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Abstract

This paper investigates an integrated freeway traffic management system, which coordinates both dynamic toll pricing and ramp
control strategies for the purpose of dynamic freeway congestion management. The proposed integrated dynamic toll-ramp control
methodology is built mainly on the principles of stochastic optimal control approaches, involving two developmental procedures.
First, through detector configurations and system specification, a discrete-time nonlinear stochastic system is formulated to
characterize the time-varying relationships of system states, control variables, and traffic data. Then, by employing the extended
Kalman filtering technology, a stochastic optimal control based algorithm is proposed to execute the integrated dynamic toll and
ramp control mechanism. With the aid of the Paramics microscopic traffic simulator, numerical studies under various simulated
freeway congestion scenarios are conducted. Corresponding numerical results demonstrate the applicability of the proposed
methodology in response to diverse freeway traffic congestion phenomena, and its relative advantages in improving both the
average travel time and hourly throughputs by 16.4% and 16.5%, respectively.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Despite the fact that numerous advanced technologies have emerged in the form of intelligent transportation
systems (ITS) to solve freeway traffic congestion problems, freeway traffic congestion management remains a critical
issue in ITS. Here congestion management refers to a comprehensive decision-making process to identify and control
traffic congestion via traffic control and management strategies with the goal of enhancing traffic safety and mobility.
As is increasingly recognized, the difficulties of managing freeway traffic congestion are mainly rooted in the
dynamics of congestion patterns, including recurrent and non-recurrent congestion patterns on mainline segments,
and limited information in terms of en-route drivers’ maneuvers responding, in real time, to both traffic congestion
conditions and corresponding freeway traffic management strategies when approaching on-ramps. As a result, freeway
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traffic flows and congestion patterns turn out to be more complicated and uncontrollable in the ITS operational
environment. For instance, provision of the real-time toll rates and corresponding traffic congestion information via
ITS technologies seems to influence drivers’ decisions of route choice to a certain extent. However, our perception of
drivers’ instantaneous responses to the corresponding traffic operational environment is quite limited, thus contributing
to the difficulty in determining appropriate congestion tolls in real time, as well as ramp control strategies to alleviate
freeway traffic congestion, efficiently and effectively.

Accordingly, to regulate traffic entering a freeway in response to the variability of freeway traffic congestion,
both dynamic on-ramp metering control and toll collection appear to be two promising measures to manage freeway
congestion. Nevertheless, there seem to be some arguments in terms of the limitations of the existing technologies
used for freeway congestion management. Some typical examples are illustrated below for discussions.

Ramp control arises from the idea of controlling on-ramp traffic flows entering mainline segments of freeways via
ramp metering so as to achieve given objectives for freeway traffic management [31,20]. More recently, a variety of
sophisticated methodologies, including optimal control theories [1,39], artificial intelligence [2,38], and hybrid traffic
flow-control approaches [40,41] have been proposed to improve the system performance of either local ramp control
or multiple ramp control. Despite the distinctive features of these existing ramp control models, apparently, there is a
developmental trend that the mechanisms of ramp control seem to be more responsive to short-term changes of traffic
demands in the temporal domain, and more adaptable to integrate with other external methodologies for large-scale
congestion management in the spatial domain.

Although there have been a certain advances in exploring ramp control methodologies for freeway traffic control,
there seem to be some arguments remaining over the performance of ramp control under high congestion conditions.
This argument holds particularly in queue-overflowing and lane-blocking incident cases. In reality, such phenomena
are comprehensible due to the fact that unlike signal control on surface streets, the effect of ramp control is mainly on
the entry traffic volume rather than on the mainline volume of a freeway. Without other traffic management strategies
to divert either on-ramp or mainline traffic flows, the performance of ramp control may turn out to be insignificant in
case where the mainline traffic loads are sufficiently greater than the on-ramp traffic loads in a given segment.

In contrast, road congestion pricing including freeway electronic toll collection (ETC) systems has been
increasingly recognized as an effective traffic management strategy to manage regional peak-hour road congestion
[29,12,8,15]. As pointed out in [7], considering the trade-off between out-off-pocket travel costs and delays, road users
may respond to the instantaneous toll rates before entering the instrumented toll collection systems by modifying their
travel behavior including diverting routes, departing at a different time and switching modes of transport. Under such
a postulation, a great many researchers have made efforts on the investigation of congestion pricing theories and toll
collection strategies [30,9,26,10,37,33,13]. Therein, numerous pioneer researchers advocate utilizing the principle
of marginal-cost pricing to deal with the optimal congestion pricing problem and its potential impacts on traffic
flows. Three fundamental elements, including the speed-flow relationship, the demand function, and the generalized
cost, which affect the implementation of congestion pricing systems, were investigated [5,11,34,35,32,4,3,14,17].
Furthermore, considering the impracticability of searching for the first-best pricing solutions, diverse second-best
pricing regimes, including the cordon-based second-best pricing, were proposed for real-world applications [15,28,
33,40,41].

Accordingly, the existing congestion pricing theories appear promising in addressing freeway congestion
management issues. Nevertheless, the use of ETC for dynamic freeway congestion management may still warrant
more research efforts due to the following concerns. First, the applicability of the existing marginal-cost congestion
pricing theories may hold only under certain traffic flow conditions, e.g.,low-volume and medium-volume conditions.
It can be seen in most of the previous literature, the corresponding average social cost curve is assumed to be
strictly increasing with traffic flow without considering the link capacity issue. Consequently, a downhill-shape
speed-flow curve is extensively used to determine the optimal congestion toll as well as the effects of congestion
pricing on traffic flows. Obviously, the aforementioned postulation may not be applicable for highly congested cases
where the speed-flow curve becomes backward bending after the maximum traffic flow point, as shown in any
fundamental diagrams of traffic flow-speed-density. Similar arguments can also be found elsewhere [11]. Second,
the use of aggregate demand functions in characterizing individual drivers’ maneuvers responding to toll rates may
remain problematic in the dynamic congestion management context. From an aggregate economics point of view,
it seems more agreeable that those toll rates derived from the marginal-cost congestion pricing theories may apply
merely for long-term and large-scale congestion pricing cases, where the features of system-wide road users and the
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corresponding responses to congestion tolls are assumed to be consistent over a long time period. In contrast, in a
dynamic congestion management system, the corresponding traffic control and management mechanisms including
the embedded traffic forecasting models may need to be more adaptive to short-term changes of local road users’
decisions, including route choice and driving behavior. In view of this, the postulation of a uniform demand function
may no longer meet the functional requirements of dynamic congestion management systems. Thirdly, and most
importantly, pure toll collection strategies, including cordon-based toll collection measures, may not have significant
effects on system entry flows in the case where the estimated toll rates are widely acceptable to system road users. This
may induce two related issues, i.e.,toll boundaries and sensitivity of traveling costs to road users for either rerouting or
rescheduling.

Arguably, regulating on-ramp traffic arrivals by integrating dynamic ramp control and toll pricing strategies appears
promising for effective freeway traffic congestion management. Such an integrated traffic management strategy arises
from the idea that similar to an isolated parking facility with charges, freeways can be regarded as a traffic service
facility paid by the corresponding road users. Given limited service capacity, such a traffic service facility can
charge the corresponding freeway users with different levels of tolls coupled with appropriate ramp control strategies
under diverse traffic congestion conditions for the purpose of freeway congestion management. From an individual
customer point of view, those pre-trip potential freeway users, e.g.,vehicles approaching to on-ramps, may assess
the corresponding trade-off effects between out-of-packet costs and travel time saving prior to entering the freeway
system. Meanwhile, the en-route freeway users, i.e., vehicles moving on tolled freeways, are supposed to pay different
levels of tolls for traveling with different levels of freeway service, which also depend on the respective service time
on them. From the supply side, the freeway system operator can use ramp metering as the gate-traffic controller to
maintain given levels of service on freeways. Accordingly, the aim of dynamic freeway traffic congestion management
seems possible through the integrated utilization of dynamic toll and ramp control strategies.

