
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1105–1117
An efficient algorithm for mining temporal high utility itemsets
from data streams

Chun-Jung Chu a, Vincent S. Tseng b,*, Tyne Liang a

a Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC

Received 10 October 2006; received in revised form 19 July 2007; accepted 21 July 2007
Available online 3 August 2007
Abstract

Utility of an itemset is considered as the value of this itemset, and utility mining aims at identifying the itemsets with high utilities. The
temporal high utility itemsets are the itemsets whose support is larger than a pre-specified threshold in current time window of the data
stream. Discovery of temporal high utility itemsets is an important process for mining interesting patterns like association rules from
data streams. In this paper, we propose a novel method, namely THUI (Temporal High Utility Itemsets)-Mine, for mining temporal high
utility itemsets from data streams efficiently and effectively. To the best of our knowledge, this is the first work on mining temporal high
utility itemsets from data streams. The novel contribution of THUI-Mine is that it can effectively identify the temporal high utility item-
sets by generating fewer candidate itemsets such that the execution time can be reduced substantially in mining all high utility itemsets in
data streams. In this way, the process of discovering all temporal high utility itemsets under all time windows of data streams can be
achieved effectively with less memory space and execution time. This meets the critical requirements on time and space efficiency for min-
ing data streams. Through experimental evaluation, THUI-Mine is shown to significantly outperform other existing methods like Two-
Phase algorithm under various experimental conditions.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Utility mining; Temporal high utility itemsets; Data stream mining; Association rules
1. Introduction

The mining of association rules for finding the relation-
ship between data items in large databases is a well studied
technique in the data mining field with representative meth-
ods like Apriori (Agrawal et al., 1993, 1996). The problem
of mining association rules can be decomposed into two
steps. The first step involves finding of all frequent itemsets
(or say large itemsets) in databases. Once the frequent item-
sets are found, generating association rules is straightfor-
ward and can be accomplished in linear time.
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.07.026

* Corresponding author. Tel.: +886 6 2757575x62536; fax: +886
62747076.

E-mail addresses: cjchu@cis.nctu.edu.tw (C.-J. Chu), tsengsm@
mail.ncku.edu.tw (V.S. Tseng), tliang@cis.nctu.edu.tw (T. Liang).
An important research issue extended from the mining
of association rules is the discovery of temporal association
patterns in data streams due to the wide applications on
various domains. Temporal data mining can be defined
as the activity of discovering interesting correlations or pat-
terns in large sets of temporal data accumulated for other
purposes (Bettini et al., 1996). For a database with a spec-
ified transaction window size, we may use an algorithm like
Apriori to obtain frequent itemsets from the database. For
time-variant data streams, there is a strong demand to
develop an efficient and effective method to mine various
temporal patterns (Das et al., 1998). However, most meth-
ods designed for traditional databases cannot be directly
applied to the mining of temporal patterns in data streams
because of their high complexity.

In many applications, we would like to mine temporal
association patterns from the most recent data in data

mailto:cjchu@cis.nctu.edu.tw
mailto:tsengsm@mail.ncku.edu.tw
mailto:tsengsm@mail.ncku.edu.tw
mailto:tliang@cis.nctu.edu.tw

Fig. 1. An example of online transaction flows.

1106 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
streams. That is, in temporal data mining, one should not
only include new data (i.e., data in the new hour) but also
remove the old data (i.e., data in the most obsolete hour)
from the mining process. Without loss of generality, con-
sider a typical market-basket application as illustrated in
Fig. 1, where the transactional data of customer purchases
are shown as time advances.

In Fig. 1, for example, data was accumulated as a func-
tion of time. Data obtained prior to some specified time
interval in the past becomes useless for reference. People
might be most interested in the temporal association pat-
terns in the latest three hours (i.e., db3,5) as shown in
Fig. 1. It can be seen that in such a data stream environ-
ment it is intrinsically difficult to conduct the frequent pat-
tern identification due to the constraints of limited time
and memory space. Furthermore, it takes considerable time
to find temporal frequent itemsets in different time win-
dows. However, the frequency of an itemset may not be a
sufficient indicator of interestingness, because it only
reflects the number of transactions in the database that
contain the itemset. It does not reveal the utility of an item-
set, which can be measured in terms of cost, profit or other
expressions of user preferences. On the other hand, fre-
quent itemsets may only contribute a small portion of the
overall profit, whereas non-frequent itemsets may contrib-
ute a large portion of the profit. In reality, a retail business
may be interested in identifying its most valuable custom-
ers (customers who contribute a major fraction of the prof-
its to the company). Hence, frequency is not sufficient to
answer questions such as whether an itemset is highly prof-
itable, or whether an itemset has a strong impact. Utility
mining is thus useful in a wide range of practical applica-
tions and was recently studied in Chan et al. (2003), Liu
et al. (2005) and Yao et al. (2004). This also motivates
our research in developing a new scheme for finding tempo-

ral high utility itemsets (THUI) from data streams.
Recently, a utility mining model was defined in Yao et al.

(2004). Utility is considered as a measure of how ‘‘useful’’
(e.g., ‘‘profitable’’) an itemset is. The definition of utility
u(X) of an itemset X is the sum of the utilities of X in all
transactions containing X. The goal of utility mining is to
identify high utility itemsets which drive a large portion
of the total utility. Traditional association rules mining
models assume that the utility of each item is always 1
and the sales quantity is either 0 or 1, thus it is only a spe-
cial case of utility mining, where the utility or the sales
quantity of each item could be any number. If u(X) is
greater than a utility threshold, X is a high utility itemset.
Otherwise, it is a low utility itemset. 1 is an example of util-
ity mining in a transaction database. The number in each
transaction in Table 1(panel a) is the sales volume of each
item, and the utility of each item is listed in Table 2(panel
b). For example, u({B,D}) = (6 · 10 + 1 · 6) + (1 · 10 +
7 · 6) + (3 · 10+2 · 6) = 160. {B,D} is considered as a
high utility itemset if the utility threshold is set at 120.

However, a high utility itemset may consist of some low
utility items. Another attempt is to adopt the level-wise
searching schema that exists in fast algorithms such as
Apriori (Agrawal and Srikant, 1995). However, this algo-
rithm does not apply to the utility mining model. For exam-
ple, consider u(D) = 84 < 120 as shown in 1, D is a low
utility item. However, its superset {B,D} is a high utility
itemset. If Apriori is used to find high utility itemsets, all
combinations of the items must be generated. Moreover,
the number of candidates is prohibitively large in discover-
ing a long pattern. The cost of either computation time or
memory will be intolerable, regardless of what implementa-
tion is applied. The challenge of utility mining is not only in
restricting the size of the candidate set but also in simplify-
ing the computation for calculating the utility. Another
challenge of utility mining is how to find temporal high
utility itemsets from data streams as time advances.

