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Abstract—In this paper, the current transportation mechanism
of HfO2 gate dielectrics with a TaN metal gate and silicon sur-
face fluorine implantation is investigated. Based on the exper-
imental results of the temperature dependence of gate leakage
current and Fowler–Nordheim tunneling characteristics at 77 K,
we have extracted the current transport mechanisms and energy
band diagrams for TaN/HfO2/IL/Si structures with fluorine
incorporation, respectively. In particular, we have obtained the
following physical quantities: 1) fluorinated and as-deposited in-
terfacial layer (IL)/Si barrier heights (or conduction band off-
sets) at 3.2 and 2.7 eV; 2) TaN/fluorinated and as-deposited
HfO2 barrier heights at 2.6 and 1.9 eV; and 3) effective trap-
ping levels at 1.25 eV (under both gate and substrate injec-
tions) below the HfOF conduction band and at 1.04 eV (under
gate injection) and 1.11 eV (under substrate injection) below
the HfO2 conduction band, which contributes to Frenkel–Poole
conduction.

Index Terms—Current transport, fluorinated HfO2, fluorine
implantation.

I. INTRODUCTION

H IGH-k gate dielectrics as an alternative to conventional
SiO2 gate oxides are widely investigated for their ca-

pability to reduce gate leakage current for the same electrical
capacitance [1]–[3]. Among all high-k gate materials, hafnium-
based dielectrics are considered the most promising candidates,
or at least the most studied, due to their excellent thermal
stability, wide bandgap, and high dielectric constant [4]–[6].
Nevertheless, the metal-gate electrode has also attracted at-
tention as a solution to the polydepletion effect that appears
under gate inversion conditions in poly-Si gates, as well as
the incompatibility between some high-k materials and poly-
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Si [7]. As a result, metal-gate/high-k stacks have been explored
in recent years [7]–[10].

However, HfO2 gate dielectrics with fluorine incorporation
could also exhibit better dielectric performance and reliability
[11]–[15]. F incorporation into a HfSiON dielectric has been
shown to be highly effective in lowering Vth and improv-
ing negative bias temperature instability in p-channel field-
effect transistors, and the drive current could aggressively
be increased [11]. F is believed to form stronger Hf–F and
Si–F bonds than Hf–H and Si–H bonds, which improves the
reliability of HfO2/SiO2 [12]. Recently, we have also doc-
umented several studies of ultrathin fluorinated HfO2 gate
dielectrics. First, the thermal stability of HfO2 gate dielectrics
can be much improved by fluorine ion implantation on the
silicon surface [16]. Second, the interfacial layer (IL; be-
tween HfO2 film and Si substrate) formation can effectively
be suppressed by a pre-CF4 plasma treatment [17]. Third,
the charge-trapping phenomenon can largely be eliminated
for the HfO2 gate dielectrics fluorinated by a postdeposition
CF4 plasma treatment [18]. Although several recent studies
have investigated fluorinated HfO2 gate dielectrics [11]–[18],
its carrier transport mechanisms have not been well inves-
tigated. Only a few studies have demonstrated the carrier
transport and tunneling mechanisms of conventional HfO2 gate
dielectrics [19]–[21], and none have explored fluorinated HfO2

gate dielectrics. Electron transport in high-k gate dielectrics
will instead be governed by a trap-assisted mechanism, such
as Frenkel–Poole (F–P) conduction or hopping conduction,
due to the charge-trapping phenomenon. In order to explain
higher current density traps in the band gap of the high-k
dielectrics, charge trapping has to be assumed. In the known
trap-assisted tunneling (TAT) models and the F–P conduc-
tion mechanism, the current density only linearly depends on
the trap concentration [22]. In addition, in previous studies
[22]–[31], the F–N tunneling is usually used for current
transport analysis of high-k gate stacks. The F–N fitting can
be used for the high-k gate insulator of a MOS capacitor,
whereas the gate insulator is a dielectric bilayer [22]–[28] or
oxide–nitride–oxide (ONO) stacks [29]–[31] in order to extract
the tunneling barrier. On the other hand, the band diagram of
the metal/HfO2/Si capacitor has been investigated, although
without consideration of the IL [19]. However, the IL is a
critical issue for high-k gate dielectrics and, therefore, deserves
an in-depth discussion.