The purpose of this study is to investigate an integrated ramp control and dynamic toll pricing methodology
proposed for freeway congestion management. Our research idea is to ensure the magnitude of freeway traffic
congestion is adjustable under any given traffic flow conditions, thus the target level of service on freeways is
achievable through the integration of dynamic toll pricing and ramp control strategies. Herein, the dynamic ramp
metering control is a straightforward and efficient measure to maintain the service level of the freeway system so as
to ensure that all the tolled freeway users can be served at the target service level while driving on the tolled freeway.
In the proposed integrated toll-ramp control scheme, the freeway system may no longer be free to the public road
users. Instead, everybody who wants to use the freeway system should be charged with the dynamic toll rates. That
is, the dynamic toll rates apply to not only the en-route freeway users but also all the drivers who are arriving at
on-ramps, and waiting entering into the freeway system. Note that such tolled freeway systems have been increasingly
adopted in Asia, including Taiwan, China, and Japan. Furthermore, the dynamic toll rates can be used to influence
those pre-travelers’ decisions to determine whether or not and when to use the tolled freeway system so as to regulate
the new traffic arrivals at the on-ramps of the tolled freeway system, with the ultimate goal of freeway congestion
management. Motivated by the above basic ideas, an integrated dynamic toll-ramp control methodology is proposed,
where the optimal values of time-varying ramp metering and toll rates are determined and updated dynamically,
according to the preset target freeway service levels, as well as time-varying traffic flow conditions. The architecture
of the proposed method is constructed based on the principles of stochastic optimal control approaches, together with
the extended Kalman filtering technology, involving three major developmental procedures: (1) system specification,
(2) stochastic modeling, and (3) control algorithm. The details of methodology development and preliminary tests are
described in the following sections.

2. System specification

The system scope studied here considers any given freeway corridor, which is composed geometrically of multiple
ramps and freeway mainline segments, as shown in Fig. 1. To collect real-time raw traffic data used as the input of
the proposed method, specific point detector layouts are proposed, mainly involving two types of detector stations:
(1) mainline detection stations implemented sequentially at mainline segments upstream from on-ramps, and (2) gate
detectors implemented at the corresponding on-ramps and off-ramps of the target freeway system. Here, a service zone
is defined as the area composed of a given mainline segment that is bounded by a pair of upstream and downstream
mainline detector stations, including the corresponding on-ramps and off-ramps involved in the service zone.
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Fig. 1. Geographic specification of system scope.

Accordingly, the target freeway corridor can be regarded as a sequential traffic-transporting system with multiple
service zones supervised automatically through the integration of both dynamic toll collection and ramp control
devices. Here, each given service zone is regarded as a respective traffic facility serving traffic flows to move
smoothly with a given level of service. For the purpose of freeway congestion management, freeway system operators,
e.g.,freeway traffic management center (freeway-TMC), may preset appropriate levels of service associated with
these sequential service zones for daily operations of the target freeway system, according to time of day as well
as historical traffic flow patterns. Given the target freeway service level guiding freeway congestion management,
on-ramp metering is then used as a gate controller to regulate traffic flows moving in each service zone, followed
by the determination of time-varying toll rates employing the estimates of traffic state variables associated with each
zone, with both the goals of minimizing the system-wide traffic service time and maximizing the system-wide traffic
service volume.

In addition, the corresponding toll effect on pre-trip drivers’ decisions in choosing routes is also considered in
the process of estimating dynamic toll rates. Apparently, time-varying toll rates may influence the determination of
potential freeway users in route choice before they approach on-ramps of the freeway system, thus contributing to the
variations in freeway entry volumes. For instance, in case of a freeway with high congestion, the strategy of high toll
rates may have relatively significant effect on decreasing on-ramp entry volumes because those pre-route potential
freeway users may re-assess the corresponding traveling costs and benefits under such a high congestion condition
before approaching the freeway system. As such, high-toll strategies integrated with ramp metering rates can be
appropriately used to regulate system-wide freeway entry volumes, resulting in the alleviation of freeway congestion
to a certain extent. In contrast, low-toll strategies including the free-toll strategy, appears to encourage more road users
to travel via freeways under low-volume conditions, and thus may enhance the serviceability of the freeway system in
off-peak periods. Accordingly, the induced effect of toll rates on the variation of on-ramp traffic arrivals is considered
in the proposed model.

With the system scope and detector layouts specified above, the conceptual model of the system investigated in
this study is presented in Fig. 2, which represents a sequential traffic flow transporting system with “J” service zones.
Note that all the definitions and notations of the parameters and variables presented in the text are summarized in
the Appendix for clarity. For each given service zone j , the corresponding inter-zone and intra-zone traffic flow
relationships can be further characterized with four types of time-varying traffic operational status, including: (1) the
number of vehicles (I j−1, j (k)) entering from the upstream service zone j − 1 to service zone j in time interval k,
(2) the number of vehicles (S j (k)) remaining in the given service zone j at the beginning of time interval k, (3) the
number of vehicles (O j, j+1(k)) moving from service zone j to the downstream service zone j + 1 in time interval
k, and (4) the number of on-ramp vehicles entering into service zone j (R̄ j (k)), and the number of off-ramp vehicles
exiting from service zone j (R j (k)) in time interval k.
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Fig. 2. Conceptual model of the proposed freeway system.

Given the target service level (s̃) predetermined by freeway-TMC, the ideal zone-based traffic flow condition,
shown as Eq. (1), is then postulated as

0 ≤
[
I j−1, j (k) + S j (k) + R̄ j (k)

]
−

[
O j, j+1(k) + R j (k)

]
≤ S s̃

j (1)

where S s̃
j represents the maximum number of vehicles permitted in a given service zone j with the target service level

s̃. Correspondingly, under the ideal traffic flow condition, the time-varying traffic flows remaining in any given service
zone j at the end of any given time interval should not exceed the corresponding service capacity associated with s̃.
Note that in reality, S j (k) can be regarded as a time-varying state-dependent variable given by

S j (k) =
[
I j−1, j (k − 1) + S j (k − 1) + R̄ j (k − 1)

]
−

[
O j, j+1(k − 1) + R j (k − 1)

]
. (2)

Despite the aforementioned ideal zone-based traffic flow condition that the specified freeway system seeks for any
given service zones, it may not be achievable at will without any assistance from the sophisticated traffic control
models due to two major concerns. First, there exist some system states, which are not directly controllable by
ramp metering control. It is noteworthy that among the traffic states shown in Eq. (1), only the number of entry
vehicles R̄ j (k) is determined directly by ramp control. In contrast, system states, including I j−1, j (k), O j, j+1(k), and
R j (k), may be influenced more significantly by time-varying traffic flow conditions and origin-destination patterns on
freeways, thus leading to some challenges in fully controlling these system states to achieve the aforementioned ideal
zone-based traffic flow condition in any time interval. Second, although R̄ j (k) is controllable via ramp control, the
corresponding optimal ramp metering rates should be predetermined at the beginning of any given time interval under
which the time-varying states of I j−1, j (k), O j, j+1(k), and R j (k) occurring in the given time interval are unknown.

Obviously, the aforementioned issues have led the proposed freeway system to be a typical dynamic system
prediction and control problem in the process of searching for the ideal multi-zone traffic flow condition. That is,
given initial traffic flow conditions, including I j−1, j (0), O j, j+1(0), S j (0), R̄ j (0) and R j (0) in each given service
zone j in the initial time interval k = 0, the optimal solutions of zone-based system states as well as control variables
should be predicted and updated in each given time interval using traffic measurements to ensure that the goal of ideal
multi-zone traffic flow condition is achievable.

To facilitate characterizing the operational problem of the proposed multi-zone freeway service system with
a stochastic optimal control system, three groups of system variables, including (1) basic state variables, (2)
measurement variables, and (3) control variables, are specified with the following definitions.

Basic state variables2 refer to the critical informative elements that can be used to derive other time-varying system
states characterizing the traffic operational conditions of the specified multi-zone freeway service system. In this study,
three types of basic state variable are specified as follows.

(1) r j, j+1(k) represents the time-varying proportion of vehicles leaving from a given service zone j to the following
service zone j + 1 in a given time interval k.

2 Ideally, S j (k) (i.e., the number of vehicles present in a given service zone j in a given time interval k) can be used to characterize the time-
varying freeway traffic flow conditions. However, due to the difficulty of obtaining the real-time value of S j (k) directly from traffic detectors, we
propose to estimate the real-time basic traffic state variables, and then use them to derive S j (k) and the other traffic state variables. Nevertheless,
the basic state variables should be estimated in real time using the proposed stochastic optimal control model as they can not be measured directly
from detectors. This may also clarify why we specify the basic state variables for the use in the proposed integrated toll-ramp control methodology.
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(2) r j,R j
(k) represents the time-varying proportion of vehicles leaving from a given service zone j to the

corresponding off-ramp R j in a given time interval k.