In this paper, we explore the issue of efficiently mining
high utility itemsets in temporal databases like data
streams. We propose an algorithm named THUI-Mine that
can discover temporal high utility itemsets from data
streams efficiently and effectively. The underlying idea of
THUI-Mine algorithm is to integrate the advantages of
Two-Phase algorithm (Liu et al., 2005) and SWF algorithm
(Lee et al., 2001) with augmentation of the incremental
mining techniques for mining temporal high utility itemsets
efficiently. The novel contribution of THUI-Mine is that it
can efficiently identify the utility itemsets in data streams so
that the execution time for mining high utility itemsets can
be substantially reduced. That is, THUI-Mine can discover
the temporal high utility itemsets in current time window
and also discover the temporal high utility itemsets in the
next time window with limited memory space and less com-
putation time by sliding window filter method. In this way,
the process of discovering all temporal high utility itemsets
under all time windows of data streams can be achieved
effectively under less memory space and execution time.
This meets the critical requirements of time and space effi-
ciency for mining data streams. Through experimental
evaluation, THUI-Mine is shown to produce fewer candi-
date itemsets in finding the temporal high utility itemsets,
so it outperforms other methods in terms of execution effi-
ciency. It is observed that the average improvement of
THUI-Mine over Two-Phase algorithm reaches to about
67%. Moreover, it also achieves high scalability in dealing
with large databases. To our best knowledge, this is the

Table 1
A transaction database and its utility table

Panel a: Transaction table

ITEM

TID
A B C D E

T1 0 0 26 0 1

T2 0 6 0 1 1 P1

T3 12 0 0 1 0

T4 0 1 0 7 0

T5 0 0 12 0 2
P2

T6 1 4 0 0 1

T7 0 10 0 0 1

T8 1 0 1 3 1

db1,3

D

P3

T9 1 1 27 0 0

T10 0 6 2 0 0

T11 0 3 0 2 0 +
P4

T12 0 2 1 0 0

db2,4

Item Profit ($) (per unit)

Panel b: The utility table

A 3
B 10
C 1
D 6
E 5

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1107
first work on mining temporal high utility itemsets from
data streams.

The rest of this paper is organized as follows: Section 2
provides an overview of the related work. Section 3
describes the proposed approach, THUI-Mine, for finding
the temporal high utility itemsets. In Section 4, we describe
the experimental results for evaluating the proposed
method. The conclusion of the paper is provided in Section
5.

2. Related work

In association with rules mining, Apriori (Agrawal and
Srikant, 1995), DHP (Park et al., 1997) and partition-based
ones (Lin and Dunham, 1998; Savasere et al., 1995) were
proposed to find frequent itemsets. Many important appli-
cations have called for the need of incremental mining due
to the increasing use of record-based databases to which
data are being added continuously. Many algorithms like
FUP (Cheung et al., 1996), FUP2 (Cheung et al., 1997)
and UWEP (Ayn et al., 1999;Ayn et al., 1999) have been
proposed to find frequent itemsets in incremental dat-
abases. The FUP algorithm updates the association rules
in a database when new transactions are added to the data-
base. Algorithm FUP is based on the framework of Apriori
and is designed to discover the new frequent itemsets iter-
atively. The idea is to store the counts of all the frequent
itemsets found in a previous mining operation. Using these
stored counts and examining the newly added transactions,
the overall count of these candidate itemsets are then
obtained by scanning the original database. An extension
to the work in Cheung et al. (1996) was reported in Cheung
et al. (1997) where the authors propose an algorithm FUP2

for updating the existing association rules when transac-
tions are added to and deleted from the database. UWEP
(Update With Early Pruning) is an efficient incremental
algorithm, that counts the original database at most once,
and the increment exactly once. In addition, the number of
candidates generated and counted is minimized.

In recent years, processing data from data streams
becomes a popular topic in data mining. A number of algo-
rithms like Lossy Counting (Manku and Motwani, 2002),
FTP-DS (Teng et al., 2003) and RAM-DS (Teng et al.,
2004) have been proposed to process data in data streams.
Lossy Counting divided incoming stream conceptually into
buckets. It uses bucket boundaries and maximal possible
error to update or delete the itemsets with frequency for
mining frequent itemsets. FTP-DS is a regression-based
algorithm for mining frequent temporal patterns from data
streams. A wavelet-based algorithm, RAM-DS, performs

1108 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
pattern mining tasks for data streams by exploring both
temporal and support count granularities.

Some algorithms like SWF (Lee et al., 2001) and
Moment (Chi et al., 2004) were proposed to find frequent
itemsets over a stream sliding window. By partitioning a
transaction database into several partitions, algorithm
SWF employs a filtering threshold in each partition to deal
with the candidate itemset generation. The Moment algo-
rithm uses a closed enumeration tree (CET) to maintain a
dynamically selected set of itemsets over a sliding window.

A formal definition of utility mining and theoretical
model was proposed in Yao et al. (2004), namely MEU,
where the utility is defined as the combination of utility
information in each transaction and additional resources.
Since this model cannot rely on downward closure prop-
erty of Apriori to restrict the number of itemsets to be
examined, a heuristic is used to predict whether an itemset
should be added to the candidate set. However, the predic-
tion usually overestimates, especially at the beginning
stages, where the number of candidates approaches the
number of all the combinations of items. The examination
of all the combinations is impractical, either in computa-
tion cost or in memory space cost, whenever the number
of items is large or the utility threshold is low. Although
this algorithm is not efficient or scalable, it is by far the best
one to solve this specific problem.

Another algorithm named Two-Phase was proposed in
Liu et al. (2005), which is based on the definition in Yao
et al. (2004) and achieves the finding of high utility item-
sets. The Two-Phase algorithm is used to prune down the
number of candidates and can obtain the complete set of
high utility itemsets. In the first phase, a model that
applies the ‘‘transaction-weighted downward closure
property’’ on the search space is used to expedite the iden-
tification of candidates. In the second phase, one extra
database scan is performed to identify the high utility
itemsets. However, this algorithm must rescan the whole
database when new transactions are added from data
streams. It incurs more cost on I/O and CPU time for
finding high utility itemsets. Hence, the Two-Phase algo-
rithm is focused on traditional databases and is not suited
for mining data streams.

