
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008 3251

[7] F. Fiedler and J. Jedwab, “How do more Golay sequences arise?,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 4261–4266, Sep. 2006.

[8] K.-U. Schmidt, “On cosets of the generalized first-order Reed–Muller
code with low PMEPR,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp.
3220–3232, Jul. 2006.

[9] F. Fiedler, J. Jedwab, and M. G. Parker, “A framework for the construc-
tion of Golay sequences,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp.
3114–3129, Ju. 2008.

[10] F. Fiedler, J. Jedwab, and M. G. Parker, “A multi-dimensional ap-
proach to the construction and enumeration of Golay complementary
sequences,” J. Combin. Theory (Ser. A), 2007, accepted for publication.

Simple Distance-Preserving Mappings From Ternary
Vectors to Permutations

Te-Tsung Lin, Shi-Chun Tsai, Member, IEEE, and Hsin-Lung Wu

Abstract—We give a simple construction of distance-preserving map-
pings from ternary vectors to permutations (3-DPM). Our result gives
a lower bound for permutation arrays, i.e., P (n; d) � A (n; d), which
significantly improves previous lower bounds for d � .

Index Terms—Code constructions, distance-preserving mappings, per-
mutation arrays, ternary codes.

I. INTRODUCTION AND NOTATIONS

In this correspondence, we construct distance-preserving mappings
(DPMs) from ternary vectors of dimension n to permutations of
f1; 2; . . . ; ng for n � 16. A permutation array is a subset of permu-
tations that satisfies some distance constraints. A systematic study
of DPMs was initiated in [4]. Later, Chang [3] gave a construction
of distance-increasing mappings (DIMs) and proved a lower bound
on the size of permutation arrays, i.e., P (n; d) � A(n; d � k) for
any k if n is sufficiently large, where P (n; d) denotes the maximal
size among all permutation arrays of length n with minimum distance
d, and A(n; d) denotes the maximal size among all binary codes of
length n and minimum distance d.

Our Results: In [4], the authors asked a question of finding a dis-
tance-preserving mapping from q-ary vectors to permutations (in short,
q-DPM). Here we give a simple construction of 3-DPM1. This answers
the question for q = 3. Then we prove that P (n; d) � A3(n; d) where
A3(n; d) denotes the maximal size among all ternary codes of length
n and minimum distance d. Suppose that d < 3n=5. Then A3(n; d) is
much larger than A(n; d� k) for any k if n is large enough. Thus, our

Manuscript received January 31, 2007; revised February 25, 2007. This work
was supported in part by the National Science Council of Taiwan under Contract
NSC-95-2213-E-009-034. Part of the work of H.-L. Wu was performed while
he was with National Chiao-Tung University.

T.-T. Lin and S.-C. Tsai are with the Department of Computer Sci-
ence, National Chiao-Tung University, Hsinchu 30050, Taiwan (e-mail:
atman.cs94g@nctu.edu.tw; sctsai@csie.nctu.edu.tw).

H.-L. Wu is with the Department of Computer Science and Information En-
gineering, National Taipei University, Taipei County 237, Taiwan (e-mail: hsin-
lung@mail.ntpu.edu.tw).

Communicated by H.-A. Loeliger, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2008.924716

1In [5], the authors independently show a recursive construction of 3-DPM.
However, our construction is nonrecursive and simpler than theirs.

result significantly improves the previous bounds obtained from DIMs
over binary vectors which increases distance by at least k. Clearly, the
best lower bounds by previous approaches can only achieve at most
2n. Here, for some fixed constant c, our lower bound is 3cn which is
significantly larger than 2n when n is sufficiently large.

Construction Idea: Our 3-DPM construction is inspired by [9]. It
is based on a crucial “local” property which we discuss as follows.
Intuitively, an algorithm has the local property if each element of the
permutation is not far away from its initial position after running the al-
gorithm. From a 2-DPM with local property, we can obtain a 3-DPM as
follows. First, given a ternary input vector, we view the ternary digit 2
as 0 and run a 2-DPM algorithm such that every element in the permu-
tation is not far from its initial position, i.e., with a small position differ-
ence. Now, how can we make up the distance loss caused by seeing the
ternary digit 2 as 0? Our approach is swapping those positions whose
corresponding input digits are 2 and far enough, i.e., with the position
difference larger than the difference resulting from the initial 2-DPM.
This will give us a 3-DPM if we have a 2-DPM with local property.
We constructed a two-pass 3-DPM by using a 2-DPM, which is very
similar to the one constructed in [8], [9]. However, in these papers, the
local property is not fully exploited.

The swaps in our two-pass algorithm are similar to the multilevel
construction of DPMs from binary vectors in [6] where swaps for each
level are independent from swaps for another level. Similarly, swaps
for PASS 1 and PASS 2 in our algorithm are also independent.

