
574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 4, JULY 2008

On the Equivalence of a Table Lookup (TL)
Technique and Fuzzy Neural Network (FNN) With

Block Pulse Membership Functions (BPMFs) and Its
Application to Water Injection Control of

an Automobile
Chi-Hsu Wang, Fellow, IEEE, and Jung-Sheng Wen, Member, IEEE

Abstract—This paper presents an alternative method to design
a fuzzy neural network (FNN) using a set of nonoverlapped block
pulse membership functions (BMPFs), and this FNN with nonover-
lapped BPMFs will be shown to be equivalent to the conventional
table lookup (TL) technique. Therefore, the hidden links between
TL and FNN techniques are revealed in this paper that provides
a methodology to design a TL controller based on the FNN design
concept. In order to do so, a new direct formula is first developed
to generate the fuzzy rules from the premise part in FNN. This di-
rect formula not only guarantees a one-to-one mapping that maps
the fuzzy membership functions onto the fuzzy rules, but also al-
leviates the coding effort during hardware implementation. It is
further elaborated that the FNN with nonoverlapped BPMFs has
the advantage of faster online training that requires less compu-
tation time, but at the cost of more memory requirement to store
the fuzzy rules. The application of this new approach has been ap-
plied successfully in the water injection control of a turbo-charged
automobile with excellent results.

Index Terms—Fuzzy neural network (FNN), membership func-
tions (MFs), optimal training, table lookup (TL) controller.

I. INTRODUCTION

THE FUZZY neural network (FNN) has been shown to have
tremendous impact on engineering applications in the last

decade [1]–[4]. Several kinds of FNNs have also been developed
for different kinds of applications, such as real-time intelligent
adaptive control [5], [6], image processing [7], [8], etc. One
of the advantages of FNNs is that it can be trained to suit the
real physical environment with either offline or online train-
ings [9], [10]. Furthermore, the table lookup (TL) technique has
been applied extensively for hardware implementation of engi-
neering applications during the last decade [11]–[16]. However,

Manuscript received April 20, 2007; revised September 20, 2007 and
December 7, 2007. This work was supported by the Program for Promoting
Academic Excellence of Universities (Phase II) under Grant NSC96-2752-E-
027-001-PAE. This paper was recommended by Associate Editor X. Tuan.

C.-H. Wang is with the Department of Electrical and Control Engineer-
ing, National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
cwang@cn.nctu.edu.tw).

J.-S. Wen was with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. He is now with
the Department of Computer and Communication Engineering, Technology
and Science Institute of Northern Taiwan, Taipei 112, Taiwan, R.O.C. (e-mail:
wen@tsint.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.org.

Digital Object Identifier 10.1109/TSMCC.2008.923869

the TL technique is a direct mapping approach without any
embedded training strategy. Depending on the requirements of
different applications, the FNN and TL techniques can both be
applied successfully in engineering applications. To be more
specific, fuzzy lookup tables were proposed in [11] to speed up
the online learning fuzzy controller with a PD controller. How-
ever, the relationships between TL and FNN have never been
discussed in a formal and systematic way. Therefore, the major
purpose of this paper is to reveal the hidden links between TL
and FNN techniques in a rigorous manner. For this to happen, a
new direct formula will be first proposed to generate the fuzzy
rules in FNN. Then, a special kind of FNN with block pulse
membership functions (BPMFs) will be defined. Finally, the
new direct formula will be adopted to show the equivalence of
the FNN with BPMFs and TL techniques.

It is well known that the fuzzy rules in an FNN must be
generated from all the possible combinations of the member-
ship functions (MFs) for all fuzzy input variables, which is very
hard to explain using equations. This has lead to the confusing
expressions in the research articles [1]–[4] about the genera-
tion of fuzzy rules in FNN. Thus, there have been no common
guidelines to map the fuzzy MFs onto the fuzzy rules during the
implementation of an FNN. Nested looping is usually adopted
for the generation of fuzzy rules in coding without a unified
ordinal sequence. To alleviate the earlier disadvantages, a new
direct formula will be proposed in this paper to generate the
fuzzy rules without nested looping and yet guarantee a one-
to-one mapping that maps the fuzzy MFs onto the fuzzy rules.
This will not only remove the confusing part in the generation of
fuzzy rules in FNN, but also the implementation effort of FNN
is alleviated. This direct fuzzy rule generation will also provide
a unified ordinal sequence for fuzzy rules in FNN.

