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Abstract

In a competitive market, semiconductor fabricator must face an environment with multi-product types, multi-priority orders and
demand changes in time. Since semiconductor fabrication has a very complicated production process, the above-stated characteristics
make the production planning even more difficult. This paper applies data envelopment analysis (DEA) to find a set of product family
mix that is efficient for the company to produce. To ensure long-term effectiveness in productivity and in profit gaining, window analysis
is adopted to seek the most recommended set of product family mixes for manufacturing by measuring the performance changes over
time. With this method, the performance of a mix in one period is compared not only with the performance of other mixes but also with
its own performance in other periods. The proposed mechanism can provide guidance to the fabricator regarding strategies for aggregate
planning so as to improve manufacturing efficiency.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Today’s semiconductor market is not as prosperous as it
was before, and the market has changed from producer-ori-
ented to customer-oriented. A single optimization goal,
such as throughput maximization or profit maximization
that was usually pursued by companies, is not enough today
to meet the production performance demanded by custom-
ers. Performances such as on-time delivery and production
cycle time are highly emphasized by customers. Therefore,
companies need to consider both customer satisfaction in
demand and the ultimate profit goal of companies.

As the economy fluctuates and product (or process) devel-
ops, customer demands in product type and quantity change
as a result. This also makes the demand of product family
mix, where the products with similar processes are belonging
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to the same product family, changes over time. Bottleneck
utilization rate thus fluctuates, and this further has an impact
on performance indicators such as production cycle time,
delivery rate and work in process (WIP). The production
performance evaluation in this kind of variant environment
is much more important and difficult than the one in an envi-
ronment with stable product types and quantities.

Previous researches usually focused on product mix
determination; instead, this paper will select the most
appropriate product family mix due to two primary rea-
sons. First, the demand forecast of each product type is
very difficult; on the other hand, the demand forecast of
each product family, which consists of similar products,
is relatively easier and more efficient for performance eval-
uation. The second reason is that products belonging to the
same product family have similar manufacturing processes,
have certain degree of substitutability and require similar
critical workstations such as bottleneck and capacity con-
strained resource (CCR). On the other hand, different
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product families require a more differentiated capacity
demand. Therefore, the input and output indicators of dif-
ferent product family mixes have a greater difference than
the ones of different product mixes. As a result, the evalu-
ation of alternatives on product family mixes will be more
outstanding.

Product family mix determination is one of the core
problems in current semiconductor production planning
system. In wafer manufacturing, production processes such
as photolithography, developing and etching have a unique
characteristic of re-entry. The number of re-entry of a dis-
tinct machine for each product family is different; there-
fore, there often is a situation that different product
families are required to be processed on the same machine
at the same time. The situation can happen too even in the
same product families for processing the re-entry opera-
tions. Because of the above-mentioned process characteris-
tic, a CCR may be overly utilized when customer orders are
concentrated on a specific type of products, and this may
lead to bottleneck wondering, decrease in throughput,
elongation in production cycle time and decrease in deliv-
ery rate. Product family mix not only has an impact on
production performance, it also has an effect on a firm’s
profit. This is because different product families have differ-
ent process designs and recipes, and thus, prices. With dif-
ferent product family mixes, profit obtained by the firm is
different.

In solving the long-term product family mix problem,
we should not only optimize one single performance factor,
but rather we need to make sure that the performances on a
number of indicators are satisfactory in order to maintain
the competitive advantage of the fab. To consider numer-
ous aspects of performance, in recent years, researches
have been done to solve the product mix problem by
adopting multiple criteria decision-making concept and
related tools. However, scholars only focused on the deter-
mination of product mix in a single period and did not
consider the performance problem in a long-term
demand-varying environment. In an environment with cus-
tomer needs in unstable product mix and big demand
fluctuation, the product family mix solved in a high
demand time period may not be favorable in a low demand
time period. Therefore, it is necessary to know how to set
product family mix in a long term.

In this paper, multiple input and output indicators, such
as total throughput, delivery rate, production cycle time, of
the production system are included. In addition, the
demand variation among several production periods are
considered to find one or several product family mix
alternatives that are most suitable for production. Using
multiple performance indicators to evaluate system perfor-
mance, previous methods usually required decision makers
to give the importance weighting to each indicator, and the
difference in weights given by different decision makers
might make the performance evaluation results different.
To prevent the weights from being influenced by the subjec-
tivity of decision makers, data envelopment analysis
(DEA), a methodology that does not require pre-assign-
ment of weights, is adopted here to evaluate product family
mix. However, DEA alone cannot solve the problem of
long-term product family mix performance evaluation.
Therefore, window analysis that can compare the relative
efficiency of product family mixes in different time periods
is also applied in this paper. With the consideration of
long-term demand fluctuation, one or a few product family
mix alternatives that have long-term competitive advantage
can be determined, and the firm can follow the recommen-
dation in accepting orders to be competitive in the demand-
varying environment.