Notations: Let [n] = f1; . . . ; ng; Sn denote the set of all permu-
tations of [n] and Zn

q denote the set of all q-ary vectors of length n.
For any � 2 Sn and i 2 [n]; ��1(i) denotes the position of i in
�, i.e., if �(j) = i then ��1(i) = j. Given an x 2 Zn

q , we use
x[i...j] to denote the subvector (xi; . . . ; xj) for any i < j. The Ham-
ming distance dH(a; b) between two n-tuples a = (a1; a2; . . . ; an)
and b = (b1; b2; . . . ; bn) is the number of positions where they differ,
i.e., dH(a; b) = jfj : aj 6= bjgj. A mapping f : Zn

q ! Sn
is a q-ary distance-preserving mapping (q-DPM) if, for any x; y 2
Zn
q ; dH(f(x); f(y)) � dH(x; y). Let � : Zq � Zq ! f0; 1g be

the function defined by �(s; t) = 1 if s 6= t and 0 otherwise, i.e., the
Hamming distance for single elements. In Section II-A, values of per-
mutations and subscripts are represented by elements in Z8m = [8m].
For example, if a; b 2 Z8m then the output of a+ b is a+ b mod 8m
if a + b mod 8m 6= 0; 8m otherwise.

This correspondence is organized as follows. In Section II, we
show how to construct a family of distance-preserving mappings
from ternary vectors to permutations. In Section III, we show a new
lower bound for permutation arrays with our construction. Section III
concludes with an open problem.

II. CONSTRUCTION OF 3-DPM

In this section, we give the construction of 3-DPM. First of all, we
show the algorithm for input length 8m for any integer m � 2. We call
the algorithm A8m. Then we extend A8m to an algorithm that works
for all input lengths at least 16.

A. 3-DPM of Length 8 m for m � 2

The 3-DPM of length 8m (A8m) is shown in the following.

Algorithm A8m:
Input: (x1; . . . ; x8m) 2 Z8m

3

Output: (�1; . . . ; �8m) 2 S8m

PASS 1:
(�1

1 ; �
1
2 ; . . . ; �

1
8m)  (1; 2; . . . ; 8m);

for i = 0 to 4m � 1 do;

0018-9448/$25.00 © 2008 IEEE



3252 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

Fig. 1. Transition patterns of PASS 1.

Fig. 2. Transition patterns of PASS 2. j 2 f0; 1; 2; 3g.

if x2i+1 = 1 then swap (�12i+1; �
1
2i+2);

for i = 0 to 4m � 1 do;

if x2i+2 = 1 then swap (�12i+2; �
1
2i+3);

PASS 2:
(�1; �2; . . . ; �8m)  (�11 ; �

1
2 ; . . . ; �

1
8m);

for i = 0 to m � 1 do;

if x8i+1 = 2 then swap (�8i+1; �8i+5);
if x8i+2 = 2 then swap (�8i+2; �8i+6);
if x8i+3 = 2 then swap (�8i+3; �8i+7);
if x8i+4 = 2 then swap (�8i+4; �8i+8);

for i = 0 to m � 1 do;

if x8i+5 = 2 then swap (�8i+5; �8i+9);
if x8i+6 = 2 then swap (�8i+6; �8i+10);
if x8i+7 = 2 then swap (�8i+7; �8i+11);
if x8i+8 = 2 then swap (�8i+8; �8i+12);

Output (�1; . . . ; �8m).

Algorithm A8m consists of two passes: PASS 1 and PASS 2. The
transition patterns of both passes are illustrated in Figs. 1 and 2, re-
spectively.

In Figs. 1(a) and 2(a), the thin lines represent the transpositions in the
first for-loop of both passes and the thick lines represent those transpo-
sitions in the second for-loop. Note that PASS 1 has the “local” property
which is implicitly used in [8], [9]. Since all transpositions in a single
for-loop are independent and can be done simultaneously, the local
property can be observed in Fig. 1. Before proving the distance-pre-
serving property of A8m, we show some properties of the algorithm
A8m.

Given x 2 Z8m
3 , let � = A8m(x) and �1 be the intermediate re-

sult after PASS 1. First of all, for any fixed position s, we look into
what possible values �s and �1s can be after running the corresponding
passes of A8m.

Lemma 1: If s is even, the possible values of �1s are fs� 1; s; s+
1; s+2g. If s is odd, the possible values of�1s are fs�2; s�1; s; s+1g.
If s = 8k + 4 + j for j 2 f0; 1; 2; 3g, the possible values of �s are
in f�1s�4; �

1
s ; �

1
s+4; �

1
s+8g. If s = 8k+8+ j for j 2 f0; 1; 2; 3g, the

possible values of �s are in f�1s�8; �
1
s�4; �

1
s ; �

1
s+4g.