Further, the conventional MFs adopted in an FNN are al-
ways jointly overlapped with each other. The advantage for this
overlapped arrangement is that the number of fuzzy rules can
be reduced to a minimum. However, it will take more effort
to train the weighting factors in either online or offline appli-
cations. In [17], the block pulse functions were proposed to
approximate time functions to estimate the parameters of a per-
manent magnetic dc motor, and this will ease the online fault
detection using the FNN. In this paper, an alternative architec-
ture of an FNN with BPMFs will be presented. The BPMFs are

1094-6977/$25.00 © 2008 IEEE

WANG AND WEN: ON THE EQUIVALENCE OF A TABLE LOOKUP TECHNIQUE 575

Fig. 1. FNN architecture.

disjoint with each other and cascaded successively. The FNN
with BPMFs in this paper can be shown to be equivalent to the
conventional TL technique for hardware implementation via the
direct new formula for generating fuzzy rules.

It can also be shown that the FNN with BPMFs (or the TL
technique) will need more memory to achieve better results by
having more nonoverlapped intervals for input fuzzy variables.
However, the update of the weighting factor is very simple due
to the fact that it is independent of the neighboring variables.
On the other hand, the conventional FNN with few overlapped
MFs for each input fuzzy variables will need less memory to
store the fuzzy rules. But the update of weighting factors will re-
quire more computing power with a special algorithm to achieve
training convergence. This may not be feasible for online appli-
cations. The water injection control for a turbo-charged automo-
bile is illustrated in this paper as the application of the proposed
techniques.

II. FNN WITH DIRECT FUZZY RULE GENERATION

Fig. 1 shows the FNN architecture [1], [2] adopted in this
paper. Layer 1 consists of input fuzzy variables, layer II consists
of fuzzy MFs for input fuzzy variables, layer III is for the implied
fuzzy rules by considering all the cases of the MFs, and layer
IV is the output part.

Between layer III and layer IV, there is a simple two-layer
neural network with weighting factors, and the weighting factors
will be tuned by a training process to have the desired output
in layer IV. However, the generation of fuzzy rules was not
explicitly discussed in previous research literature [3], [4]. For
instance, the specific fuzzy rule l was not defined in [3], and [4],
and the only way to generate the fuzzy rules is via nested looping
without a unified ordinal sequence. The execution of nested
looping in FNN coding is also not efficient, especially in a real-
time environment. This has imposed the burden on software
implementation of the FNN. Therefore, the following context
will be focused on the development of a systematic and unified

way to generate the fuzzy rules without nested looping. The
fuzzy rules in layer III can be inferred as

Rule l: If x1 is Fr1
1 and · · · and xN is FrN

N

then y1 is wl
1 and · · · and yZ is wl

Z . (1)

Since every BPMF is disjoint with each other, only a single
rule is activated each time. Rule l corresponding to the activated
rule can be obtained from the following equation:

l = r1 + R1 (r2) + R1R2 (r3) + · · · + R1R2 · · ·RN −1 (rN)

= r1 +
N∑

j=2

(
j−1∏
i=1

Ri

)
rj (2)

where Ri is the number of MFs for fuzzy variable xi (i =
1, 2, . . . , N), Fri

i is the rith MF for fuzzy variable xi in Rule l,
and wl

j is the MF for yj (j = 1, 2, . . . , Z) in Rule l. It is also
obvious that ri is an integer number with ri ≥ 0. Theorem 1
shows the fact that (2) can produce all the l’s in the range of
0 ≤ l ≤ (

∏N
i=1 Ri) − 1 with a one-to-one mapping from MFs

to fuzzy rules.
Theorem 1: Let A = {(r1 , r2 , . . . , rN)|ri ∈ I, 0 ≤ ri ≤

Ri − 1, i = 1, 2, . . . , N}, B = {l|l is generated by (2)}}.
Then, (2) will generate a one-to-one mapping that maps A

onto B.
Proof: We need to show the validities of necessary and suffi-

cient conditions
Sufficient condition: For any pair (r1 , r2 , . . . , rN) in A, there

is a unique l in B.

