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PAPER

Observer-Based Synchronization for a Class of Unknown Chaos 

Systems with Adaptive Fuzzy-Neural Network

Bing-Fei WU•õa), Member, Li-Shan MA•õ,•õ•õ, and Jau-Woei PERNG•õ•õ•õ, Nonmembers

SUMMARY This investigation applies the adaptive fuzzy-neural ob-
server (AFNO) to synchronize a class of unknown chaotic systems via 
scalar transmitting signal only. The proposed method can be used in 
synchronization if nonlinear chaotic systems can be transformed into the 
canonical form of Lur'e system type by the differential geometric method. 
In this approach, the adaptive fuzzy-neural network (FNN) in AFNO is 
adopted on line to model the nonlinear term in the transmitter. Addition-
ally, the master's unknown states can be reconstructed from one transmitted 
state using observer design in the slave end. Synchronization is achieved 
when all states are observed. The utilized scheme can adaptively estimate 
the transmitter states on line, even if the transmitter is changed into another 
chaos system. On the other hand, the robustness of AFNO can be guaran-
teed with respect to the modeling error, and external bounded disturbance. 
Simulation results confirm that the AFNO design is valid for the application 
of chaos synchronization.
key words: chaos, fuzzy-neural network (FNN), adaptive fuzzy-neural ob-
server (AFNO), synchronization, robust

1. Introduction

The synchronization of chaotic systems has been exten-
sively studied and given its potential application to secu-
rity communications. Synchronization means that the mas-
ter and slave have identical states as time goes to infinity. 
Pecora and Carroll first considered the synchronization of 
chaotic systems [18], in which the drive-response concept is 
introduced to achieve synchronization by a scalar transmit-
ted signal. Perfectly identical parameters cannot be achieved 
in real applications. Therefore, the nonlinear robust con-
trol [22], [23] concept is employed to chaos, synchronization 
with previous known states within the margin of synchro-
nization error. An adaptive recurrent neural controller can 
be utilized to synchronize with respect to unknown systems 

[19], [20]. However, all states should be measurable with 
this algorithm. In contrast, the nonlinear observer is de-
signed to synchronize chaotic systems [3], [8], [16], Morgul 

and Solak [16] presented global synchronization is possi-

ble for a system with Brunowsky canonical form. Grassi 

and Mascolo [8] provided a systematic method for synchro-

nizing using a scale transmitted signal. Message-free syn-
chronization has been developed to permit communication 
with masking message in chaotic signals [14]. Messages can 
be extracted with message-free synchronization. Moreover, 
Boutayeb [3] proposed a scheme which is provided to syn-
chronize and extract message simultaneously. Nevertheless, 
these systems do not consider the robustness of the state 
observer with respect to parameters mismatch [3], [8], [16]. 
Adaptive sliding observer design [2], [7] can handle param-
eters mismatch. Furthermore, a robust observer [13] is de-
signed for synchronization using the Takagi-Sugeno fuzzy 
model and the LMI approach. Millerioux and Daafouz re-
cently introduced the input-independent global chaos syn-
chronization [15]. In this method, the added message does 
not affect the synchronization if the observer gain is appro-
priately designed. Other studies consider nonlinear observer 
designs for chaos synchronization [1], [17]. However, by 
the methods of previous descriptions, the chaotic systems 
should be known previously before synchronization design. 
Recently, the system identification approaches [5], [6], [9] 
have been introduced for a scale signal identification and 
chaos synchronization respectively. In [6], the system iden-
tification concepts are applied to approximate the chaos sig-
nal. The proposed identification scheme assumes a Lur'e 
type system as a reference model. This allows us to separate 
the identification process into two parts, adjusting alterna-
tively the parameters of the linear and the nonlinear part. 
For modeling the linear system, the autoregressive moving 
average (ARMA) approach is utilized. On the other hand, 
the genetic algorithm is applied to optimize the break points 