Although there existed numerous studies on high utility
itemsets mining and data stream analysis as described
above, there is no algorithm proposed for finding temporal
high utility itemsets in data streams. This motivates our
exploration of the issue of efficiently mining high utility
itemsets in temporal databases like data streams in this
research.

3. Proposed method: THUI-Mine

In this section, we present the THUI-Mine method. Sec-
tion 3.1 describes the basic concept of THUI-Mine. Section
3.2 gives an example for mining temporal high utility item-
sets. The procedure of theTHUI-Mine algorithm is pro-
vided in Section 3.3.
3.1. Basic concept of THUI-Mine

The goal of utility mining is to discover all the itemsets
whose utility values are beyond a user specified threshold in
a transaction database. In Yao et al. (2004), the goal of
utility mining is defined as the discovery of all high utility
itemsets. An itemset X is a high utility itemset if u(X) P e,
where X � I and e is the minimum utility threshold; other-
wise, it is a low utility itemset. For example, in 1,
u(A,T8) = 1 · 3 = 3, u({A, C},T8) = u(A,T8) + u(C,T8) =
1 · 3 + 1 · 1 = 4, and u({A,C}) = u({A,C}, T8) + u({A,
C},T9) = 4 + 30 = 34. If e = 120, {A,C} is a low utility
itemset. However, if an item is a low utility item, its super-
set may be a high utility itemset. For example, consider
u(D) = 84 < 120, D is a low utility item, but its superset
{B,D} is a high utility itemset since u({B,D}) = 160 >
120. Intuitively, all combinations of items should be pro-
cessed so that it never loses any high utility itemset. How-
ever, this will incur intolerable cost on computation time
and memory space. A set of terms leading to the formal
definition of utility mining problem can be generally
defined as follows by referring to (Yao et al., 2004):

• I = {i1, i2, . . . , im} is a set of items.
• D = {T1,T2, . . . ,Tn} is a transaction database where

each transaction Ti 2 Dis a subset of I.
• o(ip,Tq), local transaction utility value, represents the

quantity of item ip in transaction Tq. For example,
o(A,T3) = 12, as shown in Table 1(panel a).

• s(ip), external utility, is the value associated with item ip
in the Utility Table. This value reflects the importance of
an item, which is independent of transactions. For
example, in Table 1(panel b), the external utility of item
A, s(A), is 3.

• u(ip,Tq), utility, the quantitative measure of utility for
item ip in transaction Tq, is defined as o(ip,Tq) · s(ip).
For example, u(A,T3) = 12 · 3, in 1.

• u(X,Tq), utility of an itemset X in transaction Tq, is
defined as

Puðip;TqÞ
ip2X , where X = {i1, i2, . . . , im} is a k-item-

set, X � Tq and 1 6 k 6 m.
• u(X), utility of an itemset X, is defined as

PuðX ;TqÞ
Tq2D^X�Tq.
Liu et al. (2005) proposed the Two-Phase algorithm for
pruning candidate itemsets and simplifying the calculation
of utility. First, the Phase I overestimates some low utility
itemsets, but it never underestimates any itemsets. For the
example in 1, the transaction utility of transaction Tq,
denoted as tu(Tq), is the sum of the utilities of all items

in Tq: tuðT qÞ ¼
Puðip;TqÞ

ip2Tq . Moreover, the transaction-

weighted utilization of an itemset X, denoted as twu(X), is
the sum of the transaction utilities of all the transactions
containing X : twuðX Þ ¼

PtuðTqÞ
X�Tq2D. For example, twu(A) =

tu(T3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 157
and twu({D,E}) = tu(T2) + tu(T8) = 71 + 27 = 98. In fact,
u(A) = u({A},T3) + u({A}, T6) + u({A}, T8) + u({A},
T9)=36 + 3 + 3 + 3 = 45 and u({D,E}) = u({D,E}, T2) +
u({D,E},T8) = 11 + 23 = 34. Table 2 gives the transaction

Table 2
Transaction utility of the transaction database

TID Transaction utility TID Transaction utility

T1 31 T7 105
T2 71 T8 27
T3 42 T9 40
T4 52 T10 62
T5 22 T11 42
T6 48 T12 21

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1109
utility for each transaction in 1. Second, one extra database
scan is performed to filter the overestimated itemsets in
phase II. For example, by observing that twu(A) =
157 > 120 and u(A) = 45 < 120, the item {A} is pruned.
Otherwise, it is a high utility itemset. Finally, all high utility
itemsets are discovered in this way.

We illustrate the detail process of Two-Phase algorithm
by the following example in db1,3 of 1. Suppose the utility
threshold is set as 120 with nine transactions in db1,3. In
Phase I, the high transaction-weighted utilization 1-item-
sets {A,B,C,D,E} are generated since twu(A) = tu(T3) +
tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 157 > 120,
twu(B) = tu(T2) + tu(T4) + tu(T6) + tu(T7) + tu(T9) = 71 +
52 + 48 + 105 + 40 = 361 > 120, twu(D) = tu(T2) + tu(T3) +
tu(T4) + tu(T8) = 71 + 42 + 52 + 27 = 192 > 120 and twu(E) =
tu(T1) + tu(T2) + tu(T5) + tu(T6) + tu(T7) + tu(T8) = 31 +
71 + 22 + 48 + 105 + 27 = 304 > 120. Then, 10 candidate
2-itemsets fAB;AC;ADAE;BC;BD;BE;CD;CE;DEg are
generated by the high transaction-weighted utilization 1-
itemsets fA;B;C;D;Eg in the first database scan. In the
same way, the high transaction-weighted utilization 2-item-
set {BE} are generated since twu(AB) = tu(T6) + tu(T9) =
48 + 40 = 88 < 120, twu(AC) = tu(T8) + tu(T9) = 27 + 40 =
67 < 120, twu(AD) = tu(T3) + tu(T8) = 42 + 27 = 69 < 120,
twu(AE) = tu(T6) + tu(T8) = 48 + 27 = 75 < 120, twu(BC) =
tu(T9) = 40 < 120, twu(BD) = tu(T4) = 52 < 120, twu(BE) =
tu(T2) + tu (T6) + tu(T 7) = 71 + 48 + 105 = 224 > 120,
twu(CD) = tu(T8) = 27 < 120, twu(CE) = tu(T1) + tu(T5) +
tu(T8) = 31 + 22 + 27 = 80 < 120 and twu(DE) = tu(T2) +
tu(T8) = 71 + 27 = 98 < 120. After processing db1,3, the
high transaction-weighted utilization itemsets in db1,3 are
obtained as fA;B;C;D;E;BEg.