If r1 = 0, r2 = 0, . . . , rN = 0, then

l = 0 + R1(0) + R1R2(0) + · · · + R1R2 · · ·RN −1(0) = 0

which is the minimum number of l.
If r1 = R1 − 1, r2 = R2 − 1, . . . , rN = RN − 1, then

l = (R1 − 1) + R1 (R2 − 1) + R1R2 (R3 − 1)

+ · · · + R1R2 · · ·RN −1 (RN − 1)

= R1 + R1 (R2 − 1) + R1R2 (R3 − 1)

+ · · · + R1R2 · · ·RN −1 (RN − 1) − 1

= R1(1 + (R2 − 1) + R2 (R3 − 1)

+ · · · + R2 · · ·RN −1 (RN − 1)) − 1

= R1(R2 + R2(R3 − 1) + · · · ≤
+ R2 · · ·RN −1(RN − 1)) − 1

= R1R2(1 + (R3 − 1)

+ · · · + R3 · · ·RN −1(RN − 1)) − 1

· · ·

=

(
N∏

i=1

Ri

)
− 1 = L

which is the maximum number of l.

576 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 4, JULY 2008

It is obvious that, if {0 < ri < Ri − 1, i = 1, . . . , N}, then

1 < l <

(
N∏

i=1

Ri

)
− 1.

Necessary condition: For any l in the range of 0 ≤ l ≤
(
∏N

i=1 Ri) − 1, we can find a set of {r1 , r2 , . . ., rN , 0 ≤ ri <
Ri , i = 1, . . . , N} by using the following algorithm.

If 0 ≤ l < R1 , then r1 = l, r2 = r3 = · · · = rN = 0.
If R1 ≤ l < R1R2 , then

r1 = l(mod)R1 , r2 = l\R1 , r3 = r4 = · · · = rN = 0.
If R1R2 ≤ l < R1R2R3 , then{

r1 = l(mod)R1 , r2 = (l\R1)(mod)R2 , r3 = l\(R1R2)
r4 = r5 = · · · = rN = 0

· · · · · ·
· · · · · ·

If R1R2 · · ·RN −1 ≤ l < R1R2 · · ·RN , then{
r1 = l(mod)R1 , r2 = (l\R1)(mod)R2

r3 = (l\(R1R2))(mod)R3 , . . . , rN = l\(R1R2 · · ·RN −1)

where

A (mod) B = the remainder of the division of A over B;

A\B = the quotient of the division of A over B.

The main theme of this algorithm is based on (2) to reversely
find all the ri’s for a specific l. Q.E.D.

The final outcome for each output yj can be deducted as

yj =
L∑

i=1

wi
jµi

/
L∑

i=1

µi (j = 1, 2, . . . , Z) (3)

where

µl =
N∏

i=1

Fri
i (l = 0, 1, 2, . . . , L) (ri = 0, 1, 2, . . . , Ri − 1).

(4)
Example 1: For three fuzzy variables {x1 , x2 , x3}, assume

R1 = 2, R2 = 2, R3 = 2, generate all fuzzy rules in Fig. 1 by
(2).

Solution: There are R1R2R3 = 8 fuzzy rules, i.e.,
{µ1 , µ2 , µ3 , µ4 , µ5 , µ6 , µ7 , µ8}. From (2), we have

l = r1 + R1 (r2) + R1R2 (r3) = r1 + 2 (r2) + 4 (r3) .