parameters of nonlinear static functions to approximate non-
linear mapping. However, this approach is based on off-line 
identification, and it is not an on-line tuning scheme. Fur-
thermore, the order in linear part identification should be 
by trial and error. The identification results just imitate the 
transmission signal and the other states in the master end 
cannot be achieved to synchronize simultaneously. In addi-
tion, the simulation results of this approach seem not very 
well. According to [5], the recursive identification is ap-
plied for chaos synchronization when the slave has exactly 
identical structure to the master system, but its parameters 
are unknown. It is shown that the unknown slave system 
parameters can be found by the concepts of adaptive syn-
chronization. In other words, when the unknown slave sys-
tem parameters are found, the synchronization is achieved. 
However, the structures in the master and slave ends should 
be known previously and exactly the same, although the pa-
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rameters in the slave end can be estimated by recursive iden-
tification. The discussion of robustness is not included too. 
More recently, an alternative indirect Takagi-Sugeno fuzzy 
model based adaptive fuzzy observer design has been ap-

plied to chaos synchronization under assumptions that states 
are unmeasurable and parameters are unknown [9]. The 
adaptive law is designed to estimate the unknown param-
eters in the T-S fuzzy model of the slave end. When the 
unknown parameters are estimated correctly, the synchro-
nization is achieved. However, the form of the T-S fuzzy 
model should be known first, and then the adaptive fuzzy 
observer is designed by the T-S fuzzy model. In addition, 
the discussion of robustness is not included.

This investigation achieves synchronization with re-
spect to a class of unknown master chaotic systems by in-
troducing the concepts of AFNO [11], Brunowsky canoni-
cal form [16] and Lur'e systems [21]. The proposed system 
includes a chaotic master with canonical form and the slave 
with AFNO. The AFNO combines a FNN and a linear ob-
server. In this design, the slave should synchronize with the 
master by a scale transmitted signal. This approach employs 
adaptive FNN to model the nonlinear term of the master end. 
The output of the adaptive FNN, robust input and a trans-
mitted state are sent to the linear observer to estimate the 
states of the slave. The master and slave achieve synchro-
nization when all states are estimated at the slave. Addi-
tionally, the adaptive laws are needed to update the weights 
of the FNN, when the reconstructed and transmitted states 
differ from each other.

The benefits of provided AFNO for synchronization 
can be stated as follows. AFNO is first applied to chaotic 
synchronization with only one transmitted signal. Since 
AFNO is on line learning at the slave, the synchronization 
can be achieved respect to a switched unknown chaotic sys-
tem with the Lur' e type. Additionally, the adaptability for 

parameters change or even system switched in the mater and 
the robustness for modeling error and external bounded dis-
turbance are also given. AFNO also has FNN's inherent 

properties of fault-tolerance, parallelism learning, linguistic 
information and logic control. By comparing with [5], [6], 

[9], our presentation provides the on-line, robust and adap-
tive synchronization for a class of chaos systems. The form 
of nonlinear functions in the master end cannot be known in 

previous due to soft computing with FNN for fitting it in the 
slave end.

The paper is organized as follows. Section 2 describes 
the overall structure of adaptive synchronization with the 
AFNO design. Section 3 then introduces the AFNO design. 
Next, Sect. 4 includes the simulation results, including two 
examples to demonstrate the effectiveness of this applica-
tion. Conclusions are finally are made in Sect. 5.

2. Overall Structure of Adaptive Synchronization with 

Fuzzy-Neural Observer Design

2.1 Introduction of Overall Structure

Assume that the master and slave are all Lur' e type. Figure 1 

illustrates the overall structure of adaptive synchronization 
with AFNO, which is synthesized with an FNN and a linear 

observer. In this design, only a scalar transmitted signal xM1 

is sent to the slave from the master. By the observed state xS, 

fs(xS)can be computed to approximate fM(xM)with FNN. 
The adaptive laws update the weights in FNN when the error 
exists between xM1 and xS1. The linear observer inputs are 
us=fs(xS), the transmission signal xM1, and the robust 
input ur. The synchronization is achieved when xM=xS.