(3) r R̄ j , j (k) represents the time-varying proportion of on-ramp vehicles entering from a given on-ramp R̄ j to the
corresponding service zone j in a given time interval k.

Measurement variables correspond to the observable traffic measurements collected from specific detector stations,
which can be used to update the prior predictions of basic state variables in each given time interval. Herein, three
types of measurement variables are involved: O j, j+1(k), R̄ j (k), and R j (k).

Control variables, determined fully by system operators, serve to regulate, either directly or indirectly, inter-zone
and intra-zone traffic flow conditions so as to accomplish the preset level of service. In this study, two types of control
variables are defined: c j (k) and p j (k), which represent the time-varying on-ramp metering and toll rates associated
with a given service zone j in a given time interval k, respectively. Their corresponding units are veh/s and $/s,
standing for the number of vehicles released from the corresponding on-ramp and the time-varying unit toll rate for
traveling in a given service zone j per second during a given time interval k, respectively.

Utilizing the aforementioned specified variables, we further introduce an on-ramp traffic equilibrium condition
to infer the time-varying interrelationships among tolls, ramp metering rates and on-ramp traffic flows under the
integrated dynamic toll-ramp control condition. For each given on-ramp j , the following on-ramp traffic flow condition
must hold in each given time interval k.

SR̄ j
(k + 1) = A R̄ j

(k) + SR̄ j
(k) − R̄ j (k) ≤ S̃R̄ j

(3)

where A R̄ j
(k) represents the measured number of vehicles arriving at the on-ramp (R̄ j ) of a given service zone j

in a given time interval k; SR̄ j
(k) is the number of vehicles remaining in the corresponding on-ramp R̄ j associated

with a given service zone j at the beginning of a given time interval k; and S̃R̄ j
represents the corresponding on-ramp

capacity. In addition, it is assumed that p j (k) is a function of (A R̄ j
(k)), i.e., p j (k) = f [A R̄ j

(k), k], and has a negative
effect on A R̄ j

(k), as widely postulated in the previous literature on road congestion pricing. Accordingly, the on-ramp

traffic equilibrium condition3 is defined as an ideal on-ramp traffic flow condition where there is no vehicle remaining
in any given on-ramp at the end of each time interval. Under the aforementioned ideal on-ramp traffic flow condition,
each vehicle arriving at a given on-ramp is supposed to be served in the same time interval, and thus there is no
vehicle remaining in any given on-ramp at the end of each time interval. To achieve such an ideal on-ramp traffic flow
condition using the proposed integrated dynamic toll-ramp control, the following condition must hold.

A R̄ j
(k) = R̄ j (k) ⇒ f −1 [

p j (k)
]

= c j (k) × t (4)

where f −1
[

p j (k)
]

represents the inverse function of p j (k); and t represents the unit length of a time interval.
Note that Eq. (4) can also be used to assess whether the present toll pricing strategy is compatible with the

corresponding ramp control strategy or not. Here the on-ramp traffic demands represented by the left-hand side of
Eq. (4) are driven by the time-varying toll rates; and in contrast, the corresponding on-ramp traffic service rates
presented on the right-hand side of Eq. (4) are regulated by ramp control. Given the existing ramp control and toll
rates estimated in the previous time interval using the proposed method, there could be three potential conditions
occurring in the present time interval, i.e., (1) A R̄ j

(k) > R̄ j (k), (2) A R̄ j
(k) = R̄ j (k), and (3) A R̄ j

(k) < R̄ j (k),
implying that the existing toll rate is lower, consistent with, or higher than the equilibrium toll rate, respectively, thus
contributing to the above on-ramp traffic demand–supply relationships. However, in most cases, ramp control aims
to regulate on-ramp entry traffic flows so as to achieve the target service level on mainline segments of freeways,
and thus, it may have relatively higher priority than the toll rates to be determined in the process of freeway traffic

3 Here, the on-ramp traffic equilibrium condition is proposed to avoid the phenomenon of queue-overflows occurring on ramps under the
integrated toll-ramp control. Note that the phenomena of queue-overflows have been noticed particularly in the area of traffic control of surface
streets [16]. Briefly, if there are vehicles queued at an intersection from one cycle to the next, it may result in traffic overflowing which may
further lead to a bottleneck where traffic arrival rate is greater than its service rate on the spot. Therefore, we apply this concept in the study case,
particularly for controlling the on-ramp entry flows due to the concerns of limited on-ramp vehicle queuing space and induced impact on the traffic
flows of surface streets near by.
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congestion management. Therefore, the aforementioned potential conditions can be used to check if the present toll
rates are appropriate to facilitate managing freeway traffic congestion.

3. Stochastic modeling

Based on the above system specification, the problem is formulated with a discrete-time nonlinear stochastic
model consisting of three groups of dynamic equations: (1) state equations, (2) measurement equations, and (3) state
boundaries, which are detailed below.

The state equations characterize the time-varying relationships of the basic state variables under the condition of
the proposed integrated dynamic toll-ramp control. Adopting the concepts of dynamic freeway traffic flow stability
claimed in previous literature [25,24], it is also assumed that the specified basic state variables follow Gaussian-
Markov processes. That is, if there is no disturbance, the changing patterns of basic state variables tend to be identical,
exhibiting the features of a Markov-based deterministic system; otherwise, the next-time-step system states may
oscillate around the current-time-step system states in a Gaussian-based domain. Accordingly, the generalized form
of the proposed state equations is formulated as

X(k + 1) = F [X(k), �(k), k] + L [X(k), �(k), k] W(k) (5)

where X(k + 1) is a (3J × 1) time-varying basic state vector in time interval k + 1; F [X(k), �(k), k], representing
a deterministic term of the state equations, is a (3J × 1) time-varying basic state vector which consists of the sub-
vectors of time-varying basic state variables (X(k)) and the corresponding control variables (�(k)) in time step k;
L [X(k), �(k), k] is a (3J × 3J ) diagonal state-dependent noise matrix, and finally, W(k) represents a (3J × 1) state-
independent Gaussian noise vector. The mathematical forms of X(k + 1), F [X(k), �(k), k], L [X(k), �(k), k], and
W(k) are given as follows.

X(k + 1) = col
(
X j (k + 1), j = 1, 2, . . . , J

)
(3J×1)

(6)

where X j (k + 1) is given by

X j (k + 1) =

r j, j+1(k + 1)

r j,R j
(k + 1)

r R̄ j , j (k + 1)

 (7)

where r j, j+1(k + 1), r j,R j
(k + 1), and r R̄ j , j (k + 1) represent the basic state variables associated with a given service

zone j in time interval k + 1.

F [X (k) , � (k) , k] = col
(
f j (k), j = 1, 2, . . . , J

)
(3J×1)

(8)

where f j (k) is given by

f j (k) =

 r j, j+1(k)

r j,R j
(k)

Ω j
[
c j (k), p j (k)

]
× r R̄ j , j (k)

 (9)

where Ω j
[
c j (k), p j (k)

]
represents the aggregate effect of control variables on the change pattern of r R̄ j , j (k), i.e.,the

proportion of on-ramp traffic flows entering into the corresponding service zone, and the mathematical form of
Ω j

[
c j (k), p j (k)

]
is given by

Ω j
[
c j (k), p j (k)

]
=

[
1 +

c j (k) − c j (k − 1)

c j (k − 1)

]
×

[
1 +

p j (k) − p j (k − 1)

p j (k − 1)

]
=

c j (k)

c j (k − 1)
×

p j (k)

p j (k − 1)
. (10)

Eq. (10) indicates that the increase of either the ramp metering rate or toll rate may have a positive effect on r R̄ j , j (k).
For instance, higher ramp metering rates may facilitate on-ramp traffic flows entering the mainline segment of the
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freeway system, thus contributing to an increase in r R̄ j , j (k). In addition, the increase of the toll rate may lessen the
willingness of en-route drivers to travel via freeways. Consequently, it is likely that traffic arrivals to on-ramps may
decrease with the increase of the toll rate, thus leading to an increase in r R̄ j , j (k).