Table I summarizes the result.
Furthermore, for any l in the range of 0 < l < (

∏N
i=1 Ri) − 1,

a unique set {r1 , r2 , . . . , rN } can be found by Theorem 1.
Example 2: For three fuzzy variables {x1 , x2 , x3} with

R1 = 2, R2 = 2, R3 = 2, assume l = 6 and find {r1 , r2 , r3}.
Solution: Since 4 ≤ l (= 6) < 8, we have the following

guideline from Theorem 1:

If R1R2 ≤ l < R1R2R3 , then
r1 = l(mod)R1 , r2 = (l\R1)(mod)R2 , r3 = l\(R1R2)
r1 = 6(mod)2, r2 = (6\2)(mod)2, r3 = 6\(2 × 2)
→ {r1 , r2 , r3} = {0, 1, 1}.

TABLE I
DIRECT RULE GENERATION WITH THREE FUZZY VARIABLES

Fig. 2. BPMF.

Fig. 3. R disjoint BPMFs for a specific xi .

III. BLOCK PULSE MEMBERSHIP FUNCTIONS

In this section, we propose an alternative architecture of an
FNN with BPMFs that are disjoint with each other and cas-
caded successively. Given the following fuzzy rules defined in
(1)–(3), one of the BPMFs for the rth MF for fuzzy variable xi

(i = 1, 2, . . . , N) is defined as

Fr
i (x) =

{
1, −σr

2
< x − ηr ≤ σr

2
0, otherwise

(5)

where ηr and σr are the mean (or middle) and width (or variance)
of the block pulse function. Fig. 2 illustrates the BPMFs.

Further we impose the following condition on successive
BPMFs:

ηr+1 − ηr =
1
2

(σr+1 + σr) . (6)

Note that σr ’s are not necessarily equal for all r. Then, all the
BPMFs for fuzzy variables xi (i = 1, 2, . . . , N) are disjoint with
each other and cascaded successively. Fig. 3 shows that there are
R disjoint and cascaded BPMFs for a specific xi . It is noted that
all the BPMFs for different fuzzy variables xi are not necessarily
disjoint. We only require that the BPMFs for a specific xi are
disjoint with each other and cascaded successively. Fig. 4 shows
the BPMFs for all xi .

WANG AND WEN: ON THE EQUIVALENCE OF A TABLE LOOKUP TECHNIQUE 577

Fig. 4. Disjoint BPMFs for all xi .

IV. FNN WITH BPMFS AND ITS EQUIVALENCE

TO THE TL TECHNIQUE

It can be shown in this section that the FNN with BPMFs is
equivalent to the conventional TL technique used in hardware
implementation of computer controllers [11]–[16]. The TL tech-
nique is mainly to minimize the computational effort required
by the floating-point computations.

Theorem 2: Given the disjoint and cascaded BPMFs defined
in (5) and (6), the fuzzy rules in layer III of FNN in Fig. 1,
i.e., {µi, i = 0, . . . , L}, can have only one nonzero µl = 1.
Also the outputs {yj , j = 1, . . . , Z} will be equal to {yj = wl

j ,
j = 1, . . . , Z}. This is the conventional TL method for hardware
implementation of computer controller.

Proof: Let Fr
i (x) be the rth MF for fuzzy variable xi . From

Fig. 3, it is obvious that every fuzzy variable xi can have only
one ri th mapping, which is a nonzero unity mapping through
the disjoint and cascaded BPMFs defined in (5) and (6), i.e.,

Fri
i (x) = 1.

Assume that {Fr1
1 (x), Fr2

2 (x), . . . , FrN

N (x)} are the nonzero
unity mappings for {x1 , x2 , . . . , xN }. From Theorem 1, we can
find the specific fuzzy rule l that corresponds to all those nonzero
unity mappings

l = r1 + R1 ∗ (r2) + R1 ∗ R2 ∗ (r3)

+ · · · + R1 ∗ R2 ∗ · · · ∗ RN −1 ∗ (rN)

and

µl =
N∏

i=1

Fri
i (xi) = 1.

This also implies that for all the other fuzzy rules, their µ
values are all equal to zeros, i.e.,

µk = 0, for k �= l.