Proof: First consider when s is even. Let s = 2k + 2. Observing
Fig. 1(b), the possible values of �12k+2 are f2k+1; 2k+2; 2k+3; 2k+
4g. For example, if x2k+1 6= 1; x2k+2 = 1 and x2k+3 = 1 (transition
indicated in dotted line), then �12k+2 = 2k + 4. If only x2k+2 = 1
(normal line), then �12k+2 = 2k+ 3. If only x2k+1 = 1 (dashed line),
then �12k+2 = 2k + 1. If all inputs are zero, then �12k+2 = 2k + 2.
Similarly for odd s, the transition pattern is shown in Fig. 1(c). All
cases are summarized in Table I.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008 3253

TABLE I
POSSIBLE VALUES OF � AFTER PASS 1 FOR k 2 f0; 1; . . . ; 4m� 1g

TABLE II
POSSIBLE VALUES OF � AFTER PASS 2 FOR k 2 f0;1; . . . ;m � 1g AND

j 2 f1;2; 3; 4g

In the table, each row stands for the input and the corresponding
result of swap operations. For example, in row 7, if x2k+1 = x2k+2 =
1 and x2k+3 6= 1, then �12k+2 = 2k + 3 and �12k+3 = 2k + 1. Thus
by a similar observation from Fig. 2, we summarize the possible values
of �s in Table II, which is very similar to Table I if we replace 1 by 2.
The lemma is clear by Table I and Table II.

Given x; y 2 Z8m
3 , let A8m(x) = �;A8m(y) = � , and �1; � 1 be

the intermediate results after PASS 1, respectively.

Lemma 2: If s and t have the same parity (i.e., both even or odd)
and js � tj � 4, then �1s 6= � 1t .

Proof: Assume that s and t are even. By Lemma 1, the possible
values of �1s are fs� 1; s; s+ 1; s+ 2g and the possible values of � 1t
are ft� 1; t; t+ 1; t+ 2g. Clearly, js� tj � 4 implies that �1s 6= � 1t .
Similarly the lemma holds for the case when s and t are odd.

The following lemma shows that if the values of the sth position of �
and � are different after running PASS 1, the difference will be kept (or
the difference may be propagated to different position and preserved)
after running the whole algorithm.

Lemma 3: If �1s 6= � 1s and �t = �1s for any s; t, then �t 6= �t.
Proof: Note that �t = �1s implies that 4j(t� s) since t must be one

of the elements in fs�8; s�4; s; s+4; s+8g by Lemma 1. Similarly
assume that �t = � 1s , then we have 4j(t � s0). Thus, 4j(s � s0). If
js� s0j � 4, then we obtain �1s 6= � 1s by Lemma 2. Therefore, in this
case, �t 6= �t. On the other hand, if js� s0j < 4, it implies s = s0. By
assumption, we have �1s 6= � 1s and this also implies �t 6= �t .

Next, we need the following definitions to show that A8m does pre-
serve the distance.

Definition 1: For any s 6= t, we say that position s can be covered
with position t if �(xs; ys) > �(�s; �s) and �(xt; yt) < �(�t; �t) (that
is, xs 6= ys; �s = �s; xt = yt, and �t 6= �t). Furthermore, we say that
position s is self-covered if �(xs; ys) � �(�s; �s).

For each s with �(xs; ys) > �(�s; �s), one needs some other posi-
tion to make up the decrease of distance at position s in order to satisfy
the distance-preserving property.

Fig. 3. The possible final positions of � ; j 2 f0;1; 2; 3g.

Definition 2: Let NSC be the set of positions not self-covered, that
is, NSC = fs 2 [8m] : �(xs; ys) > �(�s; �s)g. A covering pattern is
a function g : [8m]! [8m] such that for any s 2 NSC; g(s) covers s
and for any s 2 [8m]nNSC; g(s) = s.

We will show that for any x and y there is a one-to-one covering
pattern. The following is our main lemma which is crucial to show the
distance-preserving property of A8m.

Lemma 4: There exists a covering pattern g such that for any posi-
tion s 2 NSC; g(s) 2 fs�1; s�4; s�5; s�8; s�9g. Furthermore,
jg�1(t)\ ft+ 1; t+ 4; t+ 5; t+ 8; t+ 9gj � 1 for any position t.

Proof: We define such a covering pattern g by analyzing every pos-
sible position s 2 [8m] and setting g(s) case by case. For convenience,
we can let g(s) = s for all s by default. If s is not self-covered, then we
will set g(s) to be another value. In other words, we reset g(s) when-
ever necessary.
Case 1: [s with xs = ys] It implies that �(xs; ys) = 0, and it is

always true that �(�s; �s) � �(xs; ys). So s is self-covered
and we set g(s) = s by default.

