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Abstract—Motion estimation (ME) in high-definition H.264
video coding presents a significant design challenge for memory
bandwidth, latency, and cost because of its large search range and
various modes. To conquer this problem, this paper presents a
low-latency and hardware-efficient ME design with three design
techniques. The first technique on integer-pel ME (IME) adopts
parallel instead of serial multiresolution search so that we can
process 1080 p @ 60 fps videos with +128 search range within
just 256 cycles, 5.95-KB buffers, and 213.7K gates. The second
technique on fractional-pel ME (FME) uses a single-iteration
six-point search to reduce the cycle count by half with similar
gate count and negligible quality loss. The third technique applies
a mode-filtering approach to further reduce the bandwidth and
cycles and share the buffer of IME and FME. The final ME
implementation with 0.13-ym process can support processing of
1080 p @ 60 fps with just 128.8 MHz, 282.6 K gates, and 8.54-KB
buffer, which saves 60% gate count, and 68.9% SRAM buffers
when compared with the previous design.

Index Terms—Digital circuits, high-definition television
(HDTYV), H.264, motion estimation (ME), video coding, video
signal processing.

I. INTRODUCTION

HE latest video coding standard, MPEG-4 AVC/H.264
T video coding [1], provides better coding efficiency than
others and is widely adopted in various multimedia devices,
ranging from mobile phones to high-definition television
(HDTV), in which the variable block size integer-pel motion
estimation (IME) and its improved fractional-pel ME (FME)
not only contribute a lot for coding efficiency but also dominate
the computational loading of the whole encoding process.
Thus, various VLSI realizations of ME have been proposed
to speed up the process [2]-[11]. However, most of them are
only applicable for standard-definition TV (SDTV) size or
below. For HD video applications that require a large search
range up to [—128, 127] or even larger, direct extension with
previous approaches will consume too large area cost, buffers,
bandwidth, and cycles. To support a large search range, many
fast IME algorithms have been proposed [12]-[17]. However,
most of them are not suitable for hardware implementation
because of the irregular data flow. Besides, most of these
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Fig. 1. (a) Four block sizes for a 16 X 16 macroblock. (b) Four subblock sizes
for an 8 x 8 subblocks.

approaches only consider IME or FME only without exploiting
their relationship, which may result in extra computational cost.

To solve the above problems, this paper presents an efficient
ME architecture suitable for HD videos by various design tech-
niques, including a parallel multiresolution ME (PMRME) for
large search range IME, a single-iteration FME (SIFME) to
achieve the lower cycle count, and a mode-filtering algorithm
to jointly reduce the IME and FME computations. The cycles
are reduced by hardware parallelism and algorithm modification
(PMRME and SIFME). Furthermore, we lower requirements of
bandwidth and buffer by reusing data within IME as well as be-
tween IME and FME (mode filtering). The video quality loss is
low by exploiting unequal distribution of motion vectors (MVs).
With these approaches, we can save more than half of the area,
bandwidth, and buffer costs when compared with previous de-
signs.

The remainder of this paper is organized as follows. We first
overview the ME of H.264 and review the previous approaches
in Section II. Then, we present the proposed approaches and the
simulation performance in Section III. Section IV shows the cor-
responding architecture. The implementation results and com-
parisons are listed in Section V. Finally, a conclusion is made in
Section VL.

II. REVIEW OF ME IN H.264 AND PREVIOUS APPROACHES

A. ME in H.264

ME in H.264 contains two parts, IME and FME. IME has
seven kinds of block size partition, as shown in Fig. 1. To deter-
mine the best partition mode, it first checks the mode 16 x 16
to mode 8 X 8. If mode 8 x 8 is chosen as the best mode, the
modes with smaller block size as in Fig. 1(b) will be checked.
Thus, 41 MVs will be generated by IME and refined by FME to
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Fig. 2. FME algorithm in reference software [20].

find the best mode. FME will refine these M Vs to quarter-pixel
precision.
For details, readers can refer to [1].