The rest of this paper is organized as follows. Section 2
begins with a brief review of the product mix and priority
level problem in semiconductor manufacturing. Section 3
briefly reviews DEA methodology and window analysis.
Section 4 presents the product family mix evaluation
model. Some conclusions are made in Section 5.

2. Product mix problem

Wafer fabs require a very high capital investment in plant
and equipment, from $US 500 million to 1 billion each, and
involve the most complex manufacturing system among all
the manufacturing industries. Wafer fabrication has an
important property, wafer process reentry, which refers to
multiple visits by a wafer lot to the same processing center
at different times. With 300–500 processing steps in a wafer
process and a flow time of usually more than twenty days,
the fabrication process is of high complexity. Product mix
also has a very big impact to the production performance.
Production performance in a wafer fab is a result of the
interaction among product mix, equipment, inventory, pro-
cess technology and scheduling practices. These factors
change continuously if, for example, an unexpected equip-
ment down time or a change in product mix happens fre-
quently. The interaction between various complex factors
makes production planning a very challenging task.

In order to be competitive and to satisfy customers’
demand of accelerating the speed of products entering into
the market, a wafer fab often have multiple priority levels
of orders, and higher priority must be given to some urgent
lots. The production priorities can be divided into three
categories: hot, rush and normal. A higher priority order
can use a machine whenever there is no other higher prior-
ity or equal priority order in presence, but a lower priority
order has to wait till the machine becomes available.
Because of a longer waiting time, lower priority orders
result in a longer production cycle time. When there are
too many lots with higher priority, the variation in shop
floor performance will increase and the system throughput
will reduce (Atherton & Atherton, 1995; Ehteshami, Petra-
kian, & Shabe, 1992; Fronckowiak, Peikert, & Nishino-
hara, 1996; Narahari & Khan, 1997). A higher priority
order can result in the loss of machine capacity if a full
loading policy is not required for batch machines and thus,
machines are not fully utilized. Bottleneck shifting can
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occur in consequence, and again have impact on the pro-
duction of lower priority orders. Narahari and Khan
(1997) developed an analytical method based on mean
value analysis (MVA) to predict the performance of semi-
conductor manufacturing system in the presence of hot
lots. The results also show that hot lots have a significant
effect on the mean cycle time, variance of cycle time and
throughput rate of normal lots. Because the changes in
the ratios of different priority orders have a great impact
on the system performance, fabs usually set a maximum
limit on higher priority orders or fix the ratios for different
priority orders in advance. Chung, Pearn, and Lee (2006)
presented a preliminary application DEA to find a set of
product mix efficient for the semiconductor manufacturing
company to achieve the optimal production. Kang and Lee
(2007) constructed a fuzzy analytic hierarchy process
(FAHP) method with entropy weight to generate perfor-
mance ranking of different priority mixes in semiconductor
manufacturing.

In summary, product family mix has a tremendous
impact to the production system even when the priority
mix is fixed, and many performance measures such as cycle
time, WIP level, throughput, bottleneck utilization rate will
be affected. Organizing the available data is a complicated
task; however, DEA can provide a good method to deal with
multiple inputs and outputs and to evaluate which product
family mix can provide a more stabilized production envi-
ronment and a better overall outcome for a wafer fab.

3. DEA methodology and window analysis

This paper proposed a data envelopment analysis
(DEA) approach to solve the product family mix problem.
The theory, development and applications of DEA, as well
as its strengths and weaknesses, have been discussed in
many papers, and therefore, only a brief review is presented
here (Charnes, Cooper, Lewin, & Seiford, 1994a; Cooper,
Seiford, & Tone, 2000). In 1957, Farrell first proposed pro-
duction frontier to measure production efficiency based on
the concept of Pareto optimality, and a frontier function
called the efficient production function is used to fit the
points as a piecewise linear function (Farrell, 1957). The
frontier is a reference for comparing the efficiency of vari-
ous points, and production efficiency is separated into two
types: technical efficiency and allocative efficiency. How-
ever, the study was limited to single input and output.

Charnes, Cooper, and Rhodes (1978) extended Farrell’s
idea of linking the estimation of technical efficiency and
production frontiers and developed DEA to generate com-
prehensive performance measurement index. DEA is
applied to measure efficiencies of decision-making units
(DMU), whose efficiencies can be obtained through the
evaluation of multiple inputs and outputs without the
pre-assignment of the criteria weights. The position of a
DMU relative to the efficient frontier, the envelopment
constituted by all the DMUs, is measured as efficiency
(Charnes et al., 1994a). From the output perspective, if
the amount of an output can be increased for a DMU while
the amount of any output does not decrease and the
amount of all its inputs does not increase, then the DMU
is inefficient. From the input perspective, if the amount
of an input can be reduced while the amount of any other
input does not increase and the amount of all its outputs
does not decrease, then the DMU is inefficient. A DMU
is found to be efficient if it lies on the efficient frontier,
where there is no inefficiency in the utilization of inputs
and outputs (Charnes et al., 1994a).