Therefore, we have

L∑
i=1

wi
jµi = wl

j ∗ µl = wl
j

and

L∑
i=1

µi = µl = 1.

Thus, the output defined in (3) can be shown as

yj =
L∑

i=1

wi
jµi

/
L∑

i=1

µi =
L∑

i=1

wi
jµi = wl

jµl = wl
j .

Q.E.D.
Theorem 2 shows that the conventional TL technique is actu-

ally a special case of the modern FNN. Therefore, we can apply
the recently developed training techniques in the FNN to further
elaborate the conventional TL technique, such as the update of
weighting factors in Theorem 2.

V. COMPARISON OF FNN CONTROLLERS USING

TRADITIONAL MFS AND BPMFS

In this section, two FNN control methods utilizing traditional
MFs and BPMFs are applied respectively on a water injec-
tion controller of a turbo-charged engine, and a comparison
between these two FNN control methods described earlier is
further presented.

Consider the following FNN for a turbo-charged engine [19]
utilizing water injection control [19], [20] (Fig. 5), the water in-
jection ratio Water (r,m) is the output of the water injection con-
troller that is based on m [manifold absolute pressure (MAP)]
and r [rounds per minute (RPM)]. The MAP and RPM will be
fuzzified in the second layer to generate the fuzzy rules in the
third layer. Each rule will be associated with a weighting factor
to produce the water injection ratio Water (r,m). The objective
is to minimize the cost function J(r,m).

The cost function [1, eq. (13)] can be defined as

J =
1

2PZ
Tr(EET)

where P is the training data number, Z is the output number,
and E is a P ∗ Z error function matrix. In this application,
Z = 1, and the error function E can be seen as the knocking
signal from the electronic control unit (ECU) of a turbo-charged
engine. Thus, the cost function can be rewritten as

J(r,m) =
1

2P

P∑
i=1

Knock(r,m)2 . (7)

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 4, JULY 2008

Fig. 5. FNN for a turbo-charged engine utilizing water injection control.

To update weighting matrix W , we apply the backpropagation
method in (15) of [1] as follows:

Wt+1 = Wt − βt
1

PZ
RE

where βt is the learning rate at the tth iteration, R is L ∗ P
input training matrix, and L is the rule number. In this case, the
backpropagation equation is

Wt+1 = Wt − βopt
1
P

R · Knock(r,m) (8)

where βopt = (βu + βl)/2 in [1, eq. (21)].
Let MAP have five MFs and RPM have five MFs, which are

shown as follows:

Mmap(xi) = exp

[
−

(
xi − µm

j

0.3

)2
]

(9)

Mrpm(xk) = exp

[
−

(
xk − µr

l

1000

)2
]

(10)

where

1) −0.6 bar ≤ xi ≤ 1.6 bar, with {µm
j |j = 1, 5} bar = {0.3,

0.6, 0.9, 1.2, 1.5} bar,
2) 0 rpm ≤ xk ≤ 7000 rpm, with {µr

l |l = 1, 5} rpm = {2000
3000 4000 5000 6000} rpm.

Thus, we have 25 fuzzy rules. The 25 weight factors are ini-
tialized to zeros in the beginning. After applying the dynamical
optimal training in [1] on the road with various driving condi-
tions, one of trained weighting factor matrices W can be shown

Fig. 6. Dynamic water map generated by FNN with traditional MFs.

as follows (“x” means no online training data are yet available):

W (j, 1) =




0 0.01 0.10 x x
0.02 0.06 0.14 0.29 x
0.05 0.15 0.26 0.38 0.56
0.09 0.20 0.44 0.63 0.65
x 0.24 0.48 0.68 0.71




25×1

. (11)

After a little longer on-road driving, a complete dynamic
water map is shown in Fig. 6, which is generated by an FNN
utilizing traditional overlapped MFs. Note that the training of
(11) using even the dynamic optimal training algorithm is very
time-consuming, which requires a more powerful CPU to com-
plete the complete online training. This is due to the fact that
the traditional MFs are overlapped with each other that will
interfere with each other during the training process. It is also
obvious from Fig. 6 that each surface will cover wide ranges
of rpm and bar. This is a worry since this will result in a less
accurate interpolated result even with the dynamical optimal
training algorithm.