B. Review of Previous Approaches

For fast IME, various approaches have been proposed
[7]1-[17], but few can be readily applicable to large search range
as used in HDTV. The large search-range requirement will
result in longer execution cycles as well as large buffer and
high memory access. Previous designs with [—63, 4+-64] search
range [18], [19] use the full search method and thus occupies
a large area cost. To solve these problems, one promising
approach is the multiresolution ME such as that proposed in
[7]. In [7], they use three hierarchical levels for searching
and refining the MV from the coarse level to the finest level.
However, the MV found in the higher level needs to be further
refined in the lower level. This implies that the search is a
sequential process that will increase the cycle count and thus
decrease the hardware utilization and throughput. Besides, a
full search range sized buffer is still needed because of the
dependency between the three hierarchical levels. Then, the
required bandwidth is still too large because of poor data
reuse of the refinement process. In [8], a modified three-step
algorithm is used to decrease the search points for low power,
but still consumes large area cost and memory. The work in [9]
also used the subsampling techniques to reduce the hardware
cost; however, the two-stage architecture results in a longer
cycle count. In [11], the two-stage flow and the irregular search
range cause the difficulty of external data transfer.

For fast FME, most approaches follow the two-step ap-
proaches as in the reference software [20] shown in Fig. 2,
which needs a total of 17 search points for FME. Although this
algorithm is suitable for hardware [21], it has two drawbacks.
First, the nine search points in each step result in area-costly
nine processing units (PUs) for hardware implementation. The
second drawback is that it needs two iterative search loops of
interpolation and Hadamard transform to calculate the SATD
cost.

To speed up FME, many fast FME [22]—-[27] algorithms are
proposed to speed up the process. However, these algorithms
[22]-[25] are software-oriented with irregular data flow and thus
are not suitable for hardware design. Our previous work [26] is
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more suitable for hardware and can reduce the PU from nine
to five to save hardware cost. However, all of these algorithms
suffer from long computation cycles due to the two iterative
search loops, one on half-pels and one on quarter-pels. On the
other hand, single iteration algorithms like [28] and [29] exhibit
bad performance due to poor interpolation accuracy. The design
in [30] increases the throughput by the cost of large area and
memory bandwidth. In summary, the hardware implementation
of these fast algorithms only reduces the processing element but
does not reduce the total cycle count or degrade the quality a
great deal. This problem will pose a strict limit on the HD video
applications since FME will take more cycles than IME does
and thus dominate the whole pipelining cycle time.

III. PROPOSED HARDWARE-BASED APPROACHES

A. Overview of the Approaches

Our approach includes three parts, including PMRME,
SIFME, and mode filtering, to trade off the minimum quality
loss while reducing the area cost and memory bandwidth a
great deal.

First, the proposed PMRME adopts the parallel multiresolu-
tion search method. We tweak the multiresolution search with
two hardware design techniques to solve these problems men-
tioned above. First, we parallel search all resolution levels in-
stead of serial one. This brings the benefit of a low cycle count,
which is crucial to HD video. Second, we adjust the search
center of different levels for data reuse purpose. In the three res-
olution levels, the first level without data subsampling covers the
search range for the most frequently occurring MVs. Thus, this
level has the search center at the MV predictor (MVP). On the
other hand, the last two levels with data subsampling cover the
large search range to find the rarely occurred large MV. These
two levels have good data reuse by fixing the searching center at
(0,0) as in other ME designs. The concept behind our algorithm
is the unequal distribution of MV that most of them are near
the MVP. Thus, a full search around the MVP can find most of
the final MVs while the rest can be found in the coarse search.
With the above parallel method and search center arrangement,
we can save latency and at least 92.4% of memory buffer when
compared with the direct approach [18]. In addition, data within
two out of three memory buffers are highly reused, and thus
PMRME can save about 63.7% of memory bandwidth. Thus,
we can have a low-area-cost IME design with low buffer and
bandwidth requirements.

Second, with the reduction of IME cycles, FME now occupies
a significant part of the run-time in inter prediction and thus
needs speedup as well. The latency of FME is determined by
the number of MVs or modes to be tested and the cycle count
of each block mode.

To reduce the cycle count of each block mode, we propose
SIFME that can complete the quarter-pixel precision motion
search by only examining six search points in one search step
instead of 17 search points in two search steps [20]. Thus, we
can reduce the number of PUs since we only search six candi-
dates. Besides, the cycle count is also halved by using only one
search step.
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To reduce the number of MVs or modes to be tested in FME,
we propose a mode-filtering approach such that the IME stage
only sends the two best modes to the FME stage. Therefore,
the FME stage just needs to check at most 18 MVs instead of
41 MVs in [18]. This brings the benefit of 56.4% cycle count
reduction.