In phase II, the high transaction-weighted utilization
itemsets fA;B;C;D;E;BEg is used to scan db1,3 to find high
utility itemsets. The resulting high utility itemsets are {B}
and {BE} since u(A) = u({A}, T3) + u({A}, T6) + u({A},
T8) + u({A}, T9) = 45 < 120, u(B) = u({B}, T2) + u({B},
T4) + u({B}, T6) + u({B}, T7) + u({B}, T9) = 220 > 120,
u(C) = u({C},T1) + u({C}, T5) + u({C},T8) + u({C}, T9) =
66 < 120, u(D) = u({D},T2) + u({D}, T3) + u({D}, T4) +
u({D}, T8) = 72 < 120, u(E) = u({E}, T1) + u({E}, T2) +
u({E}, T5) + u({E}, T6) + u({E}, T7) + u({E},T8) = 35 <
120 and u({B,E}) = u({B,E}, T2) + u({B,E}, T6) +
u({B,E},T7) = 215 > 120.

Our algorithm THUI-Mine is based on the principle of
the Two-Phase algorithm (Liu et al., 2005), and we extend
it with the sliding window filtering (SWF) technique and
focus on utilizing incremental methods to reduce the candi-
date itemsets and execution time. In essence, by partition-
ing a transaction database into several partitions from
data streams, algorithm THUI-Mine employs a filtering
threshold in each partition to deal with the transaction-

weighted utilization itemsets (TWUI) generated. The cumu-
lative information in the prior phases is selectively carried
over toward the generation of TWUI in the subsequent
phases by THUI-Mine. In the processing of a partition, a
progressive transaction-weighted utilization set of itemsets
is generated by THUI-Mine. Explicitly, a progressive trans-
action-weighted utilization set of itemsets is composed of
the following two types of TWUI: (1) the TWUI that were
carried over from the previous progressive candidate set in
the previous phase and remain as TWUI after the current
partition is taken into consideration; (2) the TWUI that
were not in the progressive candidate set in the previous
phase but are newly selected after taking only the current
data partition into account. As such, after the processing
of a phase, algorithm THUI-Mine outputs a cumulative

filter, denoted as CF, which consists of a progressive trans-
action-weighted utilization set of itemsets with their
occurrence counts and the corresponding partial support
required.

THUI-Mine is different from other existing methods like
Lossy Counting (Manku and Motwani, 2002), which uses
bucket boundaries and maximal possible error to update
or delete the itemsets with frequency. The CF computes
the occurrence counts of itemsets in memory and then
deletes itemsets that do not satisfy utility threshold in every
partial database. With these design considerations,
algorithm THUI-Mine is shown to have very good perfor-
mance for mining temporal high utility itemsets from data
streams. In Section 3.2, we give an example for mining
temporal high utility itemsets from a data stream. The
details of THUI-Mine algorithm is described in Section 3.3.

3.2. An example for mining temporal high utility itemsets

The proposed THUI-Mine algorithm can be best under-
stood by the illustrative transaction database in 1 and
Fig. 2 where a scenario of generating high utility itemsets
from data streams for mining temporal high utility itemsets
is given. For real life applications, this illustrative transac-
tion database can be mapped to the customer transactions
in a supermarket. We set the utility threshold as 120 with
nine transactions. Without loss of generality, the temporal
mining problem can be decomposed into two procedures:

1. Pre-processing procedure: This procedure deals with
mining on the original transaction database.

2. Incremental procedure: The procedure deals with the
update of the high utility itemsets from data streams.

The pre-processing procedure is only utilized for the ini-
tial utility mining in the original database, e.g., db1,n. For
mining high utility itemsets in db2,n+1, db3,n+2, dbi,j and

Fig. 2. Temporal high utility itemsets generated from data streams by THUI-Mine.

1110 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
so on, the incremental procedure is employed. Consider the
database in 1. Assume that the original transaction data-
base db1,3 is segmented into three partitions, namely,
{P1,P2,P3}, in the pre-processing procedure. Each partition
is scanned sequentially for the generation of candidate 2-
itemsets in the first scan of the database db1,3. Since there
are three partitions, the utility threshold of each partition
is 120/3 = 40. Such a partial utility threshold is called the
filtering threshold in this paper. After scanning the first
segment of the three transactions, 1-itemsets fA;B;D;Eg
are kept to generate 2-itemsets because twu(A) = 42 > 40,
twu(B) = 71 > 40, twu(C) = 31 < 40, twu(D) = 113 > 40
and twu(E) = 102 > 40. Then, 2-itemsets fAB;ADAE;BD;
BE;DEg are generated by 1-itemsets fA;B;D;Eg in parti-
tion P1 as shown in Fig. 2. In addition, each potential can-
didate itemset c 2 C2 has two attributes: (1) c.start, which
contains the identity of the starting partition when c was
added to C2 and (2) transaction-weighted utility which is
the sum of the transaction utilities of all the transactions
containing c since c was added to C2. Itemsets whose trans-
action-weighted utility are below the filtering threshold are
removed. Then, as shown in Fig. 2, only fAD;BD;BE;DEg,
marked by ‘‘}’’, remain as temporal high transaction-

weighted utilization 2-itemsets (TWU2I) whose information
is then carried over to the next phase of processing.
Similarly, after scanning partition P2, the temporal high
TWU2I are recorded.