Note that in case of no extrinsic disturbance sources (e.g., ramp control and toll collection), the short-term change
patterns of freeway traffic states are likely to follow Markov processes. This may particularly hold true in our case of
estimating the basic states r j, j+1(k) and r j,R j

(k) as they are observed on the mainline segments of a freeway, where
there are no extrinsic influential factors (e.g.,ramp metering control) existing. Supporting arguments can also be found
in our previous works [25,24] which aim to investigate the dynamics of lane traffic states on the mainline segments of
freeways without the influence of traffic control strategies. In contrast, r R̄ j , j (k) is likely to be influenced significantly
by ramp control in the proposed integrated toll-ramp control system, and thus we incorporate the corresponding
control effect into Eq. (9) to characterize its time-varying change patterns in a deterministic system.

L [X(k), �(k), k] = dia
[
l j (k), j = 1, 2, . . . J

]
(3J×3J )

(11)

where l j (k) is given by

l j (k) =


(

c j (k) − c j (k − 1)

c j (k − 1)

)
× r R̄ j j (k) × [1 − r j, j+1(k) − r j,R j

(k)](
p j (k) − p j (k − 1)

p j (k − 1)

)
× r R̄ j , j (k) × [1 − r j, j+1(k) − r j,R j

(k)]

[1 − c j (k) × r R̄ j , j (k)] × [1 − r j, j+1(k) − r j,R j
(k)]


3×1

. (12)

The elements of the state-dependent noise vector refer to the disturbance sources that may divert the corresponding
basic state variables from deterministic to stochastic conditions; and the magnitudes of the disturbance effects also
depend on the time-varying system states existing in the current time interval. In reality, we have introduced similar
concepts concerning the state-dependent disturbance sources in certain previous works [24,23,22]. Our basic idea is
rooted in the postulation that in a stochastic traffic flow system, the equilibrium conditions of time-varying traffic states
could be affected by state-related disturbance sources. In the study, the state-dependent noise terms may originate from
three potential disturbance sources, including (1) the amount of traffic flows being served in a given service zone,
(2) the ease of traffic flowing through the corresponding downstream detector station under the integrated dynamic
toll-ramp control, and (3) the amount of vehicles queuing in on-ramps. For instance, the time-varying proportion
of on-ramp vehicles entering into the mainline segment in the next time interval (r R̄ j , j (k)) can be affected by
both the time-varying proportion of vehicles queuing on the ramp and that of vehicles remaining in the mainline
segment nearby in the current time interval. Accordingly, the magnitude of the corresponding disturbance effect is
measured by multiplying the aforementioned two terms, as shown in the 3rd element of vector l j (k) (see Eq. (12)).
Employing similar concepts, the other state-dependent noise terms are then formulated to form the corresponding
matrix (L [X(k), �(k), k]).

In contrast, W(k) represents a state-independent noise vector, where the elements of W(k) are assumed to follow
Gaussian processes denoting the disturbance effects resulting from the time-varying patterns of traffic arrivals to the
freeway system. Accordingly, W(k) is given by

W(k) = col
(
w j (k), j = 1, 2, . . . , J

)
(3J×1)

(13)

where w j (k) is given by

w j (k) =

ωr j, j+1(k)

ωr j,R j
(k)

ωr R̄ j , j
(k)


3×1

. (14)

Herein ωr j, j+1(k), ωr j,R j
(k) and ωr R̄ j , j

(k) represent the state-independent noises associated, respectively, with

r j, j+1(k), r j,R j
(k), and r R̄ j , j (k), and follow Gaussian processes. In the proposed model, they are mainly derived

from the changing patterns of traffic arrivals at the corresponding sub-areas, including the mainline segments and on-
ramps, in consideration of the phenomenon that the magnitude of the aforementioned state-dependent noises shown
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in l j (k) may also depend to a certain extent on the diversity of new traffic arrivals. Accordingly, the Gaussian state-
independent vector w j (k), indicating the patterns of change for traffic arrivals, is involved in the formulation of noise
terms in the proposed stochastic model.

The measurement equations characterize the time-varying relationships between traffic measurements, i.e.,the
collected traffic counts, and the basic state variables. Utilizing the specified relationships, the basic state variables
predicted from the state equations are updated in real-time in response to the time-varying patterns of zone-based
traffic flows under the proposed integrated dynamic toll-ramp control. The generalized form of the measurement
equations is given by

Z(k) = H [X(k), k] + V(k) (15)

where Z(k) is a (3J×1) time-varying measurement vector which is composed of the time-varying zone-based outflows
collected in the mainline segments and off-ramps, as well as the time-varying freeway entry flows from on-ramps in
time interval k; H [X(k), k] is a (3J × 1) time-varying measurement-component vector in which each element is
associated with a given element shown in Z(k), characterizing the components of the corresponding element of Z(k)

with the state variables and collected upstream traffic arrivals in time interval k; V(k) is a (3J × 1) Gaussian noise
vector, representing the measurement errors of the collected traffic data in time interval k. The notations of Z(k),
H [X(k), k] and V(k) are given in the following.

Z(k) = col
(
z j (k), j = 1, 2, . . . J

)
(3J×1)

(16)

where z j (k) is given by

z j (k) =

O j, j+1(k)

R j (k)

R̄ j (k)


3×1

(17)

H(k) = col
(
h j (k), j = 1, 2, . . . J

)
(3×1)

(18)

where h j (k) is given by

h j (k) =


(
I j−1, j (k) + S j (k)

)
× r j, j+1(k)(

I j−1, j (k) + S j (k)
)
× r j,R j

(k)(
A R̄ j

(k) + SR̄ j
(k)

)
× r R̄ j , j (k)


3×1

. (19)

Herein, all the variables shown in Eq. (19) are associated with the given service zone j in time interval k, and their
corresponding definitions are the same as presented previously in the description of state variables.

V(k) = col
(
v j (k), j = 1, 2, . . . , J

)
(3J×1)

(20)

where v j (k) is given by

v j (k) =

vr j, j+1(k)

vr j,R j
(k)

vr R̄ j , j
(k)


3×1

(21)

where vr j, j+1(k), vr j, j+1(k), vr R̄ j , j
(k) follow Gaussian processes.

The boundary constraints of the stochastic model are postulated to ensure that the estimates of basic state and
control variables yielded in the proposed integrated dynamic toll-ramp control algorithm are feasible. Herein, three
groups of boundary constraints associated, respectively, with the corresponding state variables (X j (k)), ramp metering
rates (c j (k)), and toll rates (p j (k)) are incorporated in the proposed model. Their generalized forms are given by

0 ≤ X j (k) ≤ 1 ∀ j, k (22)

0 ≤ c j (k) ≤ 1 ∀ j, k (23)

0 ≤ p j (k) ≤ pmax ∀ j, k. (24)
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4. Control algorithm

Utilizing extended Kalman filtering technique, a stochastic optimal control based algorithm is proposed to estimate
the time-varying basic state and control variables of the stochastic model. Herein, following the theorems of stochastic
optimal control for the minimum mean square estimation of the basic state variables and control variables [27,19],
we attempt to minimize the differences between the estimated values of state variables and their corresponding ideal
values during a given control period with K time intervals. The ideal values of state variables refer to the desired
values of the state variables that facilitate moving zone-based traffic flows through the corresponding service zones
with target service levels. Accordingly, we have the aggregated objective function (ζ̃K ) as follows for each given
K -based control period, where the number of time intervals is K .

ζ̃K = min
J∑

jK =1

ζ jK (25)

where ζ jK is given by

ζ jK = E

{
K∑

k=1

[
X j (k) − X̂

s̃
j (k)

]T
81

j (k)
[

X j (k) − X̂
s̃
j (k)

]

+

[
� j (k) − �̂

s̃
j (k)

]T
82

j (k)
[
� j (k) − �̂

s̃
j (k)

] }
(26)

where X̂
s̃
j (k) represents a (3 × 1) time-varying target state vector associated with X j (k), involving the corresponding

target values of basic states under the proposed freeway traffic control with a given target service level s̃; similarly,

�̂
s̃
j (k) represents a (2 × 1) target control vector, involving the corresponding target values of control variables to

maintain the proposed freeway system with a given target service level s̃, and conveniently, the elements of �̂
s̃
j (k) are

set to be consistent with the elements of the estimated control-variable vector (i.e., � j (k − 1)) of the previous time
interval to serve the purpose of minimizing the risks caused by the changes of control variables; 81

j (k) and 82
j (k)

represent the (3 × 3) and (2 × 2) time-varying diagonal, positive-definite weighting matrices associated, respectively

with the estimated basic state vector (X j (k)) and that of the control variable vector (� j (k)). Herein, X̂
s̃
j (k), 81

j (k),

and 82
j (k) can be further derived as in the following.