With the above considerations, we can have a ME design with
low latency, cost, and memory bandwidth.

B. PMRME

PMRME includes three levels, and all of them are indepen-
dent of each other, as illustrated in Fig. 3.

In the coarsest level, level 2, the search range (SR) is the
largest [—128 ~ 127] and is centered on the original point (0,
0). This enables the regular memory reuse between successive
MB processing as used in most ME designs [31]. This level
uses the 16:1 sampling, and thus we only choose the 16 x 16
mode (mode 1 in Fig. 1) since other modes will contain too
fewer pixels for SAD calculation and may result in poor mode
decision.

In level 1, the SR is reduced to [—32 ~ +31] and is centered
on (0, 0) for memory reuse. This level uses the 4:1 sampling and
thus we only choose the 16 X 16 to 8 X 8 mode (mode 1 to 4 in
Fig. 1) for the same reason as in level 2.

In the finest level, level 0, the SR is set to [—8 ~ +7]. How-
ever, unlike the other two levels with (0, 0) center, we choose
the MVP as the center due to its higher probability to find the
final MV here. Thus, we do not subsample data in this level and
thus enable search for all variable block-size modes.

In the three parallel levels, level 2 provides a large search
range for high motion blocks with coarse precision. It is useful
for very high motion blocks and can find a sufficient though
rough MV candidate. Also, level 1 can provide a medium search
range but a finer MV precision. With these two large search
levels, the motion search algorithm of level O can converge to
the true MV quickly by effects of MVP. If only level O is used,
it is difficult to trace the high motion blocks because the MVP
cannot follow up the real motion effectively in this case. The
performance and quality analysis of PMRME can be found in
our preliminary work [32].

&

Fig. 4. Proposed SIFME on two square points (0, 0) and frac_pred_mv and
four triangle points around frac_pred_mv in one quarter-pel distance.

TABLE I
PREDICTION ACCURACY OF MVS COMPARED WITH THE FULL-SEARCH FME
ALGORITHM
720p size, 300 frame, IPPP, RDO off, SR=432
QP mobile calendar shields park run | Stockholm
10 58.62% 48.77% 64.65% 73.49%
16 65.68% 55.27% 66.65% 76.07%
22 77.74% 66.78% 67% 78.01%
28 87.46% 87.61% 72.84% 84.86%
34 91.31% 92.34% 80.83% 91.2%
40 92.65% 93.71% 85.92% 94.3%
Avg. 78.91% 74.08% 72.94% 82.9%
TABLE II

SEARCH POINT COMPARISONS FOR DIFFERENT ALGORITHMS

search point

IM [20] 17
[23] 6+multiple diamond search (Total <=11)
[22] 6 + multiple diamond search
[26] 8~9

proposed 6

C. SIFME: Single Iteration Fractional ME Algorithm

Inspired by the unequal distribution of MVs, we propose
SIFME that searches six candidates in only one step without
a refined search, as shown in Fig. 4. The candidate with the
lowest cost will be selected as the best one.

It first calculates the fractional predicted MV (frac_pred_mv)
as

frac_pred_mv = (pred_mv — mv) %/ )]
where pred_mv (MVP) here is defined as the fractional pixel
unit, mv is the integer pixel MV after IME process and is in
fractional-pel units, % is the mode operation, (3 is 4 in 1/4-pel
case and is 8 in 1/8-pel case, and frac_pred_mv is the predicted
fractional MV and indicates only fractional position.
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Fig. 5. (a) Original flow of IME and FME in reference software [20]. (b) Our proposed mode-filtering algorithm.

The six candidates include (0, 0), frac_pred_mv from (1),
and four diamond points around frac_pred_mv. (0, 0) is in-
cluded for low texture and low motion sequences. Other search
points are placed around frac_pred_mv since the best fractional
MYV is more probable around frac_pred_mv than around (0, 0).

Table I shows the prediction correctness compared with the
algorithm in the reference software. The prediction accuracy is
defined as if the fractional MV by the proposed approach is the
same as that by the full search algorithm of the reference soft-
ware. We use four 720-p-sized test sequences with 300 frames
under different QPs. The reference software is JM9.0 [20]. This
result shows that it has more than 70% prediction accuracy in
average though the proposed one has ignored more than 64 %
search points.