Case 2: [s with xs 6= ys and one of xs and ys = 2] W.L.O.G., we
may assume that xs = 2 and ys 6= 2.
• Case 2-1: [s = 8k+4+j for some k 2 f0; 1; . . . ;m�1g

and j 2 f1; 2; 3; 4g] Observe that in Table II,
under the case condition, the possible values of
�s are in f�18k+8+j ; �

1
8k+12+jg and the possible

values of �s are in f�18k+j ; �
1
8k+4+jg. Note that

f�18k+8+j ; �
1
8k+12+jg \ f�18k+j ; �

1
8k+4+jg = ; by

Lemma 2. Thus, �s 6= �s. So s is self-covered and we
set g(s) = s.

• Case2-2: [s = 8k+8+j for some k 2 f0; 1; . . . ; m�1g
and j 2 f1; 2; 3; 4g] In this case, the possible values
of �s are in f�18k+j ; �

1
8k+4+j ; �

1
8k+12+jg and the pos-

sible values of �s are in f�18k+j ; �
1
8k+4+j ; �

1
8k+8+jg. As-

sume that �s = �1s and �s = � 1s . If s1 6= s2, then
js1 � s2j � 4 and �s 6= �s by Lemma 2. i.e., s is
self-covered. In this case, set g(s) = s. On the other
hand, if s1 = s2, then it must be the cases in rows
3 and 4 (i.e., s1 = s2 = 8k + 4 + j) or in rows 7
and 8 (i.e., s1 = s2 = 8k + j) of Table II. In both
cases, observe that x8k+4+j and y8k+4+j must be 2 and
�8k+4+j = �18k+12+j and �8k+4+j = � 18k+8+j . By
Lemma 2, �8k+4+j 6= �8k+4+j . Note that it’s still pos-
sible �s 6= �s; i.e., s is self-covered, and we can simply
set g(s) = s. So if �s 6= �s, then set g(s) = s,
else s = 8k + 8 + j can be covered with position
s� 4 = 8k + 4 + j and we set g(s) = s� 4.

Case 3: [swith xs 6= ys and xs; ys 2 f0; 1g] In this case, W.L.O.G.
we may assume xs = 1 and ys = 0. For convenience,
we use Table III to show that the possible positions of
�18k+j and �18k+4+j . For example, row 7 means that when
x8k�4+j = 2; x8k+j = 2 and x8k+4+j 6= 2, then after
running PASS 2, �18k+j will appear in position 8k+ 4+ j

(Fig. 3: dashed line) and �18k+4+j in position 8k � 4 + j.

• Case 3-1: [�1s 6= � 1s and s = 8k+j for some k 2 f0; 1; . . . ;m�
1g and j 2 f1; 2; 3; 4g] Note that xs 6= 2. By Table III, �18k+j



3254 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

TABLE III
POSSIBLE FINAL POSITIONS OF � AND �

TABLE IV
NECESSARY CONDITIONS FOR POSITION COVERING

can be in either position 8k+ j or 8k�4+ j. If �8k+j = �18k+j ,
then �8k+j 6= �8k+j by Lemma 3. Thus, s is self-covered and
we set g(s) = s. Similarly it applies to the case when �8k+j =
� 18k+j . The rest of this case is that both �18k+j and � 18k+j are in
position 8k � 4 + j. When this happens, it implies that xs�4 =
ys�4 = 2 by observing Table III and we have �8k�4+j = �18k+j

and �8k�4+j = � 18k+j . By assumption that �18k+j 6= � 18k+j , we
conclude that s can be covered with s� 4 and set g(s) = s� 4,
if �s = �s.

• Case 3-2: [�1s 6= � 1s and s = 8k + 4 + j for some
k 2 f0; 1; . . . ;m� 1g and j 2 f1; 2; 3; 4g] Again by observing
Table III if xs 6= 2 and ys 6= 2, then �18k+4+j and � 18k+4+j

have three possible final positions i.e., 8k + 4 + j; 8k + j, and
8k � 4 + j. We divide the analysis into three subcases.
— Subcase 3-2-I: [�18k+4+j or � 18k+4+j are in position 8k+4+j]

W.L.O.G. we assume that �18k+4+j appears in position
8k + 4 + j, i.e., �8k+4+j = �18k+4+j . By the assumption
that �18k+4+j 6= � 18k+4+j , we obtain �8k+4+j 6= �8k+4+j

by Lemma 3. Thus s = 8k + 4 + j is self-covered and set
g(s) = s by default.