As mentioned previously, X̂
s̃
j (k) refers to the corresponding target vector of X j (k). Correspondingly, each element

of X̂
s̃
j (k) represents the corresponding target value associated with a given basic state under the proposed freeway

traffic control in a given service level. Therefore, employing the ideal zone-based traffic flow condition shown in
Eq. (1), we have

X̂
s̃
j (k) =

r̂ j, j+1(k)

r̂ j,R j
(k)

r̂ R̄ j , j (k)

 . (27)

Here, r R̄, j (k) is set to be 1 considering the aforementioned on-ramp traffic equilibrium condition. In contrast, r̂ j, j+1(k)

and r̂ j,R(k) are determined using the ideal zone-based traffic flow condition shown in Eq. (1), and thus they are given
by

r̂ j, j+1(k) =


k−1∑
τ=0

O j, j+1(k − τ)

k−1∑
τ=0

O j, j+1(k − τ) + R j (k − τ)

 ×

[
1 −

S s̃
j

I j−1, j (k) + S j (k) + R̄ j (k)

]
(28)
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r̂ j,R j
(k) =


k−1∑
τ=0

R j (k − τ)

k−1∑
τ=0

O j, j+1(k − τ) + R j (k − τ)

 ×

[
1 −

S s̃
j

I j−1, j (k) + S j (k) + R̄ j (k)

]
. (29)

The above specification of r̂ j, j+1(k) and r̂ j,R(k) is rooted in the postulation that the ideal zone-based outflow ratio

(i.e., r̂ j, j+1(k) + r̂ j,R(k)) should be equal to the time-varying net zone-based outflow ratio (1 −
Ss̃

j

I j−1, j (k)+S j (k)+R̄ j (k)
)

in any given time interval. This can be derived by taking the sum of Eqs. (28) and (29). Then, r̂ j, j+1(k) and r̂ j,R(k)

can be readily specified through allocating 1 −
Ss̃

j

I j−1, j (k)+S j (k)+R̄ j (k)
to each of them according to their time-varying

weights, i.e., [

∑k−1
τ=0 O j, j+1(k−τ)∑k−1

τ=0 O j, j+1(k−τ)+R j (k−τ)
] and

∑k−1
τ=0 R j (k−τ)∑k−1

τ=0 O j, j+1(k−τ)+R j (k−τ)
, respectively.

The elements of 81
j (k) indicate the costs of state deviation under the proposed integrated dynamic toll-ramp

control. To a certain extent, the proposed objective function implies that the more the time-varying basic state variables
are divergent from their corresponding ideal values, the greater the penalty costs of the control system should pay for.
Accordingly, 81

j (k) is involved in the objective function to indicate the weights of penalty costs associated with the
controlled basic states, and is given by

81
j (k) =

φr j, j+1(k) 0 0
0 φr j,R j

(k) 0
0 0 φr R̄ j , j

(k)

 (30)

where φr j, j+1(k), φr j,R j
(k), and φr R̄ j , j

(k) are given by

φr j, j+1(k) =
O j, j+1(k)

O j, j+1(k) + R̄ j (k) + R j (k)
(31)

φr j,R j
(k) =

R j (k)

O j, j+1(k) + R̄ j (k) + R j (k)
(32)

φr R̄ j , j
(k) =

R̄ j (k)

O j, j+1(k) + R̄ j (k) + R j (k)
. (33)

Similarly, the elements of 82
j (k) indicate the costs caused by the control variable deviation under the proposed

integrated dynamic toll-ramp control. Theoretically, the more frequently the time-varying control variables switch
from their corresponding target values the greater the penalty costs of the control system should pay for. Therefore,
the elements of 82

j (k) are specified to indicate the weights of the aforementioned penalty costs. Here 82
j (k) is given

by

82
j (k) =

[
φc j (k) 0

0 φp j (k)

]
(34)

where φc j (k) and φp j (k) are given by

φc j (k) =
R̄ j (k)

I j−1, j (k) + R̄ j (k)
(35)

φp j (k) = 1 −
O j, j+1(k) + R j (k)

I j−1, j (k) + S j (k) + R̄ j (k)
. (36)

It is worth mentioning that in reality, Eq. (26) is a well-known cost function (or termed quadratic loss function)
representing a general objective function consisting of the minimum mean square (MMS) estimates of the state and
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control variables produced by the Kalman filter fed back through optimal gains for stochastic optimal control. Such a
generalized form and its fundamentals can be extensively found in the field of optimal control and related areas [27,
19,6]. Following the aforementioned fundamentals, the components of the cost function, particularly in terms of the
target values of the basic state variables (through Eqs. (27)–(29)) and these penalty weight matrixes (Eqs. (30)–(36))
are postulated based on the goal of the proposed integrated toll-ramp control system. Briefly, it is expected through
the specification of the cost function, these MMS state estimates and control variables can capture their target values
as well as possible to avoid the estimation divergence problems during the control period.

The primary computational scenarios involved in the proposed algorithm include: (1) system initialization, (2) prior
prediction of basic state variables, (3) stochastic optimal estimation of basic state variables, and (4) determination of
time-varying control variables. In order to obtain the minimum mean square estimates of the state variables through
the aforementioned scenarios (2) and (3), the fundamentals of an extended Kalman filter are applied. Note that the
concepts and distinctive features of extended Kalman filtering technologies can be readily found elsewhere [27,19,
24,23], thus being omitted in this content. Except for the scenario of system initialization, which is conducted with
preset parameters to initialize the control algorithm, the other three computational scenarios are executed in sequence
in each time interval during a given K -based control period. The following summarizes the major computational steps
of the proposed integrated dynamic toll-ramp control logic.

Step 0. Initialize system states, and input collected raw traffic data. Given k = 0, system states are initialized including:
(1) the basic state vector X(0|0), referring to the vector of state variables estimated at the beginning of the initial time
interval, i.e., k = 0; (2) the covariance matrix of the state estimation error Covx(0|0); and (3) the aggregate weighting
matrices 81

J (0) and 82
J (0) which involve 81

j (0) and 82
j (0) associated with each given service zone j . In addition,

determine the target service level s̃ j for each service zone, and then let the time-varying control variables be the

following initial values: p j (0) = ρs̃ and c j (0) =
f −1[p j (0)]

t , where ρs̃ is the ideal toll rate preset for the target service
level s̃ j .

Note that in the proposed control algorithm, only the initial toll rates (i.e., ρs̃) are needed, and can be predetermined
according to either toll policies predetermined by the corresponding freeway traffic management administration
sectors or using the existing economic theories in congestion pricing. Here, we merely use the aforementioned
formulas to determine the initial toll and ramp metering rates. Adopting the concept of elastic demand functions
proposed by Yang [36] and Yang et al. [34,35], we assume f −1

[
p j (k)

]
as a respective negative exponential function,

i.e., f −1
[

p j (k)
]

= α j exp
[
−β j

(
p j (k)

)]
, for simplicity, where parameters α j and β j are calibrated using simulation

data. Briefly, using Paramics, we built one simple network containing one origin and one destination connected with
two respective links with the same distances, and initial traffic flow conditions. In addition, a given set of origin-
destination flows was predetermined. Then, we designed a set of toll rates, including p j (k) = 0 for one of these two
links, and then measured the link flows going through these two links. Therein, by setting the toll rate to be zero, we
could readily calibrate the value of α j embedded in f −1

[
p j (k)

]
= α j exp

[
−β j

(
p j (k)

)]
, followed by the calibration

of β j . Once α j and β j were calibrated, their calibrated values were then input to the proposed algorithm for the
recursive estimation of state and control variables.