2.2 Dynamics of the Master and Slave Ends

Master End: 

xM=AMxM+BM(fM(xM)+d) 

yM1=xM1=CMxM, 
(1)

Slave End: [11], [12]

xS=ASxS+BS(fs(xS)-Ur)+Koeo 
yS1=xS1=CSxS, 

(2)

where 

CM=CS=[1 0 •c0 0]; d denotes an bounded external 

disturbance; 

xM=[xM xM •c x(n-1)M]T=[xM1 xM2 •c xMn]T•¸Rn, 

and xS=[xS xS •c x(n-1)S]T=[xS1 xS2 •c xSn]T•¸Rn; 

observer gain KTo=[k1 k2 •c kn] is designed to satisfy 

As-KoCs strictly Hurwitz, where (CS, AS) represents ob-

server pair; eo=xM1-xS1; ur is designed to enhance the 

robustness caused by d; fM(xM) is approximated by adap-

tive FNN with fS(xS). fM(xM) is unknown (uncertain) but 

bounded continuous functions [4], [25].

Synchronization Error: 

The synchronization error can be defined as: 

esyn=xM-xS, (3)

where 

esyn=[esyn esyn •c e(n-1)syn]T=[esyn1 esyn2 •c esynn]T•¸Rn.

The master and slave achieve synchronization when all 

states are estimated at the slave.
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Maiter End Skive end

Fig. 1 The overall structure of synchronization with AFNO.

3. Adaptive Fuzzy-Neural Network Observer Design

In this section, AFNO is introduced. Under an assump-

tion, the designed AFNO can estimate the master's states 

to achieve synchronization. AFNO can then be synthesized 

by an FNN and a linear observer.

3.1 Fuzzy-Neural Network [11], [12]

The FNN is designed to model the nonlinear function 

fM(xM) with fS(xS). The FNN depicted in Fig. 2 is utilized 

as an approximator to model the nonlinear functions such 

as f(x). The FNN [10], [24], which consists of fuzzy IF-

THEN rules and a fuzzy inference engine, is adopted as a 

function approximator. The fuzzy inference engine employs 

the IF-THEN rules to generate a mapping from an input lin-

guistic vector x=[x1 x2•cxn]T•¸Rn to an output linguistic 

variable y(x)•¸R. Fuzzy IF-THEN rule ith is thus written 

as: 

R(i): if x1 is Ai1 and •c and xn is Ain, then y is Bi, 

where Ai1, Ai2, •c, Ain and Bi are fuzzy sets with membership 

functions ƒÊAij(xj) and ƒÊBi(yi), respectively. By using prod-

uct inference, center-average, and singleton fuzzifier, output 

y(x) from the fuzzy-neural approximator can be written as 

(4)

where, μAij(xj) denotes the membership function value of 

fuzzy variable xj; h is the total number of IF-THEN 

rules, and yi is the point at which μBi(yi)=1. θf=

[y1y2…yh]T denotes an adjustable parameter vector, and 

Γ=[τ1τ2… τh]T represents a fuzzy basic vector, where τi 

Layer I Layer II Layer III Layer IV

Fig.2 The fuzzy-neural approximator [11], [12].

is given by 

(5)

By adjusting the parameter vector ƒÆf in (4) with adap-

tive laws, the uncertain nonlinear function f(x) can be ap-

proximated by f(x) generated in (6). By using the fuzzy-

neural approximator, the estimated functions f(x) can be de-

termined from the outputs of the fuzzy-neural approximator, 

which is defined as follows: 

f(x|ƒÆf)=ƒÆTfƒ¡(x), (6)

where ƒÆf is an adjustable parameter vector.

In summary, (6) can describe the input-output relation 

of the FNN. The overall structure of the FNN is divided into 

four layers as shown in Fig. 2. The physical meanings of 

(6) can be interpreted by Fig. 2 in the following. The input 

nodes in Layer I represent input linguistic vectors. Nodes in 

Layer II denote values of the membership function of total 
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linguistic variables. Each node in Layer III excuses a fuzzy 
rule. The output of Layer IV is the output signal modeling 
the nonlinear function. The connection parameters between 
layer III and layer IV are adjusted by using adaptive laws. 
The number of fuzzy rules can be dependent on complex 
level of nonlinear systems. In general, the more complex 
the systems are, the more numerous rules are demand. Of 
course, the computing load is heavy with more numerous 
rules. On the other hands, when the rules are less, the com-
puting load is slight. This is a trade off problem.