Secondary, the following water map (Fig. 7) is generated by
using the FNN control method utilizing the proposed BPMFs.
This water map is zero for every rule in the beginning and then
generated by online learning. Once the learning is started, the
initial means and variances are defined evenly by the number
of fuzzy rules (by experience, of course), i.e., we let MAP have
15 BPMFs and RPM have 10 BPMFs, the dynamical optimal
training in (8) can be applied to generate the water map. Thus,
we have 150 fuzzy rules. The BPMFs of MAP and RPM can be
shown as follows:

Fmap(xi) =

{
1, −σj

2
< xi − ηj ≤ σj

2
0, otherwise

(12)

Frpm(xk) =

{
1, −σl

2
< xk − ηl ≤

σl

2
0, otherwise

(13)

WANG AND WEN: ON THE EQUIVALENCE OF A TABLE LOOKUP TECHNIQUE 579

Fig. 7. Water map generated by a pure FNN with BPMFs.

where

1) −0.6 bar ≤ xi ≤ 1.6 bar, with {ηm
j |j = 1, 15} bar =

{0.1, 0.2, 0.3, 0.4, , 1.5} bar; and σj = 0.1 bar, for
all j.

2) 0 rpm ≤ xk ≤ 7000 rpm, with {ηm
l |l = 1, 10} rpm =

{2000, 2500, 3000, . . ., 6500} rpm, and σl = 500 rpm,
for all l.

The initialized 150 weight factors can be initialized to zeros,
and after applying the dynamical optimal training (8), the final
weighting factor matrix W can be briefly shown as follows
(“x” means no online training data are yet available):

W (j, 1) =




0 0 0 0 . . x
0 0 0.50
.
.
x 0.29 0.34 . . 0.64 0.74




150×1

.

(14)

It is expected that after a short period of driving the auto-
mobile, the water map in the FNN will be similar to that in
Fig. 7, provided that driving conditions vary at a wider level. It
is obvious from Theorem 2 that the FNN with BPMFs adopted
in Fig. 7 is equivalent to the conventional TL method [21] to
generate the fixed water map. It is also obvious from Fig. 7 that
the dynamic water map (with training option) is smoother than
that in Fig. 6 at the cost of more rule memory, yet with less
computing requirement.

According to the results after a short period of learning, Fig. 7
shows that the widths of BPMFs are adapted based on the gradi-
ent of the water map. In this paper the adaptive law for the widths
of the BPMFs is that the width of BPMF is decreased more in
the higher gradient area. This will, of course, increase the num-
ber of fuzzy rules so that more accuracy will be obtained. In this
water inject controller case, the number of BPMFs are increased
in the range of {1500–2500 rpm} after a period of online train-
ing. Hence, the initial 10 BPMFs are increased eventually to
15 BPMFs in the range of {1500–2500 rpm}.

TABLE II
COMPARISON OF FNNS WITH TRADITIONAL MFS AND BPMFS

In Fig. 7, due to the sharp gradients within the range of {1500–
2500 rpm}, the BPMFs for MAP remains nearly unchanged after
training. But the BPMFs for RPM will be changed to

Frpm(xk) =

{
1, −σl

2
< xk − ηl ≤

σl

2
0, otherwise

(15)

where 0 rpm ≤ xk ≤ 7000 rpm, with {ηm
l |l = 1, 15} rpm =

{1300, 1500, 1700, 1900, 2100, 2300, 2500, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500} rpm, and σl = {200, 200, 200,
200, 200, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500} rpm.