— Subcase 3-2-II: [�18k+4+j or � 18k+4+j are in position 8k + j]
W.L.O.G. we assume that �18k+4+j appears in position
8k + j, i.e., �8k+j = �18k+4+j . We can assume that
�8k+4+j 6= � 18k+4+j ; otherwise, it has been done in Subcase
3-2-I. By Lemma 3, it is clear that �8k+j 6= �8k+j . In this
subcase since �8k+4+j 6= �18k+4+j ; �8k+4+j 6= � 18k+4+j and
both x8k+4+j and y8k+4+j are not equal to 2, it must be the
cases in row 3 or row 7 of Table III. In both cases we have
x8k+j = y8k+j = 2. Thus s can be covered with s � 4 and
we set g(s) = s � 4, if �s = �s.

— Subcase 3-2-III: [Both �18k+4+j and � 18k+4+j are in position
8k�4+j] i.e., �8k�4+j = �18k+4+j and �8k�4+j = � 18k+4+j .
Clearly, �8k�4+j 6= �8k�4+j by the assumption of Case 3–2
that �18k+4+j 6= � 18k+4+j . Again, by observing Table III, it
must be the case that x8k�4+j = y8k�4+j = 2 and x8k+j =
y8k+j = 2. Thus s can be covered with s � 8 and we set
g(s) = s � 8, if �s = �s.

• Next, we deal with the case that �1s = � 1s and xs; ys 2 f0; 1g
with xs 6= ys. By observing Table I, in this case, s must be odd,

and in rows 3 and 4 (i.e., �12k+3 = � 12k+3 = 2k + 2) or in rows
7 and 8 (i.e., �12k+3 = � 12k+3 = 2k + 1) in Table I. Observe that
xs�1 = ys�1 = 1 and �1s�1 6= � 1s�1 in these cases. We divide
the analysis into two cases.

• Case 3-3: [�1s = � 1s and s = 8k+j for some k 2 f0; 1; . . . ;m�
1g and j 2 f3; 5g] Note that xs 6= ys. From the above discussion,
we know that xs�1 = ys�1 = 1 and �1s�1 6= � 1s�1. The possible
final positions of �1s�1 and � 1s�1 are s�1 and s�5 by observing
Table III. Thus, there are the following three cases: 1) �s�5 =
�1s�1 and �s�1 = � 1s�1 (or symmetrically �s�1 = �1s�1 and
�s�5 = � 1s�1); 2)�s�1 = �1s�1 and �s�1 = � 1s�1; and 3) �s�5 =
�1s�1 and �s�5 = � 1s�1. For (1), by Lemma 3, �s�1 6= �s�1.
Thus, s can be covered with position s�1 and we set g(s) = s�1.
For 2), it is obvious that s can be covered with position s� 1 and
we set g(s) = s � 1. For 3), note that xs�5 = ys�5 = 2 by
observing Table III. Thus s can be covered with position j � 5
and we set g(s) = s � 5.

• Case 3-4: [�1s = � 1s and s = 8k + 4 + j for some
k 2 f0; 1; . . . ; m � 1g and j 2 f3; 5g] Again we have
xs�1 = ys�1 = 1 and �1s�1 6= � 1s�1. By observing Table III, the
possible final positions of �1s�1 and � 1s�1 are s � 1; s � 5, and
s� 9. If one of the final positions of �1s�1 and � 1s�1 is s� 1, then
s can be covered with position s� 1 by Lemma 3 and we can set
g(s) = s � 1. Suppose that one of the final positions is s � 5.
With the same argument as in Subcase 3-2-II, s can be covered
with position s�5 and we can set g(s) = s�5. Finally, suppose
that both the final positions are s� 9. With the same argument as
of Subcase 3-2-III, s can be covered with position s � 9 and we
can set g(s) = s � 9.

By the above analysis, we can set up a covering pattern g such that
g(s) = s if position s is self-covered and g(s) 2 fs � 1; s � 4; s �
5; s�8; s�9g for each s 2 NSC. Furthermore, we show that jg�1(t)\
ft+1; t+4; t+5; t+8; t+9gj � 1 for any position t. We illustrate
this in Table IV.

In Table IV, we list the necessary conditions for the covering pattern
g. Note that those conditions are all disjoint. This implies that g�1(t)
contains at most one position in ft + 1; t + 4; t + 5; t + 8; t + 9g
Therefore we complete the proof of Lemma 4.

Recall that NSC = fs 2 [8m] : �(xs; ys) > �(�s; �s)g. Based on
Lemma 4, we show that g on NSC is a one-to-one function.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008 3255

Lemma 5: Let g be the covering pattern obtained in Lemma 4. Then
g : NSC ! [8m] is a one-to-one function and g(NSC) \ NSC = ;,
and hence jg(NSC)j = jNSCj.