Table II shows the search point comparisons with other algo-
rithms. The proposed algorithm searches the fewest points com-
pared with other search algorithms. Besides, our approach does
not need the second step search and saves the additional inter-
polation time, which is very suitable for hardware designs.

The other preliminary performance analysis of SIFME can be
found in our preliminary work [33].

D. Mode Filtering

Fig. 5(a) presents the general flow of IME and FME in the
reference software that IME sends the MV to FME for refine-
ment. After all possible modes and MVs are generated, the best
mode and its MV are chosen in the final step of FME. Thus, the
IME and FME module both processes 41 MVs.

To reduce the complexity, we select the two best modes in-
stead of all modes for FME refinement, as shown in Fig. 5(b).
One mode is chosen from mode 1 to mode 3 in Fig. 1, and
the other mode is selected from mode 1 to mode 7. With this,
only 3 to 18 MVs instead of 41 MVs are computed in FME,
which saves 56.4%-73.2% computing cycles. In [21], a similar
concept but more complex procedure has been proposed. Our
method can achieve better quality and lower cycle count than
that in [21] because we only select two instead of three candi-
dates and only the best candidate for the 8 x 8 and subblock
case is considered in the final best mode selection. Besides, the
method also increases the overall ME pipelining efficiency be-
cause it can reduce the cycle count of FME to be similar to that
of the IME stage.

E. Video Quality Analysis

Table III presents the simulation results for different algo-
rithm combinations: PMRME, mode filtering, and SIFME. In
these results, we also include the bit truncation in this design to
reduce the hardware cost. The simulation environments are as
following: no rate-distortion optimization (RDO), the sequence
type is IPPP, and the search range is [— 128, 127]. All of the sim-
ulation results are compared with those of the default full-search
algorithm in JM9.0 [20]. The result in this table only shows the
average performance under different QPs. The test sequences
are all 720-p resolution including Stockholm, parkrun, mobile
calendar, and shields. The frame rate is 30, and 100 frames are
coded.
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TABLE III
PSNR AND BIT-RATE CHANGE FOR PROPOSED ALGORITHMS COMPARED WITH FULL SEARCH

Frame size 720p
PMRME
PMRME PMRME +MODE FILTERING
QP PMRME |\ \|ODE FILTERING :];\’Iltogfngtzi?gg) +Bit-Truncation (5 bits)
+SIFME
PSNR inc.(db) -0.0025 -0.085 -0.075 ~0.0975
QP16 102 -1.66 066 | T T L8
n.a. 96.95 96.08 96.10
0 -0.095 00825 | -0.117
QP20 -0.49 -1.24 -0.013 180
na. 97.84 96.86 96.87
-0.0075 -0.08 -0.0675 -0.1025
QP24 -0.33 L1 032 237
n.a. 98.36 97.77 97.75
-0.005 -0.0625 -0.0s25s | -0.0925
QP28 0.20 -0.57 07 1 2.52
n.a. 98.78 98.21 98.19
-0.01 -0.0525 0045 | -0.09_
QP32 1.56 1.14 218 1 290
n.a. 99.00 98.30 98.31
PSNR inc.(db) -0.005 -0.075 -0.0645 S -0.1
Avg |  Bitrateinc (%) | -0017 -0.69 052 211
Sharing Rate of LO Buffer (%) n.a. 98.18 97.44 97.44
Table III shows the PSNR change, bit-rate increasing, and External
“Sharing Rate of LO (Level 0) buffer.” The sharing rate of level Memory
0 denotes the percentage that FME can directly reuse the level-0 |
search range buffer for computation to save memory bandwidth. Gl Exiem lllilusm Comrolies
This sharing occurs once the final MV is within the level-0 e e f o
search range. In our design, the sharing rate is at least 90%, and Ref. \
the higher QP will have higher sharing rate and thus can save - [Luma -
more power and bandwidth. RTRE | [ Lo S Luma |t
In this table, we can find that the performance of PMRME is Jma. | Luma, SRAM SRAM et Chooms
almost the same with full search. The average PSNR drop is only SRAM | SRAM — srAM | SRAM L e
0.005 dB, and the bit rate is even decreasing when compared Cur. Chroma
with full search. This is because the PMRME ignores smaller Coelumsier  IME Kemal FMEKemal | Lot :
blocks in levels 1 and 2 and prefers larger block which results et Beie,\jﬁgznd
in a bit-rate decrease. As for mode filtering, the algorithm also eV [ T Mvs
prefers to select larger block size, so the decreasing bit rate is | IME Stage | FME Stage |