DEA was first applied to investigate not-for-profit orga-
nizations; however, in the past few years, more and more
researches have extended the DEA methodology to an
application in various sectors and domains to solve multi-
criteria optimization problems (Cooper et al., 2000). Since
its first introduction, an enormous number of DEA evolved
models have been constructed to meet the different condi-
tions of the problems for the past two decades, and DEA
has been proved to be a promising technique for evaluating
performance (Charnes et al., 1994a; Cooper et al., 2000).

CCR model, the model we are adopting in this paper, is
introduced by Charnes et al. (1978) to generate efficiency in
ratio form, by obtaining directly from the data without
requiring a priori specification of weights nor assuming
functional forms of relations between inputs and outputs.
An inefficient DMU can be made efficient by projection
onto a point on the efficient frontier. The particular point
of projection selected depends upon the orientation
employed. In an output orientation (output maximization),
maximal movement via proportional augmentation of out-
puts is stressed. In other words, given the level of inputs
used, what level of outputs can be best achieved. On the
other hand, an input orientation (input minimization),
maximal movement toward the frontier through propor-
tional reduction of inputs is focused. That is, given the level
of outputs produced, how much inputs can be reduced
while maintaining their current level of outputs.

Below is a brief introduction of the input-oriented DEA
model developed by Charnes, Cooper and Rhodes, CCRd-I
(Charnes et al., 1978). Assume that there are n DMUs, and
each is represented by DMUj where j = 1, . . . k . . ., n. For
each DMU, there are m inputs (Xij; i = 1, . . ., m) and r out-
puts (Yrj; r = 1, . . ., s). The input of factor i for DMU j is
Xij, and the output of factor i for DMU j is Yrj. The effi-
ciency of DMUk can be obtained as follows:
Min hk ¼ hk � e
Xm

i¼1

s�i þ
Xs

r¼1

sþr

 !
ð1Þ

s:t
Xn

j¼1

kjX ij� hkX ik þ s�i ¼ 0; i¼ 1; . . . ; m

Xn

j¼1

kjY rj� sþr ¼ Y rk; r¼ 1; . . . ; s

kj; s�i ; s
þ
r P 0; j¼ 1; . . . ; n; i¼ 1; . . . ;m; r¼ 1; . . . ; s

ð2Þ
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where s�i ; s
þ
r are the slack variables of inputs and outputs,

respectively, kj is the weight for DMUj, and hk is the rela-
tively efficiency indicator of the kth DMU.

A very small positive value e, which is called a non-
Archimedean small number, represents that all s��i and
sþ�r must be considered, and it is usually set to 10�4 or
10�6 in real application. When a DMU �k is relatively effi-
cient, its hk� is one, and its s��i ¼ sþ�r ¼ 0. This implies that
the DMU is on the efficient frontier. If a DMU is relatively
inefficient, its inputs and outputs deviated from the optimal
solution can be expressed as X ik� ¼ hk�X ik � S��i and
Y rk� ¼ Y rk þ Sþ�r , respectively, where Xik and Yrk are the
inefficient input and output; X ik� and Y rk� are the input
and output for the DMU being efficient; and S��i and Sþ�r

represent the required reduction and addition of input
and output.

In the original DEA analysis, each DMU is observed
only once, that is, each example is a cross-sectional analysis
of data (Charnes et al., 1994a). In many actual studies,
observations for DMUs are frequently available over mul-
tiple time periods, and it is often important to perform a
panel data analysis to focus on changes in efficiency over
time. In such a circumstance, DEA window analysis can
be adopted to detect trend of a DMU over time (Asmild,
Paradi, Aggarwall, & Schaffnit, 2004; Charnes, Cooper,
& Seiford, 1994b; Yue, 1992). The underlying assumption
of window analysis, proposed by Charnes, Clark, Cooper,
and Golany (1985), is that of a moving-average analysis
and that each DMU’s efficiency is represented in the win-
dow several times, instead of being represented by a single
summary score (Charnes et al., 1985; Charnes et al., 1994a,
1994b; Yue, 1992). Each DMU in a different period is trea-
ted as a different DMU, and the performance of a DMU in
a period can be contrasted with its own performance in
other periods as well as to the performance of other DMUs
(Asmild et al., 2004). In doing so, the number of data
points in the analysis is increased, and this can be usable
when small sample sizes are under consideration.