Proof: Assume that g(s1) = g(s2) = t. Thus we have t 2 fs1 �
1; s1�4; s1�5; s1�8; s1�9g\fs2�1; s2�4; s2�5; s2�8; s2�9g. If
s1 6= s2, then jg�1(t)\ft+1; t+4; t+5; t+8; t+9gj � 2 since s1 and
s2 are both in the intersection. However, this is impossible by Lemma 4.
Thus, s1 = s2 and hence g is one-to-one. By Table IV, if t covers some
other position, then xt = yt. By definition, if t can be covered with
some other position, then xt 6= yt. Thus it implies g(NSC)\NSC = ;.
Since g is one-to-one, we have jg(NSC)j = jNSCj.

Now we show the distance-preserving property of A8m.

Theorem 1: A8m is a 3-DPM for all m � 2.
Proof: Given x; y 2 Z8m

3 , let A8m(x) = � and A8m(y) = � .
By Lemma 5, there exists a covering pattern g such that the
following holds. First, for any s 2 NSC; �(xs; ys) = 1 and
�(�s; �s) = 0. Also for any s 2 g(NSC), we have �(xs; ys) = 0 and
�(�s; �s) = 1. Thus s2NSC �(xs; ys) + s2g(NSC) �(xs; ys) =

s2NSC �(�s; �s) + s2g(NSC) �(�s; �s) by Lemma 5. Then
dH(x; y) = 8m

s=1 �(xs; ys) = s2NSC[g(NSC) �(xs; ys) +

s=2NSC[g(NSC) �(xs; ys) � s2NSC[g(NSC) �(�s; �s) +

s=2NSC[g(NSC) �(�s; �s) = 8m
s=1 �(�s; �s) = dH(�; � ). This

completes the proof of Theorem 1.

B. 3-DPM for Input Lengths at Least 16

In this section, we modify our algorithm A8m such that it can be
applied to any input length at least 16. To achieve this goal, we need to
show another property of algorithm A8m. As in the previous section,
let � = A8m(x) and �1 be the intermediate result after PASS 1.

Lemma 6: For any s 2 f1; 2; . . . ; 8mg; �s 6= s � 3.
Proof: By way of contradiction, suppose that there is an s such that

�s = s� 3. Assume that �s = �1t = s� 3 for some t. t must satisfy
4j(s� t). By the structure of PASS 1; (s� 3)� 2 � t � (s� 3)+ 2.
Thus, it must be the case that t = s� 4, that is �s = �1s�4 = s� 3. If
�s = �1s�4, then we have xs�4 = 2. However, if �1s�4 = s� 3, then
we have xs�4 = 1 by observing Table I. Hence, we get a contradiction.

Now the 3-DPM A8m+k is shown in the following.

Algorithm A8m+k (8m � 16; 1 � k � 7) :
Input: (x1; . . . ; x8m+k) 2 Z8m+k

3

Output: (�1; . . . ; �8m+k) 2 S8m+k

(�1; . . . ; �8m)  A8m(x1; x2 � � � ; x8m);
(�8m+1; . . . ; �8m+k)  (8m+ 1; . . . ; 8m+ k);
for i = 1 to k do;

if x8m+i = 1 then swap (�8m+i; �� (i�3));
if x8m+i = 2 then swap (�8m+i; �i);

We prove its correctness in the following theorem.

Theorem 2: A8m+k : Z8m+k
3 ! S8m+k is a 3-DPM for all n � 2

and k 2 f1; . . . ; 7g.
Proof: Given two inputs (x;w); (y; z) 2 Z8m

3 � Zk
3 , suppose that

� = A8m+k(x; w) and � = A8m+k(y; z). Let wi and zi denote the
first i symbols of w and z, respectively. Let �i and � i be the per-
mutations in S8m+i obtained by running the ith iteration in the for
loop when the inputs are (x;w) and (y; z), respectively. We claim
that dH((x;wi); (y; zi)) � dH(�i; � i) for any i 2 f0; . . . ; kg. We
prove it by induction on i. It holds trivially for i = 0 since we have
dH(x; y) � dH(A8m(x); A8m(y)) = dH(�0; � 0). For the inductive

TABLE V
L[A (16; d)] STANDS FOR THE LOWER BOUND OF A (16; d) IN [2] AND

U [A(16; d � 2)] THE UPPER BOUND OF A(16; d � 2) IN [1]

step, suppose that dH(x; y) + dH(wi�1; zi�1) � dH(�i�1; � i�1).
We divide the analysis into the following cases.

• Case 1: [wi = zi] The lemma holds trivially in this case since
both swap operations in the ith iteration are the same.

• Case 2: [wi 6= zi and one of them is 0] W.L.O.G. we assume that
wi = 0. In this case we have �i8m+i = 8m + i; �i[1:8m+i�1] =

�i�1 and � i8m+i equals to either i � 3 or � i�1i . Thus we have
�(�i8m+i; �

i
8m+i) = 1. W.L.O.G., we assume that � i8m+i =

� i�1i and hence � ii = 8m + i. So �(�ii ; �
i
i ) = 1. Also note

that � it = � i�1t for any t 2 [8m + i � 1]nfig. So we have
dH((x;wi); (y; zi)) � dH(�i; � i).

