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Abstract—We have studied the performance of
double-quantum-barrier [TaN − Ir3Si] − [HfAlO − LaAlO3] −
Hf0.3N0.2O0.5 − [HfAlO − SiO2]-Si charge-trapping memory
devices. These devices display good characteristics in terms
of their ±9-V program/erase (P/E) voltage, 100-µs P/E speed,
initial 3.2-V memory window, and ten-year extrapolated data
retention window of 2.4 V at 150 ◦C. The retention decay rate
is significantly better than single-barrier MONOS devices, as
is the cycled retention data, due to the reduced interface trap
generation.

Index Terms—Erase, high-κ, nonvolatile memory, program.

I. INTRODUCTION

M ETAL-OXIDE-Nitride-Oxide-Silicon (MONOS) de-
vices [1]–[13] are attractive candidates for highly scaled

sub-50-nm nonvolatile memories (NVMs). This is due to
their discrete charge-trapping property, which can avoid stored
charge leakage via a single oxide defect, when compared with
conventional conductive poly-Si floating-gate memory devices.
However, good data retention at high temperatures is difficult in
MONOS memory—this is due to the shallower trap energy in
Si3N4 [14] when compared with poly-Si floating-gate memory,
which displays a 3.2-eV trap energy. To address this issue, we
previously used deep trap-energy Al(Ga)N and HfON to replace
the Si3N4 in MONOS devices [10]–[12], leading to improved
retention when compared with Si3N4 [13]. Unfortunately, the
85 ◦C retention showed a charge decay (at 42%–46% of the ini-
tial memory window) that was relatively high and unacceptable.
The high temperature retention can be improved via bandgap-
engineered SONOS (BE-SONOS) [9], but the erase speed is
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low (10–100 ms) and the program/erase (P/E) voltages are high
(18–20 V), contrary to the requirements of the ITRS scaling
roadmap.

In this paper, we report a new double-quantum-barrier
charge-trapping NVM device with good high temperature re-
tention, low P/E voltages, and high speed. For instance, for a
9-V P/E voltage applied between the gate and Si channel at
100 µs, the extrapolated ten-year retention window was 2.4 V at
150 ◦C, where the initial value was 3.2 V. The observed reten-
tion P/E decay at this temperature was only 82/26 mV/decade
(or 25% of the initial memory window), which is better than
that of Ga(Al)N [10], [11] and HfON [12] MONOS devices.
This is due to the double quantum barriers comprising the lower
[HfAlO − SiO2] and the upper [LaAlO3 − HfAlO], which con-
fine the carriers trapped in the deep energy Hf0.3O0.5N0.2 quan-
tum well. The high electric field across the [HfAlO − SiO2]
tunnel oxide leads to the 100-µs P/E speed. For the double-
barrier devices, we have found good 105 cycling and cycled
retention characteristics, which arise from the rapid 100-µs
P/E—this produces less stress to the tunnel oxide and, thus,
less interfacial trap generation than in the single-barrier devices.
By using ±4.5- and ∓4.5-V P/E voltages applied between the
gate and channel, these devices are promising candidates for
embedded SoC applications using a 5-V voltage source [12].

II. EXPERIMENTAL DETAILS

The [TaN − Ir3Si] − [HfAlO − LaAlO3] − Hf0.3N0.2O0.5 −
[HfAlO − SiO2] − Si NVM device design involved choices of
the oxide barrier height and its thickness. First, a 2.5-nm-thick
thermal SiO2 layer was grown on a standard p-Si substrate
and a 2-nm layer of HfAlO was deposited by PVD to form
the double tunneling layers. Then, a 10-nm Hf0.3N0.2O0.5

layer was deposited by reactive sputtering, under mixed O2

and N2 conditions [12], [15]. (The composition of N and O
in the Hf1−x−yNxOy was measured by X-ray photoelectron
spectroscopy.) An 8-nm LaAlO3 layer and then a 7-nm HfAlO
were deposited to form the double blocking layers. Finally, a
15-nm Ir3Si and a 150-nm TaN layer was added by PVD. The
high work function Ir3Si gate was used to make metal-gate/
high-κ p-MOSFETs [16]. After standard processing, the
MONOS devices were fabricated by using self-aligned As+ ion
implantation and given a 950 ◦C 30-s rapid thermal anneal acti-
vation to form the source–drain regions. For comparison, we al-
so fabricated a TaN − HfLaON − Hf0.3N0.2O0.5 − SiO2 − Si
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Fig. 1. Band diagrams of (a) [Metal-gate]-[High-κ barrier]-[Trapping Layer]-
SiO2-Si MONOS nonvolatile memory device and (b) [Metal-gate]-[High-κ
top barrier 1-High-κ top barrier 2]-[Trapping Layer]-[High-κ bottom barrier
2-SiO2]-Si double-quantum-barrier charge-trapping NVM. The conventional
SiN trapping layer is shown in dotted lines.