The use of window analysis offers an opportunity to
know how performance evolves through a sequence of
overlapping windows. A brief window analysis review
is presented here (Sun, 1988). Assume there are N alterna-
tives, l = 1, . . ., N, and each alternative has data for period
1 to M, that is, m = 1, . . ., M. The window length is fixed to
be K, and the data from period 1, 2, . . ., K will form
the first window row, and the data from period 2,
3, . . ., K, K + 1 will form the second row, and so on. With
the addition of one window, one more period on the right
will need to be shifted to, and a total of M � K + 1 window
rows are existed. Each window is represented by
i = 1, . . ., M � K + 1, and the ith window will consist of
the data in periods j = i, . . ., i + K � 1. In the same win-
dow, there are K sets of data to be evaluated; therefore,
there are a total of N · K DMUs in that window.

DEA and window analysis have been adopted in many
researches. For example, Mahadevan (2002) adopted
them to explain the productivity growth performance of
Malaysia’s manufacturing sector using a panel data of 28
industries for 15 years. Asmild et al. (2004) combined
DEA window analysis with the Malmquist index approach
in a study of the Canadian banking industry for 20 years.
In order to evaluate the performance of product/family
mixes over time, DEA window analysis will be used in this
paper. Charnes et al. (1994a) found that K = 3 or 4 tended
to yield the best balance of informativeness and stability of
the efficiency scores, and the K = 4 quarter window facili-
tated yearly planning and helped detect seasonal effects.

To apply window analysis, DEA is used first to evaluate
the performance of all DMUs in the same window, and the
efficiency, El

i;j, of each DMU will be entered in the right
window position in the table. The procedure will be
repeated M � K + 1 times to obtain all the efficiency values
in all windows. Then, window analysis used all the effi-
ciency values of an alternative to generate some statistics
following Sueyoshi (1992) approaches. The average effi-
ciency (Ml) of alternative l is obtained by:

Ml ¼
PM�Kþ1

i¼1

PiþK�1
j¼i Ei;jl

K � ðM � K þ 1Þ ; l ¼ 1 . . . N ð3Þ

The variance among efficiencies of alternative l, Vl, is calcu-
lated by:

V l ¼
PM�Kþ1

i

PiþK�1
j ðEl

i;j �MlÞ2

K � ðM � K þ 1Þ � 1
; l ¼ 1 . . . N ð4Þ

The variance of efficiency reflects the fluctuation of effi-
ciency values for each alternative. If an alternative has
higher average efficiency and small variance, its ranking
can be higher compared to other alternatives.

Column range, CRl,m, can be used to compare the fluc-
tuations of efficiencies among the alternatives. In each
alternative, because the data of the first period (m = 1)
and last period (m = M) are being analyzed in only the first
and the M � K + 1 window, respectively and thus, only
one efficiency value is obtained for each of the two win-
dows, the efficiencies in the first and last periods will not
be included in the calculation of CR values. For other peri-
ods, the data of each alternative is used at least twice and at
least two efficiency values are available for calculating CR
values. CRl,m is the difference between the largest and the
smallest efficiencies for alternative l in period m. That is,

CRl;m ¼MaxðEl
i;mÞ �MinðEl

i;mÞ;
for i ¼ maxðm� K þ 1; 1Þ; . . . ; minðm;M � K þ 1Þ
m ¼ 1 . . . M

ð5Þ

CRl,m can be used to evaluate the stability of efficiency of
an alternative in each period. Then, CRl is the overall col-
umn range for alternative l, and it shows the greatest vari-
ation in efficiency of an alternative over different periods:

CRl ¼Maxm¼2; ...; M�1ðCRl;mÞ ð6Þ
In addition, to understand the stability of an alternative
over different periods, total range can be used. Total range
is the difference between the maximum and minimum
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efficiency values of an alternative in all windows. The total
range for alternative l is:

TRl ¼MaxðEl
i;jÞ �MinðEl

i;jÞ; for

i ¼ 1; . . . ; M � K þ 1; j ¼ i; . . . ; iþ K � 1 ð7Þ

For CRl,m, CRl, TRl, the smaller the value, the more stabi-
lized are the efficiency values for adopting alternative. With
six evaluation periods and a window length of three peri-
ods, the efficiency values and relevant evaluations are as
shown in Table 1.
4. Product family mix evaluation model

4.1. The selection of DEA model

To evaluate the long-term performance of product fam-
ily mix in a wafer fab, we adopt the DEA window analysis
in this paper for two reasons. One, window analysis can
effectively analyze the relative performance of product fam-
ily mixes in multiple periods and the variation of perfor-
mances among the periods. Two, more input and output
factors can be included in window analysis. In DEA, if
the total number of input and output factors are greater
than half of the number of DMUs, the correlation between
the values of the original performance factors and the val-
ues obtained through the DEA models becomes smaller,
and this makes the discriminating power decrease (Golany
& Roll, 1989). However, window analysis treats the perfor-
mance values of the same alternative in different periods as
different DMUs. The number of DMUs, as a result,
increases, and this can remedy the defect of the mathemat-
ical model in DEA.