• Case 3: [wi 6= zi, and wi; zi 2 f1; 2g] W.L.O.G. we assume that
wi = 1 and zi = 2. In this case, �i8m+i = i � 3 and � i8m+i =
� i�1i = �i. By Lemma 6, we know that ��1(i� 3) 6= i and �i 6=
i�3. Now it is easy to check dH(�i; � i) = dH(�i�1; � i�1)+1.
Hence we also have dH((x;wi); (y; zi)) � dH(�i; � i).

Thus Theorem 2 follows from setting i = k.

From Theorem 1 and Theorem 2, we get an explicit construction of
3-DPM.

Corollary 1: There exists an explicit construction of 3-DPM from
Zn
3 to Sn for any n � 16.

The above approach may help us find explicit constructions of
q-DPM for q > 3. However, we need a different Lemma 6 for different
q in order to obtain an explicit construction, but we don’t know how to
prove the lemmas systematically so far.

III. APPLICATIONS TO PERMUTATION ARRAYS

As shown in [4], [3], we know that distance-preserving mappings
are quite helpful for constructing permutation arrays. With our con-
struction, we have new permutation array lower bounds as follows.

Theorem 3: For all n � 16 and d � n; P (n; d) � A3(n; d).
Proof: Let C be a ternary code of length n with minimum distance

d. Let n � 16. By Corollary 1, we have a distance-preserving mapping
f : Zn

3 ! Sn. It is easy to see that f(C) is a permutation array of
length n with minimum distance d. Thus P (n; d) � jf(C)j = jCj.
Therefore P (n; d) � A3(n; d).

Here we give some comparison between A(n; d� k) and A3(n; d)
for k < d. First of all, we need the well-known asymptotic Gilbert–Var-
shamov bound.

Fact 1: (Theorem 2.10.8 in [7]) A3(n; d) � 3n(1�H (( ))) for
d � 2n

3
and sufficiently large n where H3(x) = x log3 2�x log3 x�

(1� x) log3(1 � x) for 0 < x � 1.
Thus for d � 3n

5
, we get a lower bound of P (n; d) = 3
(n). On

the other hand, A(n; d � k) � 2n for any k. Thus, in this case, we
significantly improve previous lower bounds in [3]. Since the minimum
input length of the known DIM, which increases distance at least 2, is
16 (see [3]), we give a comparison betweenA(16; d�2) andA3(16; d)
in Table V, where our lower bound of P (16; d) is much larger than the
previous lower bounds via DIMs.



3256 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

IV. CONCLUSION AND OPEN PROBLEM

We have shown an explicit construction of distance-preserving map-
pings from ternary vectors to permutations (3-DPM). Our result an-
swers an open question posed in [4]. We also obtain new lower bounds
for permutation array size, which significantly improves previous lower
bounds by DIMs for d < 3n=5. As in the binary case [3], we are inter-
ested in constructing distance-increasing mappings from ternary vec-
tors to permutations. For the moment, it seems to be more complicated
than the binary case. We leave it as an open problem.

REFERENCES

[1] E. Agrell, A. Vardy, and K. Zeger, “A table of upper bounds for binary
codes,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 3004–3006, Nov.
2001.

[2] A. E. Brouwer, H. O. Hämäläinen, P. R. J. Östergård, and N. J. A.
Sloane, “Bounds on mixed binary/ternary codes,” IEEE Trans. Inf.
Theory, vol. 44, pp. 140–161, Jan. 1998.

[3] J. C. Chang, “Distance-increasing mappings from binary vectors to
permutations that increase Hamming distances by at least two,” IEEE
Trans Inf. Theory, vol. 52, pp. 1683–1689, Apr. 2006.

[4] J. C. Chang, R. J. Chen, T. Kløve, and S. C. Tsai, “Distance-pre-
serving mappings from binary vectors to permutations,” IEEE Trans.
Inf. Theory, vol. 49, pp. 1054–1059, Apr. 2003.

[5] J. S. Lin, J. C. Chang, R. J. Chen, and T. Kløve, “Distance-preserving
and distance-increasing mappings from ternary vectors to permuta-
tions,” IEEE Trans. Inf. Theory, to be published.

[6] T. G. Swart and H. C. Ferreira, “A generalized upper bound and a multi-
level construction for distance-preserving mappings,” IEEE Trans. Inf.
Theory, vol. 52, pp. 3685–3695, Aug. 2006.

[7] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting
Codes.. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[8] K. Lee, “Cyclic constructions of distance-preserving maps,” IEEE
Trans. Inf. Theory, vol. 51, pp. 4392–4396, Dec. 2005.