3.2 Adaptive Fuzzy-Neural Network Observer

Assumption 1 [11], [12]: 
The master state vector xM and the slave state vector xS 

belong to compact sets SM and Ss respectively, where 

SM={xM∈Rn:‖xM‖_??_εx
M<∞}, (7)

Ss={xS∈Rn:‖xS‖_??_εxS<∞}, (8)

and ƒÃxM and ƒÃxS are designed parameters.

The optimal parameter vector ƒÆ*f falls in some convex 

region with constant radius ƒÃƒÆf. The convex region can be 

specified as shown in (9).

RƒÆf={ƒÆf•¸Rn:•aƒÆf•a_??_ƒÃƒÆf}. (9)

The optimal parameter vector ƒÆ*f can be described as: 

(10)

Refnark 1. The optimal θ*f is possible in an ideal situation.

In our applications, the adaptive laws will be applied to tune 

θf to approach θ*f.

The adaptive fuzzy-neural nonlinear observer with re-

spect to a class of nonlinear systems (1)can be designed 

under assumption 1. AFNO can be designed [11], [12]: 

xS=ASxS+Bs(θTfΓ(xS)-ur)+Koeo 

yS1=xS1=CSxS, 
(11)

where θTfΓ(xS) is calculated by FNN to approximate the 

nonlinear functions fM(xM)in dynamical systems, and ur 

denotes the robust input to compensate the effect due to ex-

ternal disturbance and the approximated modeling error by 

FNN. Based on [11], [12], ur can be designed as follows: 

ur=-1/γ λmin(Q)eo, (12)

where Q=QT>0, and γ is a positive constant. In general, 

γ should be proper designed. The small gamma will, cause 

large ur to attenuate the effect of disturbance. Indeed, the 

better attenuation performance will be obtained when the 

small γ is chosen. Additionally, Q=QT>0 will make the 

Riccati-like equation satisfied in stability and adaptive law 

derivation with Lyapunove function [12].

The adaptive laws in FNN are as follows: 

(13)

where φ(xS)=L-1(S)Γ(xS); L-1(S) denotes a proper sta-

ble transfer function to transform H(s)L(s) into a proper 

strictly-positive real (SPR) transfer function, and γ1 denotes 

the designed parameter. The function H(s) is represented as 

follows: 

H(s)=CS(sI-(As-KoCs))-1Bs. (14)

Prf(γ1eoφ(xS)) in (15) is the operator of projection for 

achieving minimal modeling error for fM(xM).

(15)

The design procedure, stability proof and adaptive laws 

(13) can be referred in [11], [12]

4. Simulation Results

This section verifies the feasibility of AFNO for synchro-
nization using two examples.

4.1 Example 1

In this example, AFNO is applied to synchronize a master 
Chua's circuit under modeling error, different initial condi-
tions and external bounded disturbances. The results will 
demonstrate the adaptability and robustness of AFNO.

The master Chua's circuit is reformed as a canonical 
form [26].

(16)

where

fM(xM)=14/1805xM1-168/9025xM2+1/38xM3-2/45•~(28/361xM1+7/95xM2+xM3)3

The adaptive laws tune FNN to approach fs(xS). The 
observer is designed to place poles of As-KoCs in -30 i.e. 
linear observer gain vector is KTo=[90 2700 27000].

Other parameters of AFNO are ƒÁ=10, ƒÁ1=0.01, Q

is 3•~3 identity matrix, and L-1=1/S+2. The membership 

functions for xSi, i=1, 2, 3 in FNN are given as follows: 

μA1i(xSi)=1/(1+exp(5×(xSi+0.75))), 

μA2j(xSi)=exp(-(xSi+0.5)2), 

μA3j(xSi)=exp(-(xS+0.25)2), 

μA4j(xSi)=exp(-(xSi)2), 

μA5j(xSi)=exp(-(xSi-0.25)2), 

μA6j(xSi)=exp(-(xSi-0.5)2), 

μA7j(xSi)=1/(1+exp(-5×(xSi-0.75))). 