In window analysis, the DMUs in each window need a
DEA mathematical model to calculate the efficient values,
and the selection of a DEA model that is suitable for the
environment stated in this paper is very important. As sta-
ted in Section 3, CCR-I is applied to compare the input effi-
ciency of product family mixes based on the same level of
output.
4.2. The selection of input and output factors

The selection of factors is essential. Factors should be
selected properly to represent other correlated factors so
Table 1
Window analysis of alternative l

Alternative Period 1 2 3 4
window

l W1 El
1;1 El

1;2 El
1;3

W2 El
2;2 El

2;3 El
2;4

W3 El
3;3 El

3;4

W4 El
4;4

CRl,m X CRl,2 CRl,3 CRl,4

X: omitted.
as to reduce number of inputs and outputs for the DEA
model. For evaluating the product family mix in a semicon-
ductor fab, data corresponding to these factors must meet
the isotonicity required by DEA in order to obtain acute
evaluation results. Isotonicity means that when an input
increases, an output should not decrease, and vice versa
(Golany & Roll, 1989). If one factor has a negative or very
weak correlation with other inputs or outputs, in order to
satisfy isotonicity, the factor needs to be deleted from the
model. On the other hand, when two factors are perfectly
positive correlated, that is, the correlation coefficient is
one, the changes of one factor can be reflected by the
changes of the other factor completely. In this case, only
one factor is needed to evaluate the system performance.

Based on the above requirements, the most suitable
input and output factors can be selected by the following
steps:

Step 1: Have an interview with the relevant personnel and
managers in the industry and obtain input and
output factors that are considered to be most
important. These factors are the candidate factors.

Step 2: Construct a virtual wafer fab by building a simu-
lation model. Run this model under different sce-
narios so as to collect the data of the candidate
factors.

Step 3: Calculate the correlation coefficients among the
candidate factors. If there is any factor that has
a negative correlation with other factors, delete
the factor.

Step 4: If there are any two or more factors that are per-
fectly positive correlated, select the factor that has
higher correlations with the rest of the factors.
4.3. Input and output candidate factors

Financial performance is always the highest concern of
the top management. Production performance, on the
other hand, is impacted by product family mix. Therefore,
these two aspects of performance should both be consid-
ered in the evaluation of product family mix selection.
After an interview with the related personnel of several
semiconductor fabricators in Science-based Industrial
Park in Taiwan, some candidate factors for wafer fab
5 6 Mean efficiency Variance Total range

Ml Vl TRl

El
3;5

El
4;5 El

4;6

CRl,5 X CRl
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efficiency evaluation are selected. Below are the definitions
of these factors:

1. WIP in front of photolithography workstation The circuit
pattern of a wafer is constructed during photolithogra-
phy. In order to achieve the pre-determined functions
of final products, wafer batches must repeat photoli-
thography activities, and thus, the re-entry characteris-
tic is resulted. As WIP in front of the workstation
increases, the smoothness of the wafer batch flow will
be impacted. Therefore, this factor is an input that
we would like to minimize from the view point of pro-
duction control.

2. Bottleneck utilization rate The average utilization rate of
the bottleneck in the system for a period of time.
Because the number of layers and processing time are
different for different product families, an inappropriate
product family mix may result in the increase of bottle-
neck utilization rate and production cycle time and may
decrease delivery performance in consequence. There-
fore, bottleneck utilization rate is categorized as an
input for production control.

3. Number of CCR workstation If the utilization rate of a
workstation is over 70% in a planning period, the work-
station is treated as a capacity constraint resource
(CCR). The more CCR workstations there are in a sys-
tem, the higher is the probability of bottleneck shifting
and the more unstable is the production process.
Throughput may be decreased and delivery date may
be delayed as a result. Thus, this factor is an input for
production control.

4. Layer cycle time Layer cycle time measures the duration
of time consumed by one photolithography activity and
all the steps between the two consecutive photolithogra-
phy activities. Time constraint characteristic must be
considered for processing operations of each layer. For
example, furnace activity must be processed in a limited
time after the completion of wet etch process; otherwise,
this batch of wafers must go through the wet etch pro-
cess again. As layer cycle time increases, the probability
of re-work increases. Not only the production activity
control becomes more complicated, yield rate will be
impacted. As a result, layer cycle time is an input for
production control.

5. X-Factor The ratio of production cycle time to theoret-
ical process time for each product. With the prerequisite
of satisfying the demand of customers, a lower ratio
indicates a faster delivery, and a higher capital turnover
rate. X-Factor, therefore, is an input in the financial
aspect.