From Fig. 2, it is noted that since there are also three
transactions in P2, the filtering threshold of those itemsets
carried out from the previous phase is 40 + 40 = 80 and
that of newly identified candidate itemsets is 40. It can be
seen from Fig. 2 that we have four temporal high TWU2I
in C2 after the processing of partition P2, and two of them
are carried from P1 to P2 and two of them are newly iden-
tified in P2. Finally, partition P3 is processed by algorithm
THUI-Mine. The resulting temporal high TWU2I are
fAB;AC;BC;BD;BEg as shown in Fig. 2. Note that
although itemset {AE} appears in the previous phase P2,
it is removed from temporal high TWU2I once P3 is taken
into account since its transaction-weighted utility does not
meet the filtering threshold then, i.e., 75 < 120. However,
we do have two new itemsets, i.e., AC and BC, which join
the C2 as temporal high TWU2I. Consequently, we have
five temporal high TWU2I generated by THUI-Mine,
where two of them are carried from P1 to P3, one of them
is carried from P2 to P3, and two of them are newly identi-
fied in P3. Note that only five temporal high TWU2I are
generated by THUI-Mine, while 10 candidate itemsets
would be generated if Two-Phase algorithm were used as
mentioned in Section 3.1. After processing P1 to P3, those
temporal high TWUI in db1,3 are obtained as fA;B;C;
D;E;AB;AC;BC;BD;BEg.

After generating temporal high TWU2I from the first
scan of database db1,3, we use a skill to reduce the number
of database scan. In fact, it will take k � 1 database scan to
generate k-candidate itemsets by using temporal high
transaction-weighted utilization (k � 1)-itemsets directly.
Instead, we use temporal high TWU2I to generate Ck

(k = 3,4, . . . ,n), where Cn is the candidate last itemset. It
can be verified that temporal high TWU2I generated by
THUI-Mine can be used to generate the candidate 3-item-
sets. Clearly, a C3 can be generated from temporal high
TWU2I. For example, the 3-candidate itemset {ABC} is
generated from temporal high TWU2I fAB;AC;BCg in
db1,3. However, the temporal high TWU2I generated by
THUI-Mine is very close to the high utility itemsets. Simi-
larly, all Ck can be stored in main memory and we can find
temporal high utility itemsets together when the second
scan of the database db1,3 is performed. Thus, only two
scans of the original database db1,3 are required in the
pre-processing step. In this way, the number of database
scan is reduced effectively. The resulting temporal high util-
ity itemsets are {B} and {BE} since u(B) = 220 > 120 and
u({B,E}) = 215 > 120.

Table 3
Meanings of symbols used

dbi,j Partitioned_database (D) from Pi to Pj

s Utility threshold in one partition
jPkj Number of transactions in partition Pk

TUPk (I) Transactions in Pk that contain itemset I with transaction
utility

UPk (I) Transactions in Pk that contain itemset I with utility
jdb1,n, (I)j Transactions number in db1,n that contain itemset I

Ci,j The progressive candidate sets of dbi,j

Thtwi,j The progressive temporal high transaction-weighted
utilization 2-itemsets of dbi,j

Thui,j The progressive temporal high utility itemsets of dbi,j

D� The deleted portion of an ongoing database
D� The unchanged portion of an ongoing database
D+ The added portion of an ongoing database

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1111
One important merit of THUI-Mine lies in its incremen-
tal procedure. As depicted in Fig. 2, the mining of database
will be moved from db1,3 to db2,4. Thus, some transactions
like T1, T2 and T3 are deleted from the mining database
and other transactions like T10, T11 and T12, are added.
To illustrate it more clearly, this incremental step can also
be divided into three sub-steps: (1) generating temporal
high TWU2I in D� = db1,3 � D�, (2) generating temporal
high TWU2I in db2,4 = D� + D+ and (3) scanning the data-
base db2,4 only once for the generation of all temporal high
utility itemsets. In the first sub-step, db1,3 � D� = D�, we
check the pruned partition P1 and reduce the value of
transaction-weighted utility and set c.start = 2 for those
temporal TWU2I where c.start = 1. It can be seen that
itemset {BD} was removed. Next, in the second sub-step,
we scan the incremental transactions in P4. The process
in D� + D+ = db2,4is similar to the operation of scanning
partitions, e.g., P2, in the pre-processing step. The new
itemset {BD} joins the temporal high TWU2I after the scan
of P4. In the third sub-step, we use temporal high TWU2I
Fig. 3. Pre-processing proc
to generate Ck as mentioned above. Finally, those temporal
high TWUI in db2,4 are fB;C;D;E;BC;BD;BEg. By scan-
ning db2,4 only once, THUI-Mine obtains temporal high
utility itemsets fB;BC;BEg in db2,4.
edure of THUI-Mine.

1112 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
In contrast, Two-Phase algorithm has to scan the
whole database like db2,4 and more candidate itemsets,
i.e., fBC;BD;BE;CD;CE;DEg, will be generated whenever
some transactions are deleted and other transactions are
added. Then, Two-Phase algorithm needs one more
database scan than THUI-Mine to obtain temporal
high TWU2I. Finally, Two-Phase algorithm scans data-
base again to produce temporal high utility itemsets.
Hence, more database scans and candidate itemsets are
incurred by Two-Phase algorithm in comparison with
THUI-Mine.
Fig. 4. Incremental proce
3.3. THUI-Mine algorithm

For easier illustration, the meanings of various symbols
used are given in Table 3. The pre-processing procedure
and the incremental procedure of algorithm THUI-Mine

are described in Sections 3.3.1 and 3.3.2, respectively.

3.3.1. Pre-processing procedure of THUI-Mine

The pre-processing procedure of Algorithm THUI-Mine

is shown in Fig. 3. Initially, the database db1,n is parti-
tioned into n partitions by executing the pre-processing
dure of THUI-Mine.

Utility Value Distribution

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000
utility value

nu
m

be
r

of
 it

em
s

Fig. 5. Utility value distribution in utility table.

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1113
procedure (in Step 2), and CF, the cumulative filter, is
empty (in Step 3). Let Thtw1,n be the set of progressive tem-
poral high TWU2I of dbi,j. Algorithm THUI-Mine only
records Thtw1,n which is generated by the pre-processing
procedure to be used by the incremental procedure. From
Step 4 to Step 16, the algorithm processes one partition
at a time for all partitions. When partition Pi is processed,
each potential candidate 2-itemset is read and saved to CF.
The transaction-weight utility of an itemset I and its start-
ing partition are recorded in I.twu and I.start, respectively.
An itemset, whose I.twu P s, will be kept in CF. Next, we
select Thtw1,n from I where I 2 CF and keep I.twu in main
memory for the subsequent incremental procedure. By
employing the scan reduction technique from Step 19 to
Step 26, C1;n

h (h P 3) are generated in main memory. After
refreshing I.count = 0 where I.twu = 0 where I 2 Thtw1,n,
we begin the last scan of database for the pre-processing
procedure from Step 28 to Step 31. Finally, those itemsets
satisfying the constraint that I.u = s · P.count are finally
obtained as the temporal high utility itemsets.

