices in G have odd degree,
2. 4 divides n(n − 1)/2 − |E(G)|, and
3. G is not one of the two graphs of order 8 described in Proposition 1.

Proof. Since the necessity is clear, we prove the sufficiency. So let G satisfy conditions (1–3) of this theorem. If n�12
then the result follows from Proposition 1. So suppose that n�14. Using induction, suppose that m ∈ S for all m
satisfying 10�m�n − 2. If G is disconnected then the result follows from Proposition 2. If G is connected then the
result follows from Proposition 3. �
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