0018-9383/$25.00 © 2008 IEEE
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In this paper, we investigate the carrier transportation mech-
anism in devices integrating both HfO2 gate dielectrics with
and without fluorine incorporation and a metal gate (TaN).
We present new accurate characterizations of TaN/as-deposited
and fluorinated HfO2/Si capacitors, including F–P conduc-
tion and Fowler–Nordheim (F–N) tunneling, under both gate
and substrate injection modes. The strong temperature depen-
dence of the gate leakage current suggests that the current
tunneling mechanism is F–P conduction for both as-deposited
and fluorinated HfO2 gate dielectrics. The effective extracted
trapping level of fluorinated HfO2 gate dielectrics is, thus,
larger than the as-deposited one. We also report the F–N
tunneling characteristics at 77 K, from which we can deduce
the energy band diagrams for TaN/HfO2/IL/Si and TaN/
HfOF/(IL + F)/Si structures, as well as their current transport
mechanisms.

II. EXPERIMENT

The devices used in this paper were MOS capacitors fabri-
cated on p-Si(100) wafers. First, standard RCA cleaning was
performed on all samples. Then, 30-nm screen oxide films
were grown in order to prevent implantation damage. Fluorine
ions were implanted through the 30-nm screen oxide films at
a low energy of 25 keV, with different dosages ranging from
1 × 1013/cm2 to 1 × 1015/cm2, designated F 1E13, F 1E14,
and F 1E15 (without F implantation, which is denoted as-dep.),
respectively. Then, annealing in a N2 ambient at 850 ◦C for
30 min was performed to remove any implant-induced dam-
age. At that time, the fluorine atoms diffused into the silicon
surface.

Before HfO2 thin-film deposition, the 30-nm screen oxide
was removed by a wet HF solution. Then, a HfO2 thin film
was then deposited on a HF-last Si surface by an electron
beam evaporation system. For the HfO2 thin-film crystallization
study, some samples were annealed by rapid thermal annealing
(RTA) in the N2 ambient for 30 s at 600 ◦C. The HfO2 thin film
was crystallized after the 600 ◦C RTA, as approved in X-ray
diffraction analysis (not shown here). A metal gate (TaN) film
of 50 nm was deposited by reactive RF sputter for all samples.
Thereafter, a 300-nm-thick Al film was deposited on the TaN
film by a thermal evaporator. The gate of the capacitor was
lithographically defined and etched. Finally, a 300-nm-thick Al
film was also deposited on the backside of the wafer to form the
ohmic contact.

The electrical properties were analyzed by an HP 4285
LCR meter for capacitance–voltage (C–V ) characteristics
at 100 kHz, and the capacitance effective thickness (CET)
was extracted from the capacitance under the accumulation
region without consideration of the quantum effects. The
current–voltage (I–V ) curves were measured by a Keithley
4200 semiconductor characterization system. Furthermore, the
I–V characteristics were measured at elevated (318–373 K) and
low temperatures (77 K) in order to study the current trans-
portation and band diagram of the MOS capacitor, respectively.
Moreover, the physical thickness was checked by transmission
electron microscopy (TEM) to obtain the dielectric constant of
the HfO2 thin film.

Fig. 1. XPS analysis of the F 1s electronic spectra of as-deposited and
fluorinated samples. TOAs of 60◦ and 90◦, respectively.

Fig. 2. TEM image of the TaN/HfO2/IL/Si MOS structure with fluorine
incorporation (F 1E15) with 600 ◦C PDA.

III. RESULTS AND DISCUSSION

Takeoff angles (TOAs) of 60◦ and 90◦ were used to measure
the X-ray photoelectron spectroscopy (XPS) spectra of surface
and bulk HfO2 thin films with fluorine incorporation (Fig. 1).
In Fig. 1, for all samples except the as-deposited sample, a
distinct F 1s peak at 687 eV can be observed. The silicon
surface fluorine implantation (SSFI) processes are apparently
introducing fluorine atoms into the dielectrics to form the HfOF
gate dielectrics. However, the fluorine intensity was larger
for the TOA = 90◦ than the TOA = 60◦, indicating that less
fluorine would distribute in bulk HfO2 gate dielectrics. Fig. 2
shows the TEM image of the TaN/HfO2/IL/Si structure with
fluorine incorporation (1 × 1015/cm2) and 600 ◦C postdepo-
sition annealing (PDA). The great quality of the HfO2 thin
film was demonstrated in this paper, as shown in Fig. 2. As
discussed before, physical vapor deposited HfO2 thin films tend
to have ILs at the HfO2/Si interfaces, as shown in the TEM
images. In addition, the composition of the IL is believed to
be hafnium silicate, because the estimated dielectric constant
of the IL is higher than that of the SiO2. Furthermore, the
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thicknesses of HfO2 and Hf-silicate were about 3.3 and 2.6 nm,
respectively. As a result, the k value of the HfOF (with
Hf-silicate) thin film was about 14. In this paper, the carrier
transportation mechanism of both as-deposited and fluorinated
HfO2 gate dielectrics was investigated while taking into ac-
count the Hf-silicate IL.