3.3.2. Incremental procedure of THUI-Mine
As shown in Table 3, D� indicates the unchanged por-

tion of an ongoing transaction database. The deleted and
added portions of an ongoing transaction database are
denoted by D� and D+, respectively. It is worth mentioning
that the sizes of D+ and D�, i.e., jD+j and jD�j respectively,
are not required to be the same. The incremental procedure
of THUI-Mine is devised to maintain temporal high utility
itemsets efficiently and effectively. This procedure is shown
in Fig. 4. As mentioned before, this incremental step can
also be divided into three sub-steps: (1) generating tempo-
ral high TWU2I in D� = db1,3 � D�, (2) generating tempo-
ral high TWU2I in db2,4 = D� + D+ and (3) scanning the
database db2,4 only once for the generation of all temporal
high utility itemsets. Initially, after some update activities,
old transactions D� are removed from the database dbm,n

and new transactions D+ are added (in Step 6). Note that
D� � dbm,n. Denoting the updated database as dbi,j, note
that dbi,j = dbm,n � D� + D+. We denote the unchanged
transactions by D� = dbm,n � D� = dbi,j � D+. After load-
ing Thtwm,n of dbm,n into CF where I 2 Thtwm,n, we start
the first sub-step, i.e., generating temporal high TWU2I
in D� = dbm,n � D�. This sub-step reverses the cumulative
processing which is described in the pre-processing proce-
dure. From Step 8 to Step 16, we prune the occurrences
of an itemset I, which appeared before partition Pi, by
deleting the value I.twu where I 2 CF and I.start < i. Next,
from Step 17 to Step 39, similarly to the cumulative pro-
cessing in Section 3.3.1, the second sub-step generates tem-
poral high TWU2I in dbi,j = D� + D+ and employs the
scan reduction technique to generate Ci;j

hþ1. Finally, to gen-
erate temporal high utility itemsets, i.e., Thui,j, in the
updated database, we scan dbi,j only once in the incremen-
tal procedure to find temporal high utility itemsets. Note
that Thtwi,j is kept in main memory for the next generation
of incremental mining.
4. Experimental evaluation

To evaluate the performance of THUI-Mine, we con-
ducted experiments using synthetic datasets generated via
a randomized dataset generator provided by IBM Quest
project (Agrawal and Srikant, 1995). However, the IBM
Quest data generator only generates the quantity of 0 or
1 for each item in a transaction. In order to fit databases
into the scenario of utility mining, we randomly generate
the quantity of each item in each transaction, ranging from
1 to 5, as is similar to the model used in Liu et al. (2005).
Utility tables are also synthetically created by assigning a
utility value to each item randomly, ranging from 1 to
1000. Because it is observed from real world databases that
most items are in the low profit range, we generate the util-
ity values using a log normal distribution, as is similar to
the model used in Liu et al. (2005). Fig. 5 shows the utility
value distribution of 1000 items.

The simulation is implemented in C++ and conducted
in a machine with 2.4 GHz CPU and 1 GB memory. For
comparison with THUI-Mine algorithm, the two-Phase
algorithm is extended with sliding window scenario. The
extended Two-Phase algorithm scans the database accord-
ing to the set time window and then performs the compu-
tation within the time window. This process is repeated
over sliding time window for the database. The main per-
formance metric used is execution time. We recorded the
execution time of THUI-Mine in finding temporal high
utility itemsets. The comparison on the number of gener-
ated itemsets for THUI-Mine, Two-Phase and MEU is pre-
sented in Section 4.1. Section 4.2 shows the performance
comparison of THUI-Mine and Two-Phase. The results
of scale-up experiments are presented in Section 4.3. Sec-
tion 4.4 shows the performance comparison of THUI-Mine

and Two-Phase on another dense dataset.

4.1. Evaluation on number of generated candidates

In this experiment, we compare the average number of
candidates generated in the first database scan on the slid-
ing windows and incremental transaction number d10K

1114 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
with different support values for THUI-Mine, Two-Phase
(Liu et al., 2005) and MEU (Yao et al., 2004). Without loss
of generality, we set jdj = jD+j = jD�j for simplicity. Thus,
by denoting the original database as db1,n and the new min-
ing database as dbi,j, we have jdbi,jj = jdb1,n � D� + D+j =
jDj, where D� = db1,i�1 and D+ = dbn+1,j. Tables 4 and 5
show the average number of candidates generated by
THUI-Mine, Two-Phase and MEU on two datasets,
respectively. The number of items is set at 1000, and the
minimum utility threshold varies from 0.2% to 1%. The
experimental results show that the number of candidate
itemsets generated by THUI-Mine at the first database scan
decreases dramatically as the threshold goes up. Especially,
when the utility threshold is set as 1%, the number of can-
didate itemsets is 0 in database T10.I6.D100 K.d10 K
where T denotes the average size of the transactions and
I the average number of frequent itemsets. The default size
of the sliding window is set as 30K. In fact, we also varied
the size of sliding window and the experimental results
show that THUI-Mine outperforms Two-Phase algorithm
under different sliding windows sizes. Due to space limita-
tion, we only show the representative results with the slid-
ing window size set as 30K. However, the number of
candidates generated by Two-Phase is still very large and
that for MEU is always 499,500 because it needs to process
all combinations of 1000 items. THUI-Mine generates far
fewer candidates when compared to Two-Phase and MEU.

We obtain similar experimental results for different
datasets. For example, only 118 candidate itemsets are gen-
erated by THUI-Mine, but 183,921 and 499,500 candidate
itemsets are generated by Two-Phase and MEU, respec-
tively, when the utility threshold is set as 1% in dataset
Table 4
The number of candidate itemsets generated on database
T10.I6.D100K.d10K

Threshold (%) Databases, T10.I6.D100K.d10K

THUI-Mine Two-Phase MEU

0.2 3433 361,675 499,500
0.3 666 303,810 499,500
0.4 161 258,840 499,500
0.6 7 182,710 499,500
0.8 1 129,286 499,500
1 0 91,378 499,500

Table 5
The number of candidate itemsets generated on database
T20.I6.D100K.d10K

Threshold (%) Databases, T20.I6.D100K.d10K

THUI-Mine Two-Phase MEU

0.2 27357 401,856 499,500
0.3 11659 371,953 499,500
0.4 5389 337,431 499,500
0.6 1364 278,631 499,500
0.8 371 229,503 499,500
1 118 183,921 499,500
T20.I6.D100K.d10K. In the case of dataset T20.I6.
D100K.d10K, more candidates are generated, because the
transaction is longer than that in T10.I6.D100K.d10K. In
overall, our algorithm THUI-Mine always generates far
fewer candidates compared to Two-Phase and MEU for
various kinds of databases. Hence, THUI-Mine is verified
to be very effective in pruning candidate itemsets to find
temporal high utility itemsets.