Step 1. Compute the prior prediction of the time-varying state vector (X(k + 1|k)) and the covariance matrix of the
state estimation error (Covx(k + 1|k)), respectively, by

X(k + 1|k) = F [X(k), �(k), k] (37)

Covx(k + 1|k) = Ḟ(k)Covx(k|k)Ḟ
T
(k) + L [X(k), �(k), k] 81

J (k)L [X(k), �(k), k]T (38)

where Ḟ
T
(k) is the transpose matrix of Ḟ(k), in which Ḟ(k) is given by

Ḟ(k) =
∂F[X(k), �(k), k]

∂X(k)

∣∣∣∣
X(k)=X(k|k)

. (39)

Step 2. Calculate the time-varying Kalman gain (δ(k + 1)) by

δ(k + 1) = Covx(k + 1|k)Ḣ
T
(k + 1)

[
Ḣ(k + 1)Covx(k + 1|k)Ḣ

T
(k + 1) + Covv(k + 1)

]−1
(40)
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where Covv(k + 1) is the covariance matrix of V(k + 1); and Ḣ(k + 1) is denoted by

Ḣ (k + 1) =
∂H [X (k + 1) , k + 1]

∂X (k + 1)

∣∣∣∣
X(k+1)=X(k+1|k)

. (41)

Step 3. Update the prior prediction of the time-varying state vector (X(k + 1|k + 1)) by

X(k + 1|k + 1) = X(k + 1|k) + δ(k + 1)∆Z(k + 1|k) (42)

where ∆Z(k + 1|k) is given by

∆Z(k + 1|k) = Z(k + 1) − H [X(k + 1|k), k + 1] . (43)

In Eq. (43), H[X(k +1|k), k +1] is the prior measurement-component vector, in which each element characterizes the
components of the corresponding element of Z(k + 1) using the prior predictions of state variables at the beginning
of the given time interval k + 1 and the upstream traffic counts collected in the given time interval k + 1.
Step 4. Truncate the updated state vector (X(k + 1|k + 1)) with the aforementioned boundary constraint, as presented
in Eq. (34), such that each updated state variable is feasible, subject to the corresponding upper and lower bounds.
Step 5. Update the covariance matrix of the state estimation error (Covx(k + 1|k + 1)) as

Covx(k + 1|k + 1) =
[
I − δ(k + 1)Ḣ(k + 1)

]
Covx(k + 1|k). (44)

Step 6. Update the numbers of vehicles remaining in the mainline segment and corresponding on-ramp associated
with each given service zone j at the end of time interval k + 1 (i.e., S j (k + 1) and SR̄ j

(k + 1), respectively). The
formulae for updating S j (k + 1) and SR̄ j

(k + 1) are given by

S j (k + 1) =
[
I j−1, j (k + 1) + R̄ j (k + 1) + S j (k)

]
−

[
O j, j+1(k + 1) + R j (k + 1)

]
(45)

SR̄ j
(k + 1) =

[
A R̄ j

(k + 1) + SR̄ j
(k)

]
− R̄ j (k + 1). (46)

Note that according to Eqs. (42) and (43) presented in Step 3, the updated values of S j (k + 1) and SR̄ j
(k + 1) will be

used for updating the prior prediction of the time-varying state vector in the next computational iteration.
Step 7. Calculate the control-variable vector �(k + 1). Using the fundamentals of stochastic optimal control theories,
the updated estimates of time-varying basic state variables X(k +1|k +1) are fed back through the following formulae
to accomplish the goal of the pre-specified objective function (see Eqs. (5) and (6)).

�(k + 1) = −E(k + 1)X(k + 1|k + 1) + T(k + 1). (47)

Herein, E(k + 1), referring to a time-varying control gain vector, and T(k + 1) are given, respectively, by

E(k + 1) =

[
BT(k + 1)S(k + 2)B(k + 1) + 82

J (k + 1)
]−1

BT(k + 1)S(k + 2)Ḟ(k + 1) (48)

T(k + 1) =

[
BT(k + 1)S(k + 2)B(k + 1) + 82

J (k + 1)
]−1 [

BT(k + 1)A(k + 1) + G(k + 1)
]
. (49)

According to the principles of optimal control, the following conditions in terms of A(k + 1), B(k + 1), G(k + 1) and
S(k + 2) should hold to satisfy the Riccati equation.

A(k) = 81
J (k)X̂(k + 1) +

[
Ḟ

T
(k + 1) + B(k + 1)E(k + 1)

]T
A(k + 1) (50)

B(k + 1) =
∂F[X(k), �(k), k]

∂�(k)
(51)

G(k + 1) = 82
J (k + 1)�̂(k + 1) (52)

S(k + 1) = 81
J (k + 1) + Ḟ

T
(k + 1)S(k + 2)Ḟ(k + 1) − Ḟ

T
(k + 1)S(k + 2)B(k + 1)E(k + 1). (53)

Step 8. Check the estimates of the time-varying control variables presented in �(k + 1) with Eqs. (35) and (36) to
satisfy the corresponding boundary conditions.
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Step 9. Input the next-time-step collected traffic data; let the time step index k = k + 1, and then go back to Step 1 for
the next computational iteration of the proposed control algorithm until the end of the given K -based control period.

5. Numerical study

The numerical study demonstrates the relative performance of the proposed integrated dynamic toll-ramp control
approach for dynamic freeway traffic management, compared to conventional freeway traffic management strategies.
Here, a 4-lane mainline segment of the southbound Formosa freeway of Taiwan, located in the metropolitan area of
Taipei, was selected as the study site. In addition, to investigate the potential effect of dynamic toll rate strategies on
route diversion at the study site, a 4-lane toll-free suburban arterial representing another alternative for route choice is
involved, where there are two lanes in each direction. In contrast with the target freeway system, traffic on the 4-lane
suburban arterial must be regulated by lower speed limits and five signal controls at the five main intersections on
surface streets. Presently, the target freeway system involves one manual toll collection station implemented with a
fixed toll rate of US$ 0.7/10 mile, and the corresponding traffic flows are regulated by local ramp control with fixed
ramp metering rates of 0.17 veh/s, 0.25 veh/s, and 0.34 veh/s for high-volume, medium-volume, and low-volume
cases, respectively. To illustrate the relative advantages of the proposed method, the numerical results were compared
with results obtained using these two existing freeway traffic management strategies in the study site.

Considering the need of appropriate traffic flow data for different freeway congestion cases, simulation data
generated from the Paramics microscopic traffic simulator was used for convenience. The corresponding tasks of
simulator calibration and preliminary tests can be found in a previous study [21]. Particularly, in the calibration
scenario, we aimed to calibrate the generalized link cost function embedded in Paramics to deal with the potential
drivers’ responses to the variety of dynamic toll rates estimated using the proposed model. Therein, the embedded
link cost function of Paramics takes in to account three major factors of the monetary link costs including link travel
time, distance and toll pricing, which allow the users to adjust via the “configuration function” so as to reproduce the
drivers’ route choice maneuvers [18]. For each time interval, the optimal toll and ramp metering rates were estimated
using the proposed model and the simulation data collected in the previous time interval, and then were manually
input to Paramics for the next-time-interval estimation. Such a recursive estimation routine was conducted in each
time interval during each given simulation event. Considering the space limits of this paper, the details about the
calibration and preliminary test procedures and intermediate results are not presented here.

To simulate various freeway traffic congestion cases under the ramp control and toll collection conditions in the
study site, a simulation network mimicking the study site was constructed using Paramics, as illustrated in Fig. 3,
which involves 2 on-ramps and 2 off-ramps for each direction in the target freeway system. Employing the Paramics
simulator, a total of nine different combinations of traffic inflow patterns, including high-volume, medium-volume, and
low-volume cases associated, respectively, with the target freeway system and suburban arterial, were simulated, and
then the 1 min traffic data were collected during a given 1 h control period. Here, the ramp control and toll collection
strategies were simulated through appropriate parameter setting in the Paramics simulation model. According to the
functions embedded in Paramics [18], the input and output data including hourly throughputs and path travel times
can be readily collected to generate the numerical results. In addition, Paramics also provides very friendly node-
based traffic control simulation functions and link-based cost functions, which allow us to set the estimated ramp
metering and toll rates in each time interval, and then measure the system performance to test the proposed model.
The corresponding parameters preset for these simulation scenarios are summarized in Table 1.

In order to investigate the potential advantages of the proposed approach to dynamic freeway traffic congestion
management, two evaluation measures are utilized: freeway zone-based average travel time (AI ) and average hourly
throughput (T I ). In addition, for the use of comparative analyses, the average travel time (AI sub) and hourly traffic
flow (T I sub) through the suburban arterial are also measured.