single-barrier MONOS device. This device had a 2.9-nm-thick
thermal SiO2, a 9-nm Hf0.3N0.2O0.5 trapping layer, and a
15-nm HfLaON blocking oxy-nitride layer. Other procedures
were the same as for the double-barrier device. The equivalent
oxide thickness (EOT) of the [HfAlO − SiO2] tunnel oxide in
the double-quantum-barrier device is 3.0 nm, which is close
to the 2.9-nm SiO2 tunnel oxide used in the single-barrier
MONOS device. The EOT of the [HfAlO − SiO2] blocking
oxide in the double-barrier device is 3.0 nm—the same as the
single-barrier HfLaON MONOS device. Hence, the EOTs of
both the top blocking oxide and bottom tunnel oxide are almost
the same for both the double- and single-barrier charge-trapping
memory. The memory devices were characterized by different
P/E tests, retention experiments, and cycling endurance at
25 ◦C, 85 ◦C, and 125 ◦C.

III. RESULTS AND DISCUSSION

A. Band Diagram and P/E Characteristics

In Fig. 1(a) and (b), we compare the schematic band dia-
grams of the single- and double-quantum-barrier devices, re-
spectively. The conventional SiN trapping layer has a small
conduction band discontinuity (∆EC) with respect to the bar-
rier oxide of only 1.1 eV [14], where the stored charges in
shallow trap energy levels can leak out at elevated temperatures.
The other ∆EC and valence band discontinuity (∆EV ) values

Fig. 2. C–V hysteresis for double-quantum-barrier device showing a large
Vth shift.

are from published literature [16]–[18]. Thus, the SiN MONOS
devices are expected to have poor retention properties. The
retention in charge-trapping memory can be improved by in-
creasing ∆EC with respect to the barrier oxide, for instance, by
using Al(Ga)N and HfON when compared with SiN [10]–[12].
The use of Hf0.3N0.2O0.5 gives a deeper ∆EC of 2.5 eV [16]
compared with SiN [14], Al(Ga)N [10], [11], and our previ-
ously reported HfNO with N–10% [12]. However, the trapped
carriers can still escape via sequential Schottky emission and
tunneling at higher temperatures in the 85 ◦C–150 ◦C range. For
NVM devices, good 85 ◦C–150 ◦C retention is required because
of the increasing chip temperatures arising from the higher
power dissipation and larger density of future ICs. As a result,
the double-quantum-barrier structure is useful to improve the
trapped carrier confinement within the Hf0.3N0.2O0.5 quantum
well, with its deep trapping energy.

Fig. 2 shows the C–V hysteresis characteristics of
the double-quantum-barrier charge-trapping device with its
Hf0.3N0.2O0.5 trapping layer. The hysteresis window increases
with increasing voltage, indicating good charge storage. A large
hysteresis window of 7.3 V was measured under swept voltages
of ±10 V in this device, which suggests a high trap density
and/or deep trap energy in the Hf0.3N0.2O0.5 [10]–[12].

In Fig. 3(a) and (b), the P/E characteristics are displayed for
various gate voltages, for single- and double-quantum-barrier
devices, respectively. The devices had the same Hf0.3N0.2O0.5

trapping layer and almost the same EOT for the barrier oxides.
The threshold voltage change (∆Vth) increases with increasing
P/E voltage and time due to the increased number of trapped
charges. For the single-quantum-barrier MONOS device, a
memory window of 2.8 V was obtained at ±9 V and at 100-µs
P/E. For comparison, the double-quantum-barrier charge-
trapping device showed a larger ∆Vth memory window of 3.2 V
for the same testing conditions. It is noticed that the ∆Vth

for both program and erase are improved compared with that
of the single-barrier device. The combined [HfAlO − SiO2]
tunnel oxide, with its EOT close to that for the single-barrier
MONOS device, gives a lower energy barrier for electrons to
tunnel through and leads to a larger memory window. The better
erase characteristics are due to the higher work function of
Ir3Si gate electrode than that of TaN in single-barrier device.
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Fig. 3. Comparison of (a) program and (b) erase characteristics between
single- and double-quantum-barrier devices under different voltages and times.
For the erase, both devices were initially programmed at 9 V for 100 µs.

In both cases, the low P/E voltage arises from the small voltage
drop and electric field (E) in the high-κ barriers and the high-κ
Hf0.3N0.2O0.5(κ = 22) trapping well. This also gives a high
E in the tunnel oxide to produce the high P/E speed using
tunneling mechanism. Because an inverter circuit can be used
to generate the opposite polarities of ±4.5 and ∓4.5 V applied
between the gate and channel [12], this low P/E voltage is
important for embedded SoC applications using a 5-V voltage
source.