6. WIP level The number of lots that has been released into
the wafer fab but has not yet been finished processing
through all of its manufacturing steps in a period of
time. As WIP level increases, more capital is locked,
and capital turnover rate decreases in consequence.
Therefore, WIP level is an input factor in the financial
aspect.
7. Throughput The number of lots of production that
passes through the final operation step in a period. A
higher throughput implies a higher sales revenue and
a higher capital turnover rate for the enterprise.
Throughput, as a result, is an output in the financial
aspect.

8. Contribution margin The profitability of a certain prod-
uct family mix. It is the amount of sales revenue less
raw material and indirect variable costs for a period.
All finished products are assumed sold. The price for
a product is set by its product family, priority rank
and the number of layers that product goes through.
In a wafer fab, most manufacturing costs are fixed.
The indirect variable cost includes cost of all indirect
materials and is varied according to the process flow.
The higher the contribution margin is, the more pro-
ductivity the utilization of system resources is, and the
more beneficial the operation of the enterprise is. There-
fore, contribution margin is an output in the financial
aspect.

4.4. System environment

In order to obtain a set of product family mixes that is
efficient for the factory to manufacture, actual data is col-
lected from a wafer fabrication factory located on the Sci-
ence-Based Industrial Park in Taiwan. A simulation model
is developed by EM-Plant (Tecnomatix Technologies Ltd.,
2001) to generate relevant production performance factors.
Simulation results are then applied in the DEA window
analysis to convert the performance results under each
product family mix over time into an overall efficiency
score. To simplify the complexity of the environment, the
simulation model built in this paper is based on the follow-
ing assumptions and limitations:

• There are two different product family types. Product
family A consists of a variety of logic products, and
product family B consists of memory products. The pro-
cess of each product family is different and unique.

• Products belonging to family A require 305 operations
and pass through the photolithography operation 17
times. Products in family B require 330 operations
and pass through the photolithography operation 20
times.

• There are 83 different types of workstations, with 13 6-
lot workstations, three 4-lot workstations, and 19 2-lot
workstations. Each workstation consists of a given num-
ber of identical machines operated in parallel.

• The lot priority is classed into hot, rush and normal in
descending order. The ratio of priorities for each prod-
uct family is set to be 1, 2, and 7 for hot, rush and nor-
mal classes, respectively.

• Wafer lot(s) can be released to shop floor only when the
same quantity of wafers are finished and transferred out.
The releasing batch size for both normal and rush lots is
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six lots. Batch machines adopt full batch size policy.
Once batch forming is completed, processing sequence
is based on the priority class and FIFO rule.

• The hot orders are not limited by batching policy, and
they can be released into shop floor and be loaded onto
any batch machine with only a single lot.

• Lots with different product types and classes cannot be
processed simultaneously.
Table 2
Throughput targets and average throughput outcomes

Product family mix Monthly throughput target (lot) 420

Mix (2, 8) Real average throughput target (lot) 423
Mix (3, 7) 420
Mix (4, 6) 424
Mix (5, 5) 420
Mix (6, 4) 423
Mix (7, 3) 419
Mix (8, 2) 425

Table 3
Simulation results for candidate factors under Mix (2, 8)

Year
(throughput
target)

WIP in front of
photolithography
workstation (lot)

Throughput
(lot)

BN
utilization
rate

Num
work

Year 1
(420 lots)

8 423 0.638 0

Year 2
(620 lots)

21 625 0.927 8

Year 3
(640 lots)

26 637 0.963 10

Year 4
(464 lots)

10 468 0.700 0

Year 5
(343 lots)

6 345 0.517 0

Year 6
(387 lots)

8 388 0.577 0

Year 7
(526 lots)

11 525 0.779 2

Table 4
Correlation analysis of candidate factors

Throughput
(lot)

BN
utilization
rate

Number
worksta

WIP in front of photolithography
workstation (lot)

0.94 0.94 0.91

Throughput (lot) 1.00 1.00 0.82
BN utilization rate 1.00 0.84
Number of CCR workstations 1.00
WIP level (lot)
Layer cycle time (s)
X-factor
• The charged price for product with normal priority is
set to be $40 per passing through the photolithogra-
phy operation for product family A, and $50 for
product family B. Because the waiting time for higher
priority orders is shorter than that for normal orders,
the charged prices for hot and rush priority products
are set to be 150% and 50% mark-up of the price
for normal product, respectively.
620 640 464 343 387 526

625 637 468 345 388 525
615 645 469 338 392 529
620 645 466 343 392 530
618 642 465 348 392 525
624 645 465 347 382 523
624 641 462 341 387 529
617 635 459 348 390 524

ber of CCR
stations

WIP
level
(lot)