[9] K. Lee, “Distance-increasing maps of all lengths by simple mapping al-
gorithms,” IEEE Trans. Inf. Theory, vol. 52, pp. 3344–3348, Jul. 2006.

Bounds on the Minimum Distance of Goppa Codes

Hiren Maharaj

Abstract—A general upper bound on the minimum distance of Goppa
codes is given. It is also shown how to choose divisors so that Goppa codes
from fiber products of Kummer covers of the projective line have substan-
tially improved lower bounds for the minimum distance compared to the
usual Goppa bound.

Index Terms—Algebraic-geometry codes, minimum distance bounds.

I. INTRODUCTION

In [9], Xing and Chen demonstrate that an appropriate choice of di-
visors from the Hermitian function field can result in Goppa codes with
substantially improved parameters relative to comparable one point

Manuscript received September 23, 2005; revised January 29, 2008. This
work was supported in part by the National Security Agency (NSA) under Grant
MDA904-05-1-0046 and the National Science Foundation (NSF) under Grant
0532265.

The author is with the Department of Mathematical Sciences, Clemson Uni-
versity, Clemson, SC 29634 USA (e-mail: hmahara@clemson.edu).

Communicated by ∅. Ytrehus, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2008.924664

Hermitian codes. Recall that the Hermitian function field is usually
defined by F = q(x; y), where yq + y = xq +1 and q20 = q.
More specifically, they showed that Goppa’s standard lower bound on
the minimum distance of a Goppa code from F can be improved by
as much as O(q). In this correspondence, using a simpler approach,
we show that similar improvements are possible for Goppa codes from
fiber products of Kummer covers of the projective line. For example,
as a consequence of our general results, we show that for codes from
the curves ys = xs � 1 over q (s divides q0 + 1) an improvement of
O(s2) is possible (for s = q0+1, this is the Hermitian curve so we re-
cover a result similar to that of Xing and Chen). Furthermore, we show
that the minimum distance of a class of codes constructed by Özbudak
[6] using fiber products of Kummer covers can also be substantially
improved in this way. In Section III, we present the aforementioned
results with examples in Section IV. In Section II, we also indicate a
sharp upper bound on the minimum distance of a large class of Goppa
codes. This work is a continuation of [2].

Definitions and Notation: We use the notation of [7] throughout. For
convenience, we list here some of the notation used. Let F be an alge-
braic function field (of a single variable) with full field of constants K .
The genus of F is denoted by g(F ). The set of places of F is denoted
by (F ). Given a divisor G := P2 (F ) aPP , by vP (G), we mean
the coefficient aP of P in G. Divisors of F have a natural ordering: if
G0 is also a divisor of F , we writeG � G0 iff vP (G) � vP (G

0) for all
places P of F . The Riemann–Roch space associated with the divisor
G is the K-vector space

L(G) := ff 2 F : (f) +G � 0 or f = 0g:

The dimension of L(G) is denoted by `(G) and if F is the rational
function field, then `(G) = max(degG+ 1; 0). Let F 0=F be a finite
extension of algebraic function fields. If P is a place of F , then the
conorm of P is ConF =F (P ) := P jP e(P

0jP )P 0, where e(P 0jP )

denotes the ramification index of the place P 0 in the extension F 0=F .
The conorm map extends to arbitrary divisors by linearity. We recall
some results from [2] and [3]. For a divisor G of F 0, the restriction of
G to F , denoted GjF , is defined [2] to be the following divisor of F :

GjF :=
R2 (F )

min
vQ(G)

e(QjR)
: QjR R: (1)

Then, L(G) \ F = L(GjF ) and, in particular, this implies that
L(G0) = L(ConF =F (G

0)) \ F for any divisor G0 of F . Moreover,
the divisorGjF is the unique greatest divisorG0 of F with the property
that ConF =F (G

0) � G.
Recall the definition of Goppa codes.

Definition 1.1: From F 0, choose a divisor G and distinct places Pi
of degree one for 1 � i � N which do not occur in the support of G.
Set D := P1+P2+. . .+PN . Let CL(D;G) denote the image of the
following map: ev : L(G) �! q

N which maps f 7�! (f(Pi))
N
i=1.

The parameters [N; k; d] of the codeCL(D;G) satisfy [7, Corollary
II.2.3]: k � degG � g(F 0) + 1 and d � N � degG.

If F 0 is the rational function field and N > degG � �1, then k =
degG+1 and d = N�degG (if degG = �1, then k = 0 and we use
the convention d := 1). These parameters follow from the Singleton
bound since N + 1 � k + d � degG + 1 + N � degG = N + 1,
thus forcing equality in the given lower bounds.

Throughout this paper, we assume that F 0=F is a finite separable
extension of degree n and that F = q(x) is the rational function
field.

0018-9448/$25.00 © 2008 IEEE