more obvious. Oppositely, the PSNR drop is a little more serious
than using only PMRME. However, the worst quality drop is
only 0.095 dB. While considering the bit-truncation technique,
the influence on PSNR is only 0.064 dB, and the increasing
bit rate is 0.52% in average. Finally, we combine all proposed
techniques, the PSNR quality is almost the same, and the bit-rate
quality drop is small, increasing to 2.11% on average

IV. PROPOSED ARCHITECTURE

A. Integrated Motion-Estimation Architecture

Fig. 6 shows the total block diagram of the full ME modules.
It contains IME, FME, several memory buffers, and external
data access interface. The whole flow is as described in Fig. 5(b).

To enable the data reuse between IME and FME, the IME
module has three internal SRAMs for reference pixels storage.
When the IME search of an MB is completed, its macroblock
information is sent to FME. Moreover, the reference pixels in
level-0 SRAM is also sent to FME. However, instead of moving

I | 1

Fig. 6. Block diagram of IME and FME.

data, we use three SRAMs as the level-0 buffer and swap them
with a ping-pong buffer concept. The three level-0 buffers in-
cludes one for IME level-0 reference, one for FME, and one
for loading new data from external memory. Whenever the IME
stage completes the coding of the first MB, the buffer for level-0
reference for the first MB is changed as the FME reference in the
next stage. At the same time, the buffer for current FME refer-
ence is changed to load the data from the third MB from external
memory for further use. The buffer that is now filled with the
reference data for the second MB is switched for IME level-0
reference. With the above ping-pong buffers, we can share the
level-0 data of IME with the FME, and no additional memory
access time is necessary. Besides, the data in level-0 buffers can
be reused by FME for more than 90% of MBs according to the
sharing rate in Table III. With the above arrangement, all of these
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Fig. 7. Proposed architecture of IME stage.

TABLE IV
MEMORY AND BANDWIDTH REQUIREMENT EQUATION FOR EACH LEVEL. THE
MBs1zg IS 16. BESIDES, SRy1,0, SR11, AND SR1> ARE 16, 64, AND 256 IN

RESPECTIVELY
M‘zgls‘t’ry buffer size BW(per MB)
Level 0 (SRLO+ MBsiLc + 5) (SRLO+ MBsiLc +5)
* (SRo+ MBgjye +5)*8 * (SR o+ MBgjye +5)*8
(SR1,1/2 + MBsize/2 -1) (SR1,1/2 + MBsize/2 -1)
Level 1 * (SRL1/2 + MBgize/2) * (SRL1/2 + MBgjze/2) *
*(Pixel_Depthy 1) (16/(64+16)) *8
(SR12/4 + MBsize/4 -1) (SR12/4 + MBsize/4 -1)
Level 2 * (SR1.2/4 + MBize/4) * (SR1.2/4 + MBize/4)
*(Pixel_Depthy 2) *(16/(256+16)) *8
Direct X % (SR+MBgize-1) (SR+MBgize)
design | SR MBuire-1) SRIMBaird) ™8| ™ #(16/256+16)) *8

data can be reused as much as possible and reduce the bandwidth
a great deal.

B. Architecture for PMRME

Fig. 7 shows the proposed IME architecture. All three levels
can be computed in parallel. A 16 x 16 current block is shared
by three levels. The memory size and bandwidth for three refer-
ence frame buffers are listed in Tables IV and V. The bit width
of the memory buffer of levels 1 and 2 are truncated while that
of level O is not. The reason for this is that the level-0O data can
be reused by the following FME hardware if the best MV falls
in level 0. Table IV presents the equation of buffer size and the
memory access requirement for each level and direct implemen-
tation [18]. The MB;,. in the table is 16. In addition, SRy,
SRr1, and SRy, are, respectively, 16, 64, and 256. We should
note that the buffer size for direct implementation is the search
range size. As for level 0, the buffer size is a little larger than
the search range because it includes the neighboring pixels for
FME interpolation. However, in the case of levels 1 and 2, the
memory size is only one-fourth and one-sixteen of their search
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TABLE V
MEMORY AND BANDWIDTH REQUIREMENT IS FOR DIFFERENT FRAME SIZE.
THE SAVING IS COMPARED WITH THE DIRECT DESIGN [18]. THE MAXIMUM
SEARCH RANGE Is [—128, 127]