Fig. 3(a) and (b) shows the gate current density versus
the gate voltage (J–V ) characteristics of all samples with
and without 600 ◦C RTA under gate and substrate injection
modes, respectively. As we can see, the gate leakage current
of the sample without fluorine implantation was much larger
than that of films with fluorine incorporation under both gate
and substrate injection modes. Both the leakage current and
the breakdown voltage were improved for the sample with
fluorine incorporation. Furthermore, these characteristics were
improved as the fluorine implantation dosage increased, as
illustrated in this figure. In addition, the gate leakage current
increased for the samples with 600 ◦C RTA, owing to HfO2

thin-film crystallization. However, the gate leakage current
reduction may still be observed for the fluorinated samples,
as shown in Fig. 3. The gate leakage current for the samples
with fluorine incorporation was much smaller than that of
the samples without fluorine incorporation, whereas the CET
was also decreased for fluorinated samples with and without
600 ◦C PDA (Fig. 4). The decrease in CET for the samples
with 600 ◦C PDA resulted from densification of the HfO2

thin film. However, the HfO2 films with fluorine incorporation
appeared to possess properties superior to those of the as-
deposited samples, including thin equivalent oxide thickness
and low leakage current. Fig. 4 demonstrates the relationship
between gate leakage current density at VG = VFB − 1 V and
capacitance equivalent oxide thickness for all samples. The gate
leakage current density of the sample with 1 × 1015 cm−2 F im-
plantation displayed a two-order-of-magnitude improvement by
comparison with the as-deposited sample with PDA at 600 ◦C
under the gate injection mode. The same tendency was
shown in the CET performance. Even after PDA at 600 ◦C,
a low CET (16.9 Å) was obtained, whereas the leakage cur-
rent was kept at less than 0.01 mA/cm2 for the HfO2 films
with fluorine incorporation under substrate injection. The gate
leakage current reduction of the F-incorporated HfO2 gate
dielectrics can be explained by F-atom incorporation into the
HfO2 layer. The fluorine atoms can be bonded to Hf (or Si)
dangling bonds, resulting in annihilation of oxygen vacancies.
In addition, the fluorine incorporation will effectively eliminate
some shallow traps in HfO2 thin films, resulting in lower F–P
conduction leakage current for fluorinated HfO2 gate dielectrics
[16], [18]. This shallow trap elimination will be discussed in
the next paragraph. Fig. 5 shows the Weibull distribution plots
of the gate leakage current density at VG = VFB − 1 V for all
samples. Both the performance and uniformity distribution of
the fluorinated HfO2 gate dielectrics were superior to those of
the as-deposited samples under both gate and substrate injection
modes, without an increase in the CET.

The temperature dependence of the gate leakage current
was studied to understand the current transport mechanisms.
The gate leakage currents were measured from 318 to 373 K,
as shown in Fig. 6(a) and (b) for gate electron injection

Fig. 3. I–V characteristics for the as-deposited and fluorinated HfO2 gate
dielectrics with and without PDA under (a) gate injection and (b) substrate
injection.

Fig. 4. Relationship between gate leakage current and CET for all samples.
The fluorinated HfO2 gate dielectrics have lower leakage current and CET.

(negative VG) and in Fig. 6(c) and (d) for substrate electron
injection (positive VG). The gate leakage current increases with
increasing measuring temperature under both gate and substrate
injections for all samples, thus showing obvious temperature
dependence. As a result, the commonly used equations for
direct and F–N tunnelings do not fit the experimental cur-
rent density of the high-k dielectrics, which are larger by
orders of magnitude than the calculated currents. To further
investigate the carrier transportation of as-deposited and flu-
orinated HfO2 gate dielectrics with and without RTA, the
F–P conduction fitting is performed, as shown in the inset of
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Fig. 5. Weibull distribution of gate leakage current for the as-deposited
and fluorinated HfO2 gate dielectrics under (a), (c) gate injection and (b),
(d) substrate injection. A good distribution performance of the fluorinated HfO2

gate dielectrics was observed.

Fig. 6. Temperature dependence of gate leakage current increase for (a), (c)
as-deposited and (b), (d) fluorinated HfO2 (with F 1E15 SSFI) gate dielectrics
under (a), (b) gate injection and (c), (d) substrate injection.