4.2. Evaluation of execution efficiency

In this experiment, we compare only the relative perfor-
mance of Two-phase and THUI-Mine since MEU spends
much higher execution time and becomes incomparable.
Figs. 6 and 7 show the execution times for the two algo-
rithms on datasets T20.I6.D100K.d10K and T10.I6.D100
K.d10K, respectively, as the minimum utility threshold is
decreased from 1% to 0.2%. It is observed that when the
minimum utility threshold is high, there are only a limited
number of high utility itemsets produced. However, as the
minimum utility threshold decreases, the performance
difference becomes prominent in that THUI-Mine signifi-
cantly outperforms Two-Phase. As shown in Figs. 6 and
7, THUI-Mine leads to prominent performance improve-
ment under different sizes of transaction. Explicitly,
THUI-Mine is significantly faster than Two-Phase and
the margin grows as the minimum utility threshold
decreases. For example, THUI-Mine is 10 times faster than
Two-Phase when threshold is 0.2 for T20.I6.D100K.d10K.
In overall, THUI-Minespends much less time than Two-
Phase with higher stability in finding temporal high utility
itemsets. This is because the Two-Phase algorithm pro-
duces more candidate itemsets and needs more database
scans to find high utility itemsets than THUI-Mine. To
measure the improvement on execution time for THUI-

Mine compared to Two-Phase algorithm, we define the
Improvement Ratio as follows:
T20.I6.D100K.d10K

0

500

1000

1500

2000

2500

3000

0.2 0.3 0.4 0.6 0.8 1
Minimum Utility Threshold (%)

E
xe

cu
tio

n
T

im
e

(S
ec

)

Two-Phase

THUI-Mine

Fig. 6. Execution time for Two-Phase and THUI on T20.I6.D100K.
d10K.

Improvement Ratio ¼ ðexecution time of Two� PhaseÞ � ðexecution time of THUI�MineÞ
execution time of Two� Phase

T10.I6.D100K.d10K

0

50

100

150

200

250

300

350

400

0.2 0.3 0.4 0.6 0.8 1

Minimum Utility Threshold (%)

E
xe

cu
tio

n
T

im
e

(S
ec

)

Two-Phase

THUI-Mine

Fig. 7. Execution time for Two-Phase and THUI on T10.I6.D100K.
d10K.

T10.I4.D100K.dnK

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12

|d|, incremental transaction number (K)

E
xe

cu
tio

n
T

im
e

R
at

io
 (

T
H

U
I-

M
in

e/
Tw

o-
Ph

as
e)

0.2%

0.4%

Fig. 8. Scale-up performance results for THUI vs. Two-Phase.

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1115
From the data illustrated in Fig. 6, we see that the
Improvement Ratio is about 85.6% with the threshold set
as 0.2%. In Fig. 7, the average improvement is about 67%
with minimum utility threshold varied from 0.2% to 1%.
Obviously, THUI-Mine reduces substantially the time in
finding high utility itemsets. Moreover, the high utility item-
sets obtained by Two-Phase are not suitable for applications
in data streams since Two-Phase needs more database scans
and increased execution time in finding high utility itemsets.
Hence, THUI-Mine meets the requirements of high effi-
ciency in terms of execution time for data stream mining.
Gazelle

0

100

200

300

400

500

600

700

800

0.02 0.03 0.04 0.06 0.08 0.1

Minimum Utility Threshold (%)

E
xe

cu
tio

n
T

im
e

(S
ec

)

Two-Phase

THUI-Mine

Fig. 9. Execution time for Two-Phase and THUI on gazelle dataset.
4.3. Scale-up on incremental mining

In this experiment, we investigate the effects of varying
incremental transaction size on the execution time of min-
ing results. To further understand the impact of jdj on the
relative performance of THUI-Mine and Two-Phase, we
conduct scale-up experiments which are similar to those
described in Lee et al. (2001) with minimum support
thresholds being set as 0.2% and 0.4%, respectively.
Fig. 8 shows the experimental results where the value in
y-axis corresponds to the ratio of the execution time of
THUI-Mine to that of Two-Phase under different values
of jdj. It can be seen that the execution-time ratio remains
stable with the growth of the incremental transaction num-
ber jdj since the size of jdj has little influence on the perfor-
mance of THUI-Mine. Moreover, the execution time ratio
of the scale-up experiments with minimum support
thresholds varied from 0.6% to 1% remains constant at
approximately 0.4%. This implies that the advantage of
THUI-Mine over Two-Phase is stable and less execution
time is taken as the amount of incremental portion
increases. This result also indicates that THUI-Mine is use-
ful for mining data streams with large transaction size.
4.4. Evaluation on dense data

Typically, the synthetic data sets are very sparse. For
testing various kinds of databases, we evaluate another
dense dataset, the gazelle data set as used in Zaki and
Hsiao (2005). The gazelle data set comes from click-stream
data from a dot-com company named Gazelle.com, a

1116 C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117
legware and legcare retailer. This data set was used in the
KDD-Cup 2000 competition and publicly available from
www.ecn.purdue.edu/ KDDCUP. In order to fit databases
into the scenario of utility mining, we also randomly gener-
ate the quantity of each item in each transaction, ranging
from 1 to 5. The utility tables are also synthetically created
by assigning a utility value to each item randomly, ranging
from 1 to 1000.

Fig. 9 shows the execution time for the two algorithms
as the minimum utility threshold is varied from 0.1% to
0.02%. It is observed that THUI-Mine still spends less time
than Two-Phase with higher stability for finding temporal
high utility itemsets even under the dense data. This is
because the Two-Phase algorithm produces more candidate
itemsets and needs more database scans to find high utility
itemsets than THUI-Mine. Hence, this result also indicates
that THUI-Mine is effective for mining temporal high util-
ity itemsets under both of sparse and dense datasets.
5. Conclusions

In this paper, we addressed the problem of discovering
temporal high utility itemsets in data streams. Under the
stream database situation, the memory is often limited
and it is hard to store large itemsets in memory. We pro-
pose a new algorithm, namely THUI-Mine, which can dis-
cover temporal high utility itemsets from data streams
efficiently and effectively. The novel contribution of
THUI-Mine is that it can effectively identify the temporal
high utility itemsets with less candidate itemsets such that
the execution time can be reduced efficiently. In this way,
the process of discovering the temporal high utility itemsets
in data streams can be achieved effectively with less mem-
ory space and execution time. This meets the critical
requirements of time and space efficiency for mining data
streams.