Layer cycle
time (second)

X-factor Contribution
margin ($)

187 53,192 1.41 106,149,525

306 60,043 1.59 156,543,300

319 61,354 1.63 161,580,325

206 53,797 1.43 117,118,625

151 52,422 1.39 86,856,600

169 52,657 1.40 97,129,975

236 55,219 1.46 131,401,475

of CCR
tions

WIP Level
(lot)

Layer cycle
time (second)

X-factor Contribution
margin ($)

0.97 0.96 0.92 0.85

0.99 0.89 0.85 0.90
0.99 0.89 0.86 0.91
0.88 0.87 0.85 0.82
1.00 0.93 0.91 0.93

1.00 0.97 0.83
1.00 0.88



Table 5
Input and output factors for evaluation

Factor Input or Output

Layer cycle time Input
WIP in front of photolithography workstation Input
WIP Level Input
BN utilization rate Output
Contribution margin Output
Number of CCR workstations Input
X-factor Input
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• Direct material cost is set to be $100 per wafer. Indirect
material cost, such as photo-resist, special gas, chemical
and quartz, is varied according to the production family.
Table 6
Window analysis of alternatives

Alternatives Year 1
(420)

Year 2
(620)

Year 3
(640)

Year 4
(464)

Yea
(343

Mix(2, 8) 1 1 1
1 1 1

1 1 1
1 1

1
CR1,m X 0 0 0 0

Mix(3, 7) 1 1 0.988
1 0.980 1

1 1 0.99
1 0.99

0.99
CR2,m X 0 0.02 0 0

Mix(4, 6) 0.998 1 0.948
1 0.945 0.990

0.981 0.990 0.97
0.990 0.97

0.97
CR3,m X 0 0.036 0 0

Mix(5, 5) 0.960 0.985 0.950
0.981 0.950 0.982

1 0.981 0.97
0.981 0.97

0.97
CR4,m X 0.004 0.050 0 0.00

Mix (6, 4) 1 1 0.933
1 0.931 0.978

0.984 0.976 1
0.976 1

1
CR5,m X 0 0.053 0.001 0

Mix (7, 3) 1 1 0.967
1 0.967 1

1 1 1
1 0.99

0.99
CR6,m X 0 0.033 0 0.01

Mix (8, 2) 1 0.973 0.966
0.973 0.966 1

1 1 1
1 1

1
CR7,m X 0 0.034 0 0
The indirect material cost is assumed to be $7.5 per layer
for product family A, and $8 per layer for product fam-
ily B.

• The observation period is seven years, and the through-
put target is set to be 420 lots, 620 lots, 640 lots, 464 lots,
343 lots, 387 lots and 526 lots per month for year 1 to
year 7, respectively. The window length is fixed to be
three years (K = 3).

• Product family mixes are set between (2:8) to (8:2). Mix
(2:8) means that the product family mix ratio for prod-
uct family A to product family B is 2 to 8.

• The simulation model is run 15 times to generate statis-
tical results under each product family mix and each

throughput target.
r 5
)

Year 6
(387)

Year 7
(526)

Mean
(Ml)

Variance
(Vl)

TRl

1
1 0.991 0.9994 0.0006 0.0086
0 X CR1 0

5
5 1
5 1 1 0.9970 0.0015 0.0199

0 X CR2 0.0199

3
3 0.999
3 1 1 0.9839 0.0049 0.0549

0.001 X CR3 0.0358

5
5 0.969
8 0.996 0.976 0.9759 0.0038 0.0503
4 0.027 X CR4 0.0503

0.980
0.987 0.997 0.9828 0.0061 0.0694
0.007 X CR5 0.0530

0 0.945
0 0.955 1 0.9877 0.0051 0.0545
0 0.010 X CR6 0.0327

1
1 1 0.9919 0.0038 0.0340
0 X CR7 0.0340



Table 7
Window analysis of the top three alternatives by CCRd-I and CCRd-O

Alternatives Year 1
(420)

Year 2
(620)

Year 3
(640)

Year 4
(464)

Year 5
(343)

Year 6
(387)

Year 7
(526)

Mean
(Ml)

Variance
(Vl)

TRl

Mix(2, 8) 1 1 1
1 1 1

1 1 1
1 1 1

0.9133 0.9126 0.8879 0.9809 0.0107 0.11208
CR1,m X 0.000 0.000 0.000 0.087 0.087 X CR1 0.087

Mix(3, 7) 0.9834 0.9975 0.9583
0.9949 0.9583 0.9929

0.9583 0.993 0.9223
0.9978 0.9223 0.9834

0.8424 0.8975 1 0.9602 0.0123 0.15761
CR2,m X 0.003 0.000 0.005 0.080 0.086 X CR2 0.086

Mix(8, 2) 0.793 0.9731 0.9681
0.9731 0.9681 0.7862

0.9681 0.7849 0.7753
0.7841 0.7753 0.7916

0.7081 0.7227 0.9001 0.8448 0.0268 0.26496
CR7,m X 0 0 0.002 0.067 0.069 X CR7 0.069
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4.5. Results of window analysis