Fig. 7. The data in the inset of Fig. 7 were extracted from the
good F–P fitting [22] (J = EOX × exp{−q[ΦB − (qEOX −
πεi)1/2]/kT}), where ΦB is the effective F–P barrier, and εi

is the dielectric constant of SiO2. The electric field EOX =
V/TOX is an “effective” electric field because TOX is the CET.
As a result, ΦB is named the effective F–P barrier, which is
determined by the effective electric field EOX. In addition, as
described in Fig. 2, there is an interfacial oxide layer between
HfO2 and Si. Therefore, the barrier parameters to be discussed
in this paper are “effective” values that include the effects
of these ILs [19]. Both gate and substrate injections were
aggressively studied, as shown in this figure. It should be noted

Fig. 7. Effective F–P trapping level for the as-deposited and fluorinated HfO2

gate dielectrics under (a) gate injection and (b) substrate injection. Inset shows
the F–P curve fit for all samples.

Fig. 8. Physical model of (a), (c) as-deposited and (b), (d) fluorinated gate
dielectrics for F–P conduction under (a), (b) substrate injection and (c), (d) gate
injection.

that this effective barrier height includes the effect of the IL
between HfO2 and Si. The extracted trap energy ΦB under
substrate injection for the as-deposited sample is 1.11 eV from
the conduction band of HfO2, whereas that of the fluorinated
sample (F 1E15) is about 1.25 eV. Similarly, the extracted
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Fig. 9. I–V characteristics at 77 K measured for the as-deposited and
fluorinated HfO2 gate dielectrics with and without PDA under (a) gate injection
and (b) substrate injection.

trap energy under gate injection for the as-deposited sample is
1.04 eV from the conduction band of HfO2, whereas that of the
fluorinated sample (F 1E15) is about 1.25 eV. As the F-implant
dosage increases, the increase in the effective trapping level is
easily observed, which means that most of the shallow traps in
the HfO2 film can be eliminated using this fluorine implantation
technique. In addition, the decreased effective trapping level
can be observed for the annealed samples. The gate leakage
current will increase for the annealed samples, owing to film
crystallization discussed earlier. As a result, the effective trap-
ping level extracted from F–P conduction current will decrease,
as shown in this figure. Furthermore, the Schottky emission
barrier (J = A∗T 2 exp[−q(ΦB −

√
qE/4πεI)/kT ]) was also

calculated. The Schottky emission barrier ΦB is also an ef-
fective barrier, as previously mentioned. Moreover, A∗ is the
Richardson’s constant, and E is an effective electric field. The
same as F–P conduction, the gate current of Schottky emis-
sion will be dependent on temperature variation. This obvious
temperature dependence of the gate leakage current was shown
in Fig. 6. However, because the barrier height extracted from
Schottky emission was larger than the trap energy extracted
from F–P conduction, the F–P conduction mechanism would
dominate the Schottky emission for both as-deposited and
fluorinated HfO2 gate dielectrics. Fig. 8 shows the energy band
diagrams of carrier injection through TAT from the silicon
substrate into the HfO2 gate dielectric [Fig. 8(a) and (b)] and
from the TaN metal gate into the HfO2 gate dielectric [Fig. 8(c)

Fig. 10. Effective F–N barrier height for the as-deposited and fluorinated
HfO2 gate dielectrics under (a) gate injection and (b) substrate injection. Inset
shows the well FN fitting for all samples.

and (d)]. As aforementioned, the fluorinated HfO2 gate dielec-
tric had deep trapping, resulting in lower gate leakage current
than the as-deposited HfO2 gate dielectric, due to shallow trap
elimination.

In order to obtain the energy band diagram of the
TaN/HfO2/IL/Si structure with and without fluorine incorpo-
ration, we studied the tunneling current under gate and substrate
injections by biasing the p- and n-type Si substrates to accu-
mulation at 77 K. The current tunneling under gate and sub-
strate injections can be observed for the MOS capacitors with
p- and n-type Si substrates, respectively. In addition, at such
a low temperature, the F–P conduction is suppressed, and
the F–N tunneling current is dominant. In previous studies
[23]–[31], the F–N tunneling is usually used for current trans-
port analysis of high-k gate stacks. The F–N fitting can be
used for the high-k gate insulator of a MOS capacitor, whereas
the gate insulator is a dielectric bilayer [23]–[28] or ONO
stacks [29]–[31]. As described in Fig. 2, there is an interfacial
oxide layer between HfO2 and Si. As a result, the F–N barrier
parameters to be discussed in this paper are “effective” values
with consideration of these ILs. Fig. 9(a) and (b) shows the
leakage current of as-deposited and fluorinated HfO2 with a
TaN gate measured at 77 K under gate and substrate injections,
respectively. Similar to the J–V characteristics at room tem-
perature, both the leakage current and the breakdown voltage
improved for the samples with fluorine incorporation. The
characteristics improved with increasing fluorine implantation
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Fig. 11. Band diagrams of (a) as-deposited, (b) SSFI (F 1E13) HfO2, (c) SSFI (F 1E14) HfO2, and (d) SSFI (F 1E15) HfO2, with a TaN gate extracted from
leakage current at 77 K.