Table II shows a comparison between FNN with traditional
overlapped MFs (Fig. 6) and FNN with BPMFs (Fig. 7). It
takes more memory space to store the fuzzy rules for FNN with
BPMFs (150 MFs) than that in FNN with traditional overlapped
MFs (25 MFs). But the FNN with traditional overlapped MFs
will require more computing time for tuning weighting factors
even with dynamical optimal training algorithm in [1]. This is
due to the fact that the traditional overlapped MFs will interfere
with each others’ weighting factors during the training process.
For online operations of FNN with traditional overlapped MFs,
faster CPU with higher cost is always required. However, we
know the fact from Theorem 2 that the weighting factors in FNN
with BPMFs are independent with each other. Thus, the training
process will converge quickly with dynamical optimal training
algorithm in (8). Thus, we do not require powerful CPU in the
FNN with BPMFs. It is obvious that computation time for the
trainings of FNN with BPMFs and traditional MFs are O(N)
and O(Nmf), respectively, where mf is the number of MFs. In
addition, this example shows that the FNN with nonoverlapped
BPMFs takes only one epoch for convergence instead of 10–20
epochs for the FNN with traditional overlapped Gaussian MFs
for convergence.

VI. CONCLUSION

This paper proposes a new BPMFs to construct a special
FNN. A direct and efficient way is first developed to perform
the fuzzy rule generation in FNN. Thus, we can have a one-to-
one mapping between the MFs of all the input fuzzy variables
and the specific number of fuzzy rules. This will not only re-
solve the confusing expression in all the other research articles
about the fuzzy rule generation in FNN, but also the efficiency
of FNN implementation is improved. Based on this fact, it is
further proved that the FNN with BPMFs is actually the con-
ventional TL technique adopted in the hardware implementa-
tion of computer controller. The impact of this new result is that

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 4, JULY 2008

the recently developed FNN techniques can also be applied to
improve the performance of the conventional TL techniques. A
real application of water injection control of a turbo-charged en-
gine using FNN controllers with traditional overlapped MFs and
our newly proposed BPMFs are illustrated. Their comparison
shows that the FNN with BPMFs can provide faster online up-
date results at the cost of more memory space to store the fuzzy
rules.

REFERENCES

[1] C.-H. Wang, H.-L. Liu, and C.-T. Lin, “Dynamic optimal learning rates of
a certain class of fuzzy neural networks and its applications with genetic
algorithm,” IEEE Trans. Syst., Man, Cybern., Cybern. B, Cybern., vol. 31,
no. 3, pp. 467–475, Jun. 2001.

[2] C.-H. Wang, W.-Y. Wang, T.-T. Lee, and P.-S. Tseng, “Fuzzy B-spline
membership function and its applications in fuzzy neural control,” IEEE
Trans. Syst., Man, Cybern., vol. 25, no. 5, pp. 841–851, May 1995.

[3] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414–
1427, Nov./Dec. 1992.

[4] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of
fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Trans.
Fuzzy Syst., vol. 9, no. 4, pp. 578–594, Aug. 2001.

[5] Y. G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzy
neural control for unknown nonlinear dynamical systems,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 29, no. 5, pp. 583–591, Oct. 1999.

[6] C. H. Wang, H. L. Liu, and T. C. Lin, “Direct adaptive fuzzy neural control
with state observer and supervisory controller for unknown nonlinear
dynamical systems,” IEEE Trans. Fuzzy Syst., vol. 10, no. 1, pp. 39–49,
Feb. 2002.

[7] V. Boskowitz and H. Guterman, “An adaptive neuro fuzzy system for
automatic image segmentation and edge detection,” IEEE Trans. Fuzzy
Syst., vol. 10, no. 2, pp. 247–262, Feb. 2002.

[8] C.-S. Lee, C.-Y. Hsu, and Y.-H. Kuo, “Intelligent fuzzy image filter for
impulse noise removal,” in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZIEEE
2002), vol. 1, pp. 431–436.

[9] A. V. Topalov and O. Kaynak, “Online learning in adaptive neurocontrol
schemes with a sliding mode algorithm,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 31, no. 3, pp. 445–450, Jun. 2001.