Memory cost for 720p for 1080p
ry buffer size| BW(per MB)[buffer size| BW(per MB)
Level 0 (Kbyte)| 1.369 1.369 1.369 1.369
Level 1 (Kbyte)| 0.975 0.312 1.170 0.312
Level 2 (Kbyte)| 2.8475 0.268 3417 0.268
Total (Kbytes) | 5.1915 1.949 5.956 1.572
Direct design | 73.712 4336 73.712 4.336
Saving (%) 92.95 55 91.91 55
Q @ @] @]
S —_ §
T T T T T T
Iz z 3 2 |
| LstieRi | LofeRi | L iRy | Lt j-R| :
SAD Unit |

Fig. 8. Basic 4p-SAD unit can accumulate the SAD of four pixels.

range by the subsampling techniques. In addition, the bit-trun-
cation technique also reduces 25%—-37.5% of buffer size if two
or three bits are truncated. As for the memory bandwidth, by
the level-C data-reuse scheme in [31], the direct implementation
needs to update (SR + MBg;,e — 1) * 16 pixels. Therefore, the
larger search range results in the lower proportion of update rate.
Thus, only 16/(64 + 16) = 20% data in level-1 SRAM should
be updated when the coding MB changes with above approach.
As for level 2, only 16/(256 + 16) = 5.88% data should be
updated. Table V shows the real buffer size and memory band-
width requirement for 720-p and 1080-p video. The proposed al-
gorithm can save over 91.91% buffer in the 720-p case and 55%
of bandwidth in the 1080-p case by subsampling and bit-trun-
cation when comparing to [18] that also uses level C data-reuse
scheme. If the bus width is 128 bits, it only needs 121 cycles
per MB to transfer the required data from external memory to
SRAM.

In this architecture, all computations are decomposed as the
combinations of 4 x 4 blocks. The basic processing unit is the
four-pixel SAD (4p-SAD) unit, which can process the SAD of
four pixels, as depicted in Fig. 8. With this, every level can be
easily implemented by regularly composed SAD units. As Fig. 7
presents, LO (level 0) has one search point module which can
process a search point within one cycle so that the level 0 with
search range [—8, +7] can finish the full search within 256 cy-
cles. In the same manner, levels 1 and 2 have four and 16 search
point modules, respectively, which means that levels 1 and 2 can
process four and 16 search points in parallel. Therefore, levels
1 and 2 can process 1024 and 4096 search points, respectively,
within 256 cycles by the parallelization techniques.
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Fig. 9. SAD calculation unit used for different levels. The modules can process a search point of a 16 x 16 MB within one cycle. (a) LO (level 0) search point
module. (b) L1 (level 1) search point module. (c) L2 (level 2) search point module.

Fig. 9 shows the detailed architecture of each level. Fig. 9(a)
shows the “L0 search point module,” which consists of four
row SAD modules. Each row SAD module contains 16 4p-SAD
units. Thus, the LO search point module includes 64 4p-SAD
units in total to generate the total SAD cost of a 16 x 16 MB.
As for level 1 with 2:1 subsampling, the number of search point
is 1024. Furthermore, since the current buffer for level 1 is also
subsampled, only 64 pixels are compared in current MB. There-
fore, L1 (Level 1) search point modules in Fig. 9(b) only needs
16 4p-SAD units, which is quarter of that in level 0. In order to
keep the cycle count of level 1 as the same as that of level 0, we
use four L1 search point modules. Thus, four search points in
level 1 can be processed in parallel with the same current block.
With above arrangement, the total hardware cost of level 1 is the
same as that of level 0, 64 4p-SAD units. Similar design con-
siderations are also applied to level 2. Thus, in level 2, the L2
(Level 2) search point module in Fig. 9(c) only needs 4 4p-SAD
units so that we use 16 L2 search point modules to compute 16
search points in parallel. In summary, all these levels have 64
4p-SAD units respectively to balance the computation cycle of
each level to be the same 256 cycles.

The SADs generated from the SAD modules are further
summed up by the summation trees to generate the SAD of
different block size.