dosage, as illustrated in this figure. The inset of Fig. 10 shows
the FN tunneling barrier heights fitted in the high-field region
(J = E2 exp[−4

√
2m∗(qφB)3/2/3q�E]), where the electron

effective mass in HfO2 was 0.1m0 (m0 is the free electron
mass) [19], and � is the Planck’s constant. ΦB is the effective
barrier height that takes into account barrier height lowering
and quantization of electrons at the semiconductor surface. The
slope of the fitted line in the inset yields the following rela-
tionship: B = −(8π(2qm∗)1/2/3h)φ3/2

eff . In addition, the FN
tunneling is quite different from F–P conduction and Schottky
emission. There is no temperature parameter in this equation.
What is measured is the gate current as a function of gate
voltage. On the other hand, it should be noted that the FN
tunneling current originating from gate injection is determined
by the metal/HfO2 barrier and is essentially not affected by
the presence of the IL between HfO2 and Si substrate. By the
same token, the current originating from the substrate injection
is determined by the IL/Si barrier. Thus, we can obtain both
the TaN/HfO2 and IL/Si barrier heights from the FN tunneling
current under gate and substrate injections, respectively. Both
the TaN/HfO2 and IL/Si barrier heights were increased with the
F-implant dosage (Fig. 10). As previously noted in this paper,
the IL was Hf-silicate, not pure oxide. Therefore, the effective
IL/Si barrier height was 2.7 eV, which is smaller than the
SiO2/Si barrier height (3.1 eV). However, the Hf-silicate with
fluorine incorporation is increased, as shown in Fig. 10. It seems
likely that F atoms incorporated into the HfO2 layer are bonded
to the Hf (or Si) dangling bond, resulting in annihilation of the
oxygen vacancies, resulting in a greater barrier, as previously
noted. The IL/Si barrier heights were also increased under
substrate injection, owing to fluorine accumulating in the IL
to passivate defect vacancies in the Si dangling bonds. On the
other hand, the TaN/HfO2 barrier height for the as-deposited
sample is 1.9 eV, indicating that the conduction band of the
HfO2 film to the vacuum level is 2.8 eV, which is similar to
previous research [19]. In addition, the effective TaN/HfO2

and IL/Si barrier heights will decrease for the samples with
PDA, as shown in this figure. The effective barrier was ex-
tracted from the FN equation, which was affected by JFN.
The JFN will increase for the annealed samples due to HfO2

film crystallization, as we previously mentioned. Therefore, the
effective TaN/HfO2 and IL/Si barrier heights will decrease
for the annealed samples with consideration of HfO2 film
crystallization.

In summary, our results imply that the HfO2 gate dielectrics
with fluorine incorporation in CMOS applications would have
lower leakage current due not only to the shallow trap elimina-
tion but also to the barrier increases. Fig. 11(a)–(d) shows the
band diagrams of TaN/HfO2/IL/Si, TaN/HfO2/IL/Si (with
F 1 × 1013/cm2), TaN/HfO2/IL/Si (with F 1 × 1014/cm2),
and TaN/HfO2/IL/Si (with F 1 × 1015/cm2) capacitors, re-
spectively, at flat band, which serve to summarize the key
results we have obtained from analysis of their F–N tunneling
characteristics.

IV. CONCLUSION

The carrier transportation mechanism of fluorinated HfO2

gate dielectrics was successfully investigated in this paper.
First, the F–P conduction under gate and substrate injections
for as-deposited and fluorinated HfO2 gate dielectrics was
analyzed. The effective F–P barriers increased with increasing
fluorine implantation dosage, indicating that the fluorinated
HfO2 gate dielectrics have a deep trapping level, resulting
in lower F–P current. Second, the F–N tunneling mechanism
for fluorinated HfO2 gate dielectrics was also studied by the
J–V measurement at 77 K. The energy band diagram of the
TaN/HfO2/IL/Si capacitors with fluorine incorporation can be
extracted from the good F–N fitting in this paper. Furthermore,
the energy band diagram of the TaN/HfO2/IL/Si capacitors
was demonstrated by taking into account the IL, which is useful
for understanding fluorinated HfO2 in CMOS applications.
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