(17)
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Table 1 Three cases of the initial conditions.

Note: In the simulations, the disturbances in the master end are set as 
Case 1 in Table 2 in three cases.
Note: In the simulations, the disturbances in the master end are set as Case 

1 in Table 2 in three cases.

Table 2 Three cases of the disturbances.

Note: In the simulations, the initial conditions are chosen as Casel in 

Table 1 in three cases.

Note: In the simulations, the initial conditions are chosen as Casel in Ta-

ble 1 in three cases.

Fig. 3 The first states xM1 and xS1 in Chua's circuit and AFNO under 

different initial conditions.

In this example, three states should be estimated, ac-

counting for why the fuzzy rules in process are 343. The ini-

tially adjustable parameters in adaptive FNN are chosen to 

be ƒÆf(0)=0 to demonstrating modeling error. The weights 

of FNN are turned by the adaptive laws to form fM(xM).

Different initial conditions of the master and slave are 

listed in Table 1. Furthermore, the distinct disturbances are 

listed in Table 2.

Figures 3-5 summarize the simulation results of differ-

ent initial conditions for three states in AFNO. In Figs. 3-

5, the distinct initial conditions for each state in AFNO are 

listed in Table 1 and a type of disturbance in the master 

end is set as Case 1 in Table 2. Figure 3 illustrates that 

the first state xS1 in AFNO with three different initial con-

ditions synchronizes xM1 in Chua's circuit. Figures 4 and 

5 illustrate that xS2 and xS3 synchronize xM2 and xM3, re-

spectively. Although the initial conditions differ from 

each other, AFNO synchronizes with Chua's circuit quickly, 

Fig. 4 The second states xM2 and xS2 in Chua's circuit and AFNO under 

different initial conditions.

Fig. 5 The third states xM3 and xS3 in Chua's circuit and AFNO under 

different initial conditions.

Fig. 6 The first states xM1 and xS1 in Chua's circuit and AFNO under 
different disturbances.

well, and adaptively. Moreover, the synchronization error 

approaches zero as time goes to infinity. The robustness 
of AFNO can be also specified from Figs. 6-8 with vari-

ous intensity disturbances in the master end. In Figs. 6-8, 

the initial conditions of three states are selected as Case 1 in 
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Table 1 and the different disturbances are chosen as Table 2. 

Figure 6 demonstrates that the first state xS1 in the slave syn-
chronizes xM1 in the master end immediately and well under 

three different disturbances. Figures 7 and 8 reveal that xS2 

and xS3 synchronize xM2 and xM3, individually. Even if the 
different disturbances are added in the master Chua's circuit, 

AFNO synchronizes with the master robustly.

4.2 Example 2

Example 2 demonstrates the adaptability of the utilized 

method by switched master between Chua's circuit and 

Rossler system as shown in Fig. 9. When the master is 

switched to another system, the slave follows to synchronize 
another chaotic system soon and well. The similar different 

initial conditions and disturbances listed in Tables 1 and 2 

are considered in simulations for demonstrating the robust-
ness of AFNO.

Fig. 7 The second states xM2 and xS2 in Chua's circuit and AFNO under 

different disturbances.

The original Rossler system can be presented as [16]: 

z1=z2+az1

z2=-z1-z3

z3=b-cz3+z2z3, 

(18)

where z=[z1 z2 z3]T.

Let 

xM=Ｔ-1z, (19)

where 

The Rossler system is reformed as the canonical form 

with 

fM(xM)=-cxM1+(ac-1)xM2+(a-c)xM3+ax2M1

-(a2+1)xM1xM2+axM1xM3+2ax2M2-xM2xM3+b ,

Fig. 8 The third states xM3 and xS3 in Chua's circuit and AFNO under 

different disturbances.