C. Architecture for SIFME

Fig. 10 shows the proposed FME hardware architecture. The
input data are first interpolated by the interpolation unit for half
and quarter pixels of one 4 x 4 block. Then, these data are com-
puted with the current block data by six 4 x 4 block PUs. Each
PU is in charge of residual generation and 4 X 4 Hadamard
transform. All larger sized blocks are decomposed into a 4 x
4 block for processing. Then, the residual cost combining with
MYV cost is sent to the Compare Unit to find the best one and
stored in the SB_buffer.

Table VI shows the comparisons for hardware implementa-
tion. The proposed algorithm searches only six candidates and

Ref frame

MVP IMV Mode Original MB
data data
Control l
| l Interpolation Unit ‘
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Fig. 10. Proposed hardware architecture of FME.

TABLE VI
COMPARISON OF NUMBER OF PUS AND NUMBER OF ITERATIVE SEARCH STEPS
# of PU | # of iterative search step
[26] 5 2
[21] 9 2
proposed 6 1

needs only six PUs. In addition, with one loop design, our de-
sign just takes approximately half the number of cycles com-
pared with the other designs [21], [26].

V. IMPLEMENTATION RESULT AND COMPARISONS
The proposed design has been implemented by Verilog and
synthesized by the 0.13-pm CMOS process. Table VII shows
the total hardware cost of our IME design and comparison to
other designs. Our design can provide the largest search range
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TABLE VII
COMPARISON OF THE IME PART WITH PREVIOUS DESIGNS
[8] [2] [6] [7] [19] ) [5] Ours
Max. CIF@30fps | 4CIF@15tps | 4CIF@]15fps | 720x480@30fps | 720p@30fps | 720p@30fps | 720p@601fps 1080p@601ps
Supporting
Resolution
Search 4-Step Full Full Multi-resolution Full Subsampling Full Multi-resolution
Algorithm
Quality About 0.1 0 0 0.4 0 0.083 0 0.065
loss (dB)
PE (SAD 256 16 256 64/320 1024 32 256 192
Module)

Max. H:£32 H:+32 H:+64 H:+64 H:+64 H:+32 H:+16 H: £128
Search V:£16 V:+32 V: 64 V: +64 V:+32 V:+32 V: 16 V: 128
Range

Gate 131.2 61 154 na 330.2 47.9+4k bit 176 155.8 for 720p

Count (K) buffer 213.7 for 1080p
Memory 8 na. 7.5 na 26 2.75 41.6 5.19 for 720p
(Kbyte) 5.95 for 1080p

Operating 40 294 for 4CIF | 100 for 4CIF | 16 for 720x480 na 105 for 720p 55.6 for 27.6 for 720p

Freq. (MHz) (13.3 for 720p 124.4for 1080p
CIF)
Latency na. 4096 1024 375 na 972 258 256
(Cycle)
CMOS 0.18um 0.13pm 0.18um na 0.18um 0.18um 0.18um 0.13um
Tech.
TABLE VIII
COMPARISON OF THE FME PART WITH PREVIOUS DESIGNS
[21] [26] [27] [30] [28] Ours
Max. Supporting 720x576@30fps | 720p@30fps 720p@30fps | 1080p@30fps | 3200x2400@30fps 1080p@60£ps
Resolution
Algorithm 17 candidates 8 candidates 25 candidates | 17 candidates Math-model 6 candidates
2-iteration 2-iteration 1-iteration 2-iteration No interpolation 1-iteration
interpolation interpolation interpolation interpolation interpolation
Gate 79.3 48 117.2 188.45 56.53 52.8 for 720p
Count (K) 68.9 for 1080p
Latency (Cycle) 1648 2000 1000 790 110 264(Best)
432(Worst)
Operating Freq. (MHz) 100 100 108 for 720p 285 100 28.5 for 720p
128.3 for 1080p
Throughput (Kilo-MBs/sec) 49 50 108 250 909 486(Best)
Quality Drop (dB) 0.1 0.09 0.012 na. 0.15 0.04
CMOS Tech. 0.18um 0.18um 0.13pum 0.18um 0.13um 0.13pum