It is worth mentioning that the present study purpose may aim at freeway congestion management using the
proposed toll-ramp control methodology. Thus, we may be more interested in knowing the effects of the proposed
control strategies on the freeway-based system performance (including freeway-based travel time and throughput)
and the induced impact on the alternative route (i.e.,the surface street route). Such information is particularly
important for the implementation of ITS-related technologies such as real-time toll and ramp control as well as route
guidance because the respective path travel times and related information are needed. These may also clarify why the
aforementioned four evaluation measures are proposed to be used in the numerical study.
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Fig. 3. Illustration of the simulated study site.

Table 1
Summary of simulation characteristics

1. Geometric characteristics

Target tolled freeway Suburban arterial
Number of lanes (mainline segment) 4 2
Number of on-ramps 2
Number of off-ramps 2
Number of lanes (ramp segment) 1
Geographic length 6 miles 10 miles

2. Traffic characteristics

Inflows (freeway high-volume cases) 2400 vph
6000 vph 1200 vph

600 vph

Inflows (freeway medium-volume cases) 2400 vph
3000 vph 1200 vph

600 vph

Inflows (freeway low-volume cases) 2400 vph
1500 vph 1200 vph

600 vph

Speed limits 70 mph 40 mph

3. Control strategies

The proposed method (alternative-1) Dynamic ramp metering and toll rates Conventional pre-timed signal control
The existing strategy (alternative-2) Fixed ramp metering and toll rates Conventional pre-timed signal control
Control-free strategy (alternative-3) None Conventional pre-timed signal control

4. Simulation operational characteristics

Simulation period 60 min
Unit time interval 1 min

Utilizing the aforementioned evaluation criteria, the proposed integrated dynamic toll-ramp control method was
tested with the simulation data, and compared with the aforementioned two control alternatives. Each traffic flow
scenario was simulated ten times, and then the numerical results were summarized in Tables 2–4, classified by three
levels of freeway traffic volume conditions.

Overall, the numerical results summarized in Tables 2–4 reveal the potential advantages of the proposed integrated
dynamic toll-ramp control method for freeway traffic congestion management under various traffic flow conditions,
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Table 2
Comparison of control performance (freeway high-volume cases)

Control alternatives Criteria

AI (s) T I (veh/h) AI sub (s) T I sub (veh/h)

The proposed strategy 468 4608 1469 1285
The existing strategy 508 4236 1460 1243
Control-free strategy 560 4154 1458 1237

Relative improvement of the proposed method

Relative to existing strategy (%) 7.9 8.8 −0.6 3.4
Relative to control-free strategy (%) 16.4 10.9 −0.8 3.9

Table 3
Comparison of control performance (freeway medium-volume cases)

Control alternatives Criteria

AI (s) T I (veh/h) AI sub (s) T I sub(veh/h)

The proposed strategy 398 3631 1461 1192
The existing strategy 435 3357 1459 1184
Control-free strategy 465 3118 1455 1159

Relative improvement of the proposed method

Relative to existing strategy (%) 8.5 8.2 −0.1 0.7
Relative to control-free strategy (%) 14.4 16.5 −0.4 2.8

Table 4
Comparison of control performance (freeway low-volume cases)

Control alternatives Criteria

AI (s) T I (veh/h) AI sub (s) T I sub(veh/h)

The proposed strategy 347 2036 1458 1074
The existing strategy 368 1987 1462 1083
Control-free strategy 376 1963 1465 1091

Relative improvement of the proposed method

Relative to existing strategy (%) 5.7 2.5 0.3 −0.8
Relative to control-free strategy (%) 7.7 3.7 0.5 −1.1

relative either to the existing control strategy or to the control-free case. This can be demonstrated from the
generalization that all the evaluation measures including AI and T I have been improved to a certain extent utilizing
the proposed method in contrast with the other two control alternatives. Here, AI is improved generally by 12.8%,
compared to the control-free strategy; and T I is improved by 13.6%. The corresponding improvement effects are
graphically illustrated in Fig. 4.

To illustrate the effectiveness of the proposed model for dynamic freeway congestion management, Figs. 5 and
6 display typical examples of change patterns of the dynamic ramp control and toll rates output from the proposed
model, respectively.

As can be seen in Fig. 5, the estimated dynamic toll rates appear to change more sharply in the high-volume
scenario compared with the change patterns exhibited in either the medium-volume or low-volume scenario. It is
inferred that under high-volume conditions, particularly in the over-congestion case, such an integrated toll and ramp
control strategy may result significantly in drivers’ route diversion, thus contributing to a significant reduction in
traffic arrivals at the on-ramps, followed by the adjustment of the dynamic toll rates estimated in the following time
intervals. In comparison, under low-volume conditions which also means low traffic demands, drivers may not be
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Fig. 4. Illustration of relative improvement by virtual samples of simulations.

affected significantly by the resulting low toll rates. Consequently, the estimated dynamic toll rates appear to remain
stably low during the integrated control period.

In contrast, the dynamic ramp metering rates exhibited in Fig. 6 may reveal different features in change patterns.
Under medium-volume and low-volume conditions, the resulting dynamic ramp metering rates appear to be rather
sensitive to the dynamics of freeway traffic flows and on-ramp traffic arrivals toward the goal of maintaining the
freeway system at certain target service levels, thus contributing to significant changes during the integrated control
period. As such, the dynamic ramp metering mechanism may perform the primary function in place of the dynamic toll
mechanism in regulating the freeway traffic flows in the low- and medium-volume scenarios. However, the resulting
lower toll rates may not have significant effects on drivers’ route diversion, and thus turn out to be a minor factor in
low- and medium-volume scenarios.

Accordingly, it is inferred that despite the integration of dynamic toll and ramp control mechanisms used for
freeway congestion management, herein dynamic tolling can be used as the main measure for high-volume traffic
flow cases; and in contrast, under low- and medium-volume traffic flow conditions, dynamic ramp metering control
may perform the key function aimed at maintaining the performance of the freeway system at target service levels.

In addition, several generalizations derived from the above numerical results are summarized below for discussion.
First, by comparing the measurements AI and T I obtained under different traffic flow conditions, the proposed

integrated dynamic toll-ramp control method seems to have significant leverage under high-volume and medium-
volume traffic congestion conditions, relative to low-volume cases. Particularly, the zone-based average travel time
can be reduced by 1.5 min (i.e.,16.4%) per vehicle if the proposed integrated dynamic toll-ramp control strategy is
implemented in high-volume cases, relative to the control-free strategy. Such a generalization is encouraging since
according to our previous studies, high-volume congestion cases still remain as a critical issue in numerous existing
ramp control approaches. This issue, as noted in our previous study [21], stems from the fact that the control effect
of ramp metering may apply merely to the on-ramp traffic flows so as to regulate traffic merging in the weaving area.
If the proportion of the number of on-ramp vehicles to the number of vehicles in the mainline segment is too small,
as presented in high-volume congestion cases, the efficiency of ramp control may turn out to be rather insignificant.
Nevertheless, in the numerical study, integration of dynamic freeway congestion pricing and ramp control permits
alleviation of freeway high congestion efficiently.

Second, in contrast to either high-volume or medium volume cases, the improvement degree in terms of either AI
or T I appears relatively insignificant in low-volume cases. Our inference is that under low-volume conditions, the
effect of dynamic freeway congestion pricing on route diversion may not be as significant as those in high-volume and
medium-volume cases, where en-route drivers may be greatly encouraged to travel through suburban arterials because
of high toll and low ramp metering rates. Correspondingly, under low-volume conditions, drivers’ rerouting maneuvers
induced by the proposed integrated dynamic toll-ramp control approach may be unnecessary, thus contributing to a
relatively lower improvement in the freeway traffic congestion management.
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Fig. 5. Temporal variations of the estimated dynamic toll rates.

Fig. 6. Temporal variations of the estimated dynamic ramp metering rates.