B. Retention and Endurance

Good data retention is a challenge for MONOS charge-
trapping memory. Fig. 4(a) shows the retention characteristics
of the single-quantum-barrier MONOS device. The initial ∆Vth

was 2.8 V under 100 µs and ±9-V P/E, and the extrapolated
ten-year memory windows were 2.1, 1.8, and 1.5 V at 25 ◦C,
85 ◦C, and 125 ◦C, respectively. The decay rates at 85 ◦C and
125 ◦C were 92 and 110 mV/dec for the high state or 36 and
55 mV/dec for the low state. For comparison, in Fig. 4(b), we
show the retention data of a double-quantum-barrier charge-
trapping device at 25 ◦C, 85 ◦C, and 150 ◦C. The initial ∆Vth

was 3.2 V under 100 µs and ±9-V P/E, and the extrapolated ten-
year memory windows were 3.0, 2.7, and 2.4 V under 25 ◦C,
85 ◦C, and 150 ◦C, respectively. The retention P/E decay rates
at 85 ◦C and 150 ◦C were only 62 and 82 mV/dec for the

Fig. 4. Device retention characteristics of (a) single- and (b) double-quantum-
barrier charge-trapping devices at different temperatures.

high state and 15 and 26 mV/dec for the low state (16%
and 25% of initial memory window). This improvement in
the high temperature data retentions, compared with a single-
barrier MONOS device, indicates the advantage of using double
quantum barriers to confine the trapped charges. Because the
EOT is close for both single- and double-barrier devices, using
physically thicker high-κ tunnel layers can improve retention
in double-barrier devices. Using double blocking layer may
also improve the retention due to the slightly higher ∆EC and
misaligned trap energies similar to the ONO blocking oxide
case. The read disturbance may be a concern in this low voltage
operated device to cause charge loss. A similar low voltage P/E
at 10 V/−9 V was also reported, where the stored charges were
not largely lost as evident from the small Vth change even after
1000 s of gate stresses [19].

Endurance is another important factor for NVM. In Fig. 5(a),
we compare endurance data for single- and double-barrier
charge-trapping devices. Windows of 2.4 and 2.9 V (after
105 cycles) were obtained for the single- and double-barrier
devices, respectively. This arises from the rapid 100-µs P/E
at 9 V, which causes reduced electric field stress to the tunnel
oxide. The degradation after 105 cycles is better for the double-
barrier device than that for the single-barrier device, with ∆Vth

degradations of 0.3 and 0.4 V or 9% and 14%, respectively.
The effect of long-term cycling on the retention appears in
Fig. 5(b), where the 103-cycle ten-year retention windows of
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Fig. 5. Comparison of (a) endurance and (b) retention characteristics after 103

P/E cycling of single- and double-quantum-barrier devices.

1.7 and 2.5 V are shown for the single- and double-quantum-
barrier devices, which were initially 2.8 and 3.2 V, respectively.

To understand such improvement, we also measured the
Id–Vg characteristics of the devices before and after cycling.
As shown in Fig. 6, the single-barrier MONOS device shows
an increase of subthreshold swing (SS) with increasing cycling
stress, which suggests the generation of SiO2/Si interface
traps. In contrast, the double-barrier device shows the same SS
after cycling. Besides the SS change, a shift of Id–Vg curves
was also found for both devices after cycling. The cycling-
induced linear Id–Vg shift or ∆Vth in Fig. 5(a) is also slightly
larger for single-barrier devices than the double-barrier ones,
indicating a slightly larger amount of oxide charge generation.
The generation of SiO2/Si interface traps in the single-barrier
MONOS device from degraded SS also explains the relative
poor retention after cycling, as shown in Fig. 5(b), because the
trapped carriers may tunnel out via these low energy interface
traps within the Si bandgap.

We examined the interface trap generation by charge pump-
ing methods [20]. Fig. 7 shows the interface trap density
(Dit) of single- and double-quantum-barrier devices after P/E
cycling. The initial Dit is nearly the same for both devices.
However, under extensive P/E cycling, more interface traps are
created for the single- than for the double-barrier device. This
improved Dit generation in the double-barrier device leads to
better retention after cycling, which is a key factor for achieving
good device integrity for NVM.

Fig. 6. Id–Vg characteristics of (a) single- and (b) double-quantum-barrier
devices after cycling.

Fig. 7. Comparison of the interface trap densities (Dit) for single- and
double-barrier devices after P/E cycling.

IV. CONCLUSION

At 150 ◦C under a fast 100-µs and low ±9-V P/E voltage, we
show that a double-quantum-barrier [TaN − Ir3Si] − HfAlO −
LaAlO3−Hf0.3O0.5N0.2−HfAlO−SiO2−Si charge-trapping
device has good NVM integrity in terms of a 3.2-V ini-
tial ∆Vth and 2.4-V ten-year extrapolated retention. Com-
pared with its single-quantum-barrier MONOS counterpart, the
double-quantum-barrier device showed significantly better high
temperature retention and cycled retention data, due to better
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carrier confinement and lower interface trap generation after the
P/E cycling.
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