The data of the candidate factors is obtained from run-
ning simulation under the environment of the given
throughput target and product family mix. Table 2 shows
the monthly throughput targets and average monthly
throughput outcomes under different product family mixes
in each year. Note that the predetermined throughput tar-
gets and the outcomes from the simulation model may not
be the same. In order to maintain a fair evaluation, only
the simulation results with throughput deviation of less
than five batches from the predetermined throughput tar-
get are collected. A partial data of the collected candidate
factors under different environments is shown in Table 3.

Based on the procedures stated in Section 4.2, a correla-
tion analysis of the factors is done by STATISTICA 6.0
(StatSoft Inc., 1984) to check if there is any factor that
has a negative correlation coefficient or perfect positive
correlation with other factors. The correlation coefficient
of the input and output factors are shown in Table 4.
The correlation coefficient between throughput and bottle-
neck utilization rate is exactly one. Since the correlation
coefficients of bottleneck utilization rate with other factors
are higher than the coefficients of throughput with other
factors, throughput is deleted from the list. The input
and output factors selected for evaluation of the wafer
fab are listed in Table 5.

With the simulation results of the selected factors, DEA
window analysis can be done by Excel Solver via Visual
Basic application (Microsoft Company, 2003). In this
paper, we assume constant returns to scale; that is, as all
inputs double, all outputs will double. The overall effi-
ciency for each DMU is calculated by using CCRd-I model,
and the DEA window analysis is applied. These results are
shown in Table 6.

Observing the average efficiency values, Mix (2, 8) is the
highest with a mean of 0.9994. On top of that, this product
family has the lowest variance of 0.0006. In a highly variant
demand changing environment, Mix (2, 8) has a quite sta-
bilized performance over the years.

The second and third best product family mixes are
Mix (3, 7) and Mix (8, 2). Both mixes maintain relatively
high efficiency over the periods, and their variances are
not too big either; therefore, the overall performances of
the system under these two mixes are quite stabilized
too. Regarding the CR value, the best mix is Mix (2, 8),
and the second best is Mix (3, 7). Mix (2, 8) also has
the best TR value of 0.0086, followed by Mix (3, 7) and
Mix (8, 2).

With the overall evaluation, the best mix is Mix (2, 8),
and Mix (3, 7) and Mix (8, 2) perform quite well too. In
fact, the performances under Mix (2, 8), Mix (3, 7) and
Mix (8, 2) are not significantly different. Therefore, these
three mixes are further evaluated. Since financial success
is the ultimate goal for an enterprise, only the financial fac-
tors, contribution margin, X-factor and WIP level, are con-
sidered here, and the results are shown in Table 7.

Under the window analysis of the three product family
mixes by focused on financial aspect, Mix (2, 8) and Mix
(3, 7) perform well than Mix (8, 2) in efficiency mean, var-
iance and total range. In addition, Mix (2, 8) performs bet-
ter than both Mix (3, 7) and Mix (8, 2) in all aspects. This
implies that if the fab is able to maintain such a product
family mix in a long term, it can be competitive and make
a very reasonable profit. In the case that the fab need to be
flexible in order acceptable, then it should concentrate its
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product mix in a range from Mix (2, 8) to Mix(3, 7), and
preferably Mix (2, 8).

5. Conclusions

In this paper, a DEA window analysis model is estab-
lished to evaluate product family mixes in a wafer fab.
Without assigning weights to any performance indicator,
we can use DEA window analysis to evaluate the efficiency
of different product family mixes under a long term and
obtain a best product family mix that is relatively more effi-
cient for production. The results not only try to maximize
the production efficiency and hence the profit, but also con-
siders several other important input and output factors that
maintain production smoothing.

A virtual wafer fabricator is first constructed, produc-
tion with various product family mixes over several peri-
ods of time is simulated, and simulation results of critical
performance factors are collected. The DEA window
analysis is then applied to analyze the results of different
product family mixes over time, and the mixes with
higher performance are selected. For the selected mixes,
another DEA window analysis is run based on a reduced
number of factors that are the highest concern of the
management, and the most recommended product family
mix can be generated as a result. By adopting the pro-
posed mechanism, a semiconductor fabricator can have
a guidance regarding strategies for order management
and aggregate planning to improve manufacturing effi-
ciency and to be competitive. For the selected product
family mix, how to determine the most appropriate prior-
ity mix to both satisfy customer demand and meet fab
production performance can be our future research
direction.
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