Third, under the proposed integrated dynamic toll-ramp control, the traffic diversion from the freeway does not
seem to have significant effects on the traffic of surface streets in the numerical study. As can be seen in the above
tables, the measures in terms of the averaged travel time (AI sub) through the suburban arterial and the corresponding
throughputs (T I sub) among these three control alternatives are slightly different in any traffic flow cases. This may
also imply that the integration of appropriate dynamic toll collection and ramp control methodologies can be efficiently
extended for further use in network-wide traffic congestion management.
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In addition, the dynamic toll effect on en-route freeway traffic diversion is worth noting. It is observed that in the
numerical study, under high-volume traffic congestion with high toll rate cases, a relatively greater number of vehicles
traveling on freeways may leave earlier from the upstream off-ramp, traveling through the suburban arterial and then
return back to the freeway via the downstream on-ramp of the study site. Such a toll-induced freeway traffic diversion
phenomenon may exist practically, particularly in the ITS operational environment equipped with technologies such
as route guidance and variable message signs. According to our observations from simulations, the average number
of vehicles conducting the aforementioned toll-induced freeway traffic diversion maneuvers is about 108 for each
high-volume simulation cases. Therefore, it is suggested that issues related to network-wide route diversion effects
may still remain and warrant further research.

6. Concluding remarks

This paper has presented an integrated dynamic toll-ramp control approach to dynamic freeway traffic congestion
management. Through detector configurations and system specification, a discrete-time nonlinear stochastic system,
which embeds basic states and control variables, i.e.,dynamic toll and ramp metering rates, is formulated. Using
extended Kalman filtering technology, a stochastic optimal control based algorithm is then proposed to execute the
proposed integrated dynamic toll-ramp control mechanism.

Our numerical results indicate the applicability of the proposed integrated control methodology for freeway traffic
congestion management through an appropriate integration of dynamic ramp control and toll strategies used not only
to regulate freeway traffic flows but also to strategically influence drivers’ route diversion maneuvers before they
arrive to the on-ramps. Numerical results of the study have also suggested the relative advantages of the proposed
control method compared with two existing control strategies implemented in the study site. More importantly, the
proposed approach reveals a new and feasible solution, which has never been exploited in previous literature to address
the issues of dynamic freeway congestion management. In addition, the findings observed in the numerical study may
stimulate more valuable research beneficial, not only for freeway traffic management, but also for network-wide traffic
congestion management.

Nevertheless, some potential methodological concerns such as the initialization of the state and control variables
as well as parameters preset in the proposed model warrant more research effort as they do influence the system
performance and time taken for convergence of the dynamic system states. The diversity of driver behavior and habits
in different locations and countries may also affect the model’s validity. More tests as well as comparisons with other
advanced integrated freeway traffic control strategies may warrant further research to verify the robustness of the
proposed approach. In addition, the dynamic toll-induced route diversion effects on traffic flows, either on freeways
or on surface streets, may need more investigation because of their uncertainties and difficulties in influencing
drivers’ route choice maneuvers. Particularly, further analysis of the network-wide traffic flow dynamics evolution
over time under the integrated control may help provide information to readers for such as the use of advanced
traveler information systems (ATIS). Moreover, efforts to integrate the proposed integrated control method with
other advanced traffic control and management technologies, e.g., variable message signs (VMS), and dynamic traffic
assignment (DTA), seem to be needed urgently for large-scale network traffic congestion management.
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Appendix. Definitions of model variables and parameters

Definitions of variables and parameters shown in the proposed method are summarized in the following.
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Notation Definition

A R̄ j
(k) the measured number of vehicles arriving at the on-ramp (R̄ j ) of a given service zone j in a given time

interval k
AI an evaluation criterion in terms of the freeway zone-based average travel time
AI sub an evaluation criterion in terms of the average travel time through the suburban arterial
Covx (0|0) the covariance matrix of the state estimation error
c j (k) the time-varying on-ramp metering rate associated with a given service zone j in a given time interval k
E(k + 1) a time-varying control gain vector
F[X(k), �(k), k] a (3J × 1) time-varying basic state vector
f j (k) a (3 × 1) time-varying basic state vector associated with a given control zone j in time interval k
H[X(k), k] a (3J × 1) time-varying measurement-component vector in time interval k
h j (k) a (3 × 1) time-varying measurement-component vector associated with a given service zone j in time

step k
I j−1, j (k) the number of vehicles entering from the upstream service zone j − 1 to service zone j in time interval k
J the number of service zones involved in the proposed integrated toll-ramp control system
jK a given service zone j which is under control in a given K -based control period
L[X(k), �(k), k] a (3J × 3J ) diagonal state-dependent noise matrix
l j (k) a (3 × 1) time-varying state-dependent noise vector associated with a given service zone j in time

interval k
O j, j+1(k) the number of vehicles moving from service zone j to the downstream service zone j + 1 in time

interval k
p j (k) the time-varying toll rates associated with a given service zone j in a given time interval k
pmax the upper bound of the toll rate allowed in the proposed integrated dynamic toll-ramp control system
R̄ j (k) the number of on-ramp vehicles entering into service zone j
R j (k) the number of off-ramp vehicles exiting from service zone j in time interval k
r j, j+1(k) the time-varying proportion of vehicles leaving from a given service zone j to the following service

zone j + 1 in a given time interval k
r̂ j, j+1(k) the corresponding ideal values associated with r j, j+1(k)

r j,R j
(k) the time-varying proportion of vehicles leaving from a given service zone j to the corresponding

off-ramp R j in a given time interval k
r̂ j,R(k) the corresponding ideal values associated with r j,R(k)

r R̄ j , j (k) the time-varying proportion of on-ramp vehicles entering from a given on-ramp

R̄ j to the corresponding service zone j in a given time interval k
r̂ R̄, j (k) the corresponding ideal values associated with r R̄, j (k)

s̃ the target service level on a freeway
S j (k) the number of vehicles remaining in the given service zone j at the beginning of time interval k
Ss̃

j the maximum number of vehicles permitted in a given service zone j with the target service level s̃

SR̄ j
(k) the number of vehicles remaining in the corresponding on-ramp R̄ j associated with a given service

zone j at the beginning of a given time interval k
S̃R̄ j

the capacity associated with a given on-ramp R̄ j

t the unit length of a time interval
T I an evaluation criterion in terms of the average hourly throughput
T I sub An evaluation criterion in terms of the average hourly traffic flow through the suburban arterial
V(k) a (3J × 1) Gaussian noise vector, representing the measurement errors of the collected traffic data in

time interval k
v j (k) a (3 × 1) Gaussian noise vector referring to the measurement errors associated with a given service zone

j in time interval k
νr j, j+1 (k) the measurement error associated with O j, j+1(k)

νr j,R j
(k) the measurement error associated with R j (k)

νr R̄ j , j
(k) the measurement error associated with R̄ j (k)

W(k) a (3J × 1) state-independent Gaussian noise vector
w j (k) a (3 × 1) time-varying state-independent noise vector associated with a given service zone j in time

interval k
X(k + 1) a (3J × 1) time-varying basic state vector in time interval k + 1
X j (k + 1) a (3 × 1) time-varying basic state vector associated with a given service zone j in time interval k + 1
X j (k) a (3 × 1) time-varying basic state vector associated with a given service zone j in time interval k
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X̂(k + 1) the generalized form of the target vectors associated with the estimated basic states and control variables
in given time interval k + 1

X̂
s̃
j (k) a (3 × 1) time-varying target state vector associated with X j (k), involving the corresponding target

values of basic states under the proposed freeway traffic control with a given target service level s̃
Z(k) a (3J × 1) time-varying measurement vector in time interval k
z j (k) a (3 × 1) time-varying measurement vector associated with a given service zone j in time interval k
α j a parameter of the proposed elastic demand function
β j a parameter of the proposed elastic demand function
�(k + 1) a control-variable vector
�̂(k + 1) the generalized form of the target vectors associated with the estimated control variables in given time

interval k + 1
Ω j [c j (k), p j (k)] the aggregate effect of control variables on the change pattern of r R̄ j, j

(k)

�̂
s̃
j (k) a (2 × 1) target control vector, involving the corresponding target values of control variables to maintain

the proposed freeway system with a given target service level s̃
81

J (k) a (3J × 3J ) time-varying diagonal, positive-definite weighting matrix involving the corresponding
disaggregate weighting matrix 81

j (k) associated with each given service zone j

81
j (k) a (3 × 3) time-varying diagonal, positive-definite weighting matrices associated with the estimated basic

state vector (X j (k))

82
j (k) a (2 × 2) time-varying diagonal, positive-definite weighting matrices associated with the control

variable vector (� j (k))

ζ̃K the aggregated objective function of the proposed integrated ETC-ramp control system
ζ jk the disaggregated objective function associated with jK
ρs̃ the ideal toll rate preset for the target service level s̃ j
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