capability (High Profile Level 2) but just needs similar hardware
cost and smaller buffers. In addition, our design has the shortest
latency so that our design can achieve 1080-p @60-fps specifica-
tion with only 124-MHz operating frequency only. In compar-
ison, the designs in [5], [6], and [19] have larger area cost and
long latency due to the full-search architecture. Though designs
in [7] and [8] use fast algorithms to reduce the latency, they still
needs large area cost and buffer. As for [9], their throughput is
only one-fourth of ours though it uses fast algorithm. The pro-
posed IME design can achieve low latency with low buffer cost
and similar area cost and, thus, is suitable for HD applications.
Table VIII shows the hardware comparison of FME designs.
Our design can achieve high throughput with low area cost and
negligible quality loss. Its hardware cost is only slightly larger
than our previous work [26], but with six times throughput. As
for [27], the area cost is doubled compared with our work be-
cause it needs to search 25 points in an iteration. In comparison,
though the design in [28] has higher throughput than ours, their
quality drop is more than 0.15 dB due to imprecise mathemat-

ical modeling. In addition, such mathematical modeling design
still needs additional hardware to calculate the final residuals,
which is not included in the gate count report. When comparing
with other designs for 1080 p @ 30 fps [30], our FME design
only needs 36.5% of gate count and 54.6% of cycles due to our
hardware-based approaches.

Table IX shows the total hardware cost of our ME design
and comparison to the integrated designs [11], [18]. Comparing
with [18], our design can save at least 30% of area costs and
50% of memory costs in the IME part. As for the FME part, we
save 82.8% of area cost due to fewer PUs and reduce memory
by 81.2%. In summary, the total area and memory saving is
60% and 68.9%, respectively. As for the throughput, our de-
sign is sufficient for HD video applications. Our design im-
proves throughput by 75% when comparing with that in [18].
If comparing with the other integrated design [11] using fast al-
gorithms in IME, our design still saves 12.3% of area. As for the
cycle count, our design also has 75.5% of throughput improve-
ment than [11]. Due to the high throughput, only 28.5 MHz is
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TABLE IX
HARDWARE COST COMPARISON FOR COMPLETE H.264 ME ACCELERATOR WITH PREVIOUS WORKS
[18] [11] Ours Saving with [18] | Saving with [11]
Max Supporting 720p@30fps | 720p@30fps 1080p@60fps
Resolution
Search Range H: +64 H: 96 H: +128
V:£32 V: 496 V:£128
Quality Loss (dB) 0 n.a. 0.1
IME Gate Count (K) 305.2 na 155.8 for 720p 48.9% for 720p
213.7 for 1080p 30% for 1080p
FME Gate Count (K) 401.8 na 52.8 for 720p 86.8% for 720p
68.9 for 1080p 82.8% for 1080p
Total Gate Count (K) 707 238 208.6 for 720p 70.4% for 720p 12.3% for 720p
282.6 for 1080p 60% for 1080p
IME Memory (Kbyte) 13.71 na 5.19 for 720p 62.1% for 720p na
5.95 for 1080p 56.6% for 720p
FME Memory (Kbyte) 13.82 na 2.59 81.2% na
Total Memory 27.53 na 7.78 for 720p 71.7% for 720p na
(Kbyte) 8.54 for 1080p 68.9% for 1080p
Latency for IME Stage 1024 1079 256 75% 75.5%(Best)
(Cycle)
Latency for FME 1648 264(Best) 83.9%(Best)
Stage (Cycle) 432(Worst)
Freq. (MHz) 120 (108 for | 117 for 720p 28.5 for 720p 73.6% for 720p 75.6% for 720p
720p) 128.8 for 1080p
CMOS Tech. 0.18um 0.18um 0.13um

enough for a 720-p sequence with 30 frames per second and
128.8 MHz for 1080-p sequences with 60 frames per second.
To satisfy such a high throughput requirement, the external bus
bandwidth should be set to 128 bits.

VI. CONCLUSION

In this paper, we propose a highly data-reused ME design
with low cost and latency for HD video. This design maximizes
the most concerned data reuse by sharing data within IME as
well as between IME and FME, while minimizing the computa-
tion and latency by parallel multiresolution IME and single-it-
eration FME. The final design can easily support processing
for 1080-p sequences with just 128.8 MHz and 282.6 K gates
and saves 60% of gate count and 68.9% of SRAM buffers com-
pared with the previous design. The presented design also can
be easily scaled to other smaller size video with search range
adjustment.
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