The experimental results show that THUI-Mine can dis-
cover the temporal high utility itemsets with higher perfor-
mance by generating less candidate itemsets as compared
to other algorithms under different experimental condi-
tions, including both of sparse and dense datasets. Across
the experiments, THUI-Mine is faster than Two-Phase by
2–10 times, and the performance gain becomes more signif-
icant as the minimum utility threshold decreases. For
example, THUI-Mine is 10 times faster than Two-Phase
when the threshold is 0.2 for dataset T20.I6.D100K.d10K.
This performance enhancement comes mainly from the
good feature of THUI-Mine in producing far fewer candi-
date itemsets. Moreover, the experimental results also show
that THUI-Mine is scalable with large databases. There-
fore, it is indicated that the advantage of THUI-Mine over
Two-Phase is stable and less execution time is taken as the
amount of incremental portion of databases increases.
Hence, THUI-Mine is promising for mining temporal high
utility itemsets in data streams. For future work, we would
extend the concepts proposed in this work to discover other
interesting patterns in data streams like utility items with
negative profit.
References

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association rules
between sets of items in large databases. In: Proceedings of 1993 ACM
SIGMOD International Conference on Management of Data, Wash-
ington, DC, pp. 207–216.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.,
1996. Fast discovery of association rules. Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, pp. 307–328.

Agrawal, R., Srikant, R., 1995. Mining sequential patterns. In: Proceed-
ings of the 11th International Conference on Data Engineering, March
1995. pp. 3–14.

Ayn, N.F., Tansel, A.U., Arun, E., 1999. An efficient algorithm to update
large itemsets with early pruning. Technical Report BU-CEIS-9908,
Dept. CEIS Bilkent Uniiversity, June 1999.

Ayn, N.F., Tansel, A.U., Arun, E., 1999. An efficient algorithm to update
large itemsets with early pruning. In: Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Diego.

Bettini, C., Wang, X.S., Jajodia, S., 1996. Testing complex temporal
relationships involving multiple granularities and its application to
data mining. In: Proceedings of the 15th ACM Symposium on
Principles of Database Systems, Montreal, Canada, pp. 68–78.

Chan, R., Yang, Q., Shen, Y., 2003. Mining high utility Itemsets. In:
Proceedings of IEEE ICDM, Florida.

Cheung, D., Han, J., Ng, V., Wong, C.Y. 1996. Maintenance of
discovered association rules in large databases: an incremental
updating technique. In: Proceedings of 1996 International Conference
on Data Engineering, February 1996, pp. 106–114.

Cheung, D., Lee, S.D., Kao. B., A general incremental technique for
updating discovered association rules. In: Proceedings of the Interna-
tional Conference On Database Systems For Advanced Applications,
April 1997.

Chi, Y., Wang, H., Yu, P.S., Richard, R., 2004. Muntz: moment:
maintaining closed frequent itemsets over a stream sliding window. In:
Proceedings of the 2004 IEEE International Conference on Data
Mining (ICDM’04).

Das, G., Lin, K.I., Mannila, H., Renganathan G., Smyth, P. 1998. Rule
discovery from time series. In: Proceedings of the 4th ACM SIGKDD,
August 1998, pp. 16–22.

Lee, C.H., Lin, C.R., Chen, M.S. 2001. Sliding-window filtering: an
efficient algorithm for incremental mining. In: International Confer-
ence on Information and Knowledge Management (CIKM01),
November 2001, pp. 263–270.

Lin, J.L., Dunham, M.H., 1998. Mining association rules: anti-skew
algorithms. In: Proceedings of 1998 International Conference on Data
Engineering, pp. 486–493.

Liu, Y., Liao, W., Choudhary, A., 2005. A fast high utility itemsets mining
algorithm. In: Proceedings of the Utility-Based Data Mining Work-
shop, August.

Manku, G.S., Motwani, R., 2002. Approximate frequency counts over
data streams. In: Proceedings of the 28th International Conference on
Very Large Data Bases, Hong Kong, China.

Park, J.S., Chen, M.S., Yu, P.S., 1997. Using a hash-based method with
transaction trimming for mining association rules. IEEE Transactions
on Knowledge and Data Engineering 9 (5), 813–825.

Savasere, A., Omiecinski, E., Navathe, S. An efficient algorithm for
mining association rules in large databases. In: Proceedings of the 21th
International Conference on Very Large Data Bases, September 1995,
pp. 432–444.

Teng, W.G., Chen, M.S., Yu, P.S., 2003. A regression-based temporal
pattern mining scheme for data streams. In: Proceedings of the 29th
International Conference on Very Large Data Bases, September 2003,
pp. 93–104.

http://www.ecn.purdue.edu/

C.-J. Chu et al. / The Journal of Systems and Software 81 (2008) 1105–1117 1117
Teng, W.G., Chen, M.S., Yu, P.S., 2004. Resource-aware mining with
variable granularities in data streams. In: Proceedings of the 4th SIAM
International Conference on Data Mining, Florida, USA.

Yao, H., Hamilton, H.J., Butz, C.J., 2004. A foundational approach to
mining itemset utilities from databases. In: Proceedings of the4th
SIAM International Conference on Data Mining, Florida,
USA.

Zaki, M.J., Hsiao, C.J., 2005. Efficient algorithm for mining closed
itemsets and their lattice structure. IEEE Transactions on Knowledge
and Data Engineering 17 (3), 462–478.

	An efficient algorithm for mining temporal high utility itemsets from data streams
	Introduction
	Related work
	Proposed method: THUI-Mine
	Basic concept of THUI-Mine
	An example for mining temporal high utility itemsets
	THUI-Mine algorithm
	Pre-processing procedure of THUI-Mine
	Incremental procedure of THUI-Mine

	Experimental evaluation
	Evaluation on number of generated candidates
	Evaluation of execution efficiency
	Scale-up on incremental mining
	Evaluation on dense data

	Conclusions
	References