Fig. 9 The structure of synchronization with the switched masters.
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(a)

(b)

Fig. 10 The first states in Chua's circuit, Rossler system and AFNO un-

der different initial conditions and switched masters: (a) actual figure size 

(b) enlarged figure size of local region.

Fig. 11 The second states in Chua's circuit, Rossler system and AFNO 
under different initial conditions and switched masters.

where a=0.2, b=0.2, and c=6.3. Notably, fM(xM) is 
revised from [16].

The parameters of AFNO at the slave resemble those 
in Example 1. The initial condition of Rossler system is set

 

[0 0 0]T.
Figures 10-12 indicate the simulation results with re-

Fig. 12 The third states in Chua's circuit, Rossler system and AFNO 

under different initial conditions and switched masters.

Fig. 13 The first states in Chua's circuit, Rossler system and AFNO 
under different disturbances and switched masters.

spect to each state for diverse initial conditions in AFNO and 
switched masters. The distinct initial conditions for each 
state in AFNO are shown in Table 1 and a kind of distur-
bance in the master end is set as Case 1 in Table 2. Figure 10 
illustrates that the first state xS1 in AFNO with three differ-
ent initial conditions synchronizes xM1 in the master end, 
even if the switched masters exist at the third second (Chua's 
circuit to Rossler system) and the sixth second (Rossler sys-
tem to Chua's circuit). Figures 11 and 12 exhibit that xS2 
and xS3 synchronize xM2 and xM3, respectively. Although 
the initial conditions differ from each other and the switched 
masters exist, AFNO synchronizes with the switched mas-
ters fast, well, and adaptively. On the other hand, simulation 
results in Figs. 13-15 verify the robustness of AFNO for the 
different disturbances and the switched systems in the mas-
ter end. In Figs. 13-15, the initial conditions of three states 
are chosen as Case 1 in Table 1 and the different disturbances 
are selected as Table 2. Figure 13 displays that the first state 
xS1 synchronizes xM1 immediately and well under three dif-

ferent disturbances, even thought the switched masters exist 
at the third second (Chua's circuit to Rossler system) and 
the sixth second (Rossler system to Chua's circuit). Fig-
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Fig. 14 The second states in Chua's circuit, Rossler system and AFNO 

under different disturbances and switched masters.

Fig. 15 The third states in Chua's circuit, Rossler system and AFNO 
under different disturbances and switched masters.

ures 14 and 15 reveal that xS2 and xS3 synchronize xM2 and 

xM3, separately. In spite of the different disturbances and the 

switched systems are considered in the master end, AFNO 
synchronizes with the master robustly.

It is noted that Figs. 10-15 display the simulation re-
sults indicating AFNO synchronizes with Chua's circuit at 
0-3sec. The Rossler system also runs dynamically from 
the initial condition. AFNO synchronizes with Rossler at 
3-6sec, while Chua's circuit runs simultaneously.

From these simulation results, AFNO can synchronize 
with a class of unknown chaotic systems adaptively and ro-
bustly.

5. Conclusions

This work has applied AFNO for synchronization with re-
spect to a class of unknown chaos systems via a scalar 
transmitted signal only. Once the nonlinear chaotic systems 
could be transformed into the canonical form of Lur'e sys-
tem type by the differential geometric method, the AFNO 
method can be utilized for synchronization. In this ap-

proach, the nonlinear term in the master end was mod-
eled by the adaptive fuzzy-neural network (FNN) in AFNO 

on line. Furthermore, the states in the master end were 

observed from a scale transmitted signal by observer de-

sign. When states in the master and slave ends were iden-

tical, we said the synchronization was reached. By this 

scheme, the AFNO could estimate the unknown master's 

states adaptively, even though the master was altered into 

another chaos system. On the other hand, AFNO could deal 

with the modeling error, and external bounded disturbance 

to demonstrate its robustness advantage. Simulation results 

showed that the adaptive and robust soft AFNO was suitable 

for chaos synchronization with respect to a class unknown 

chaos systems.
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