[10] H. Shiraishi, S. L. Ipri, and Dong-il D. Cho, “CMAC neural network
controller for fuel-injection systems,” IEEE Trans. Control Syst. Technol.,
vol. 3, no. 1, pp. 32–38, Mar. 1995.

[11] A. B. Rad, P. T. Chan, W. L. Lo, and C. K. Mok, “An online learning fuzzy
controller,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 1016–1021,
Oct. 2003.

[12] A. Peled and B. Liu, “A new hardware realization of digital filters,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-22, no. 6, pp. 456–462,
Dec. 1974.

[13] N. Jain, D. Agnew, and M. Nakhla, “Two-dimensional table lookup
MOSFET model,” in Proc. IEEE Integr. Conf. Comput.-Aided Design,
Santa Clara, CA, 1983, pp. 201–213.

[14] R. A. Zitar and M. H. Hassoun, “Neurocontrollers trained with rules
extracted by a genetic assisted reinforcement learning system,” IEEE
Trans. Neural Netw., vol. 6, no. 4, pp. 859–879, Jul. 1995.

[15] N. Takagi, “Powering by a table look-up and a multiplication with operand
modification,” IEEE Trans. Comput., vol. 47, no. 11, pp. 1216–1222, Nov.
1998.

[16] S.-C. Chang, M. Marek-Sadowska, and T. T. Hwang, “Technology map-
ping for TLU FPGA’s based on decomposition of binary decision dia-
grams,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15,
no. 10, pp. 1226–1236, Oct. 1996.

[17] X.-Q. Liu, H.-Y. Zhang, J. Liu, and J. Yang, “Fault detection and diagnosis
of permanent magnet dc motor based on parameter estimation and neural
network,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1021–1030, Oct.
2000.

[18] Saab, “Saab Workshop Information System (WIS) 900,” 2001.
[19] J. A. Harrington, “Water addition to gasoline/manifold injection—Effect

on combustion, emissions, performance, and knock,” SAE TRAN.,
vol. 910, Doc. 820314.

[20] J. E. Nicholls, I. A. El-Messiri, and H. K. Newhall, “Inlet manifold water
injection for control of nitrogen oxides-theory and experiments,” SAE
TRAN., vol. 780, Doc. 690018.

[21] Aquamist Water Injection, System 1 s (basis of a starter kit), System 2 c
(interface with the PWM output signal), System 2 d (track of the fuel flow
and inject water with a fixed w/f ratio) & System 2 s (A fully-mappable
water-injection system), U.K., 2004.

Chi-Hsu Wang (M’92–SM’93–F’08) was born in
Tainan, Taiwan, R.O.C., in 1954. He received the
B.S. degree in control engineering from the Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
1976, the M.S. degree in computer science from the
National Tsing Hua University, Hsinchu, in 1978, and
the Ph.D. degree in electrical and computer engineer-
ing from the University of Wisconsin, Madison, in
1986.

In 1986, he was an Associate Professor in the
Department of Electrical Engineering, National Tai-

wan University of Science and Technology, Taipei, where he was a Professor in
1990. He is currently a Professor in the Department of Electrical and Control
Engineering, National Chiao Tung University. His current research interests in-
clude digital control, fuzzy neural network, intelligent control, adaptive control,
and robotics.

Dr. Wang is currently an Associate Editor of the IEEE TRANSACTION ON

SYSTEMS, MAN, and CYBERNETICS, PART B, and a Member of the Board of
Governors and Webmaster of the IEEE Systems, Man, and Cybernetics Society.

Jung-Sheng Wen (M’08) was born in Taipei, Taiwan,
R.O.C., in 1961. He received the B.S. and M.S. de-
grees from the Department of Electrical Engineering,
National Taiwan University of Science and Technol-
ogy, Taipei, in 1988 and 1991, respectively. He is
currently working toward the Ph.D. degree in the
Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu, Taiwan.

Since 1992, he has been a Lecturer in the
Department of Computer and Communication Engi-
neering, Technology and Science Institute of North-

ern Taiwan, Taipei. His current research interests include fuzzy neural network,
intelligent computer control, and embedded system design.

