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Abstract

We describe a general method to determine the Apéry limits of a differential equation that has a modular-function origin. As a
by-product of our analysis, we discover a family of identities involving the special values of L-functions associated with modular
forms. The proof of these identities is independent of differential equations and Apéry limits.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In 1978, R. Apéry proved that ζ(3) = ∑∞
n=1 n−3 is an irrational number by constructing two sequences

an =
n∑

k=0

(
n

k

)2(
n + k

k

)2

,

bn =
n∑

k=0

(
n

k

)2(
n + k

k

)2
{

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
}

,

and then showing that bn/an converges to ζ(3) fast enough to ensure irrationality of ζ(3) (see [5]). Another remarkable
discovery of Apéry is that an and bn satisfy the recursive relation

(n + 2)3un+2 − (
34n3 + 153n2 + 231n + 117

)
un+1 + (n + 1)3un = 0 (un = an or bn).

Thus, if we set A(t) = ∑∞
n=0 ant

n and B(t) = ∑∞
n=0 bnt

n, then the functions A(t) and B(t) satisfy the differential
equations(

1 − 34t + t2)θ3A + (
3t2 − 51t

)
θ2A + (

3t2 − 27t
)
θA + (

t2 − 5t
)
A = 0 (1)

and
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(
1 − 34t + t2)θ3B + (

3t2 − 51t
)
θ2B + (

3t2 − 27t
)
θB + (

t2 − 5t
)
B = 6t,

where θ denotes the differential operator td/dt .
Apéry also had an analogous result for ζ(2) = π2/6. He showed that if {an} and {bn} are sequences of rational

numbers satisfying the recursive relation

(n + 2)2un+2 − (
11n2 + 33n + 25

)
un+1 − (n + 1)2un = 0 (un = an or bn)

with the initial values

a−1 = 0, a0 = 1, b0 = 0, b1 = 5,

then bn/an converges to ζ(2). Again, due to the recursive relation, the generating functions A(t) = ∑
ant

n and
B(t) = ∑

bnt
n satisfy(

1 − 11t − t2)θ2A − (
11t + 2t2)θA − (

3t + t2)A = 0 (2)

and (
1 − 11t − t2)θ2B − (

11t + 2t2)θB − (
3t + t2)B = 5t,

respectively.
A common feature of Apéry’s two examples is the existence of a differential equation LA(t) = 0 with regular

singularities whose local exponents at t = 0 are all 0 such that if A(t) = 1 + ∑
ant

n is the unique holomorphic
solution at t = 0 and B(t) = t +∑

bnt
n is the unique holomorphic solution of the inhomogeneous differential equation

LB(t) = t at t = 0, then the ratios bn/an converge to a special value of the Riemann zeta function. Inspired by
these two examples, Zudilin et al. [1,8,9] considered the Apéry limits of a differential equation. The general setting
is described as follows. Let Lf (t) = 0 be a linear differential equation with polynomial coefficients and regular
singularities. Assume that the local exponents of L at t = 0 are all 0 so that the monodromy around t = 0 is maximally
unipotent. In other words, the differential operator L takes the form

θk + tP1(θ) + t2P2(θ) + · · · + tdPd(θ), θ = td/dt,

where Pj are polynomials of degree � k. Let A(t) = 1 + ∑
ant

n be the unique holomorphic solution at t = 0. Then
the sequence {an} satisfy a (d + 1)-term recursive relation

(n + d)kan+d + P1(n + d − 1)an+d−1 + · · · + Pd(n)an = 0

with initial values a−d+1 = · · · = a−1 = 0 and a0 = 1. Now for each integer j from 1 to d − 1, we let B(t) =
tj + ∑∞

n=j+1 bnt
n be a solution of the inhomogeneous differential equation LB(t) = jktj . (Note that when j � d ,

there may not exist a solution of LB(t) = tj that is holomorphic at t = 0.) The coefficients bn also satisfy the recursive
relation

(n + d)kbn+d + P1(n + d − 1)bn+d−1 + · · · + Pd(n)bn = 0

with initial values bj−d+1 = · · · = bj−1 = 0 and bj = 1. Then the j th Apéry limit is defined to be the limit of
bn/an. For example, in [8], Zudilin gave a sixth order differential equation whose Apéry limit is the Catalan number∑∞

n=0(−1)n/(2n + 1)2 and a fifth order differential equation whose Apéry limit is ζ(4). In [9], he also found a third
order differential equations whose first and second Apéry limits give simultaneous approximations to log 2 and ζ(2).
The paper also contains an example of a sixth order differential equation that gives simultaneous approximation to
ζ(2) and ζ(3). More recently, Almkvist et al. [1] consider the Apéry limits of fourth order differential equations of
Calabi–Yau type. The numerical computation finds that the recognized limits are all rational combinations of values
of zeta functions or Dirichlet series associated with odd characters modulo 3 or 4.

In practice, one would be interested only in the cases where the coefficients an are integers having nice properties,
such as having a closed form in terms of binomial coefficients. When such differential equations have order 2 or 3, they
are often related to modular forms. This is because in these cases the monodromy groups happen to be nice arithmetic
subgroups of SL(2,R). Therefore, it is possible to use the theory of modular forms and modular functions to determine
the Apéry limits for these cases. In fact, this has been done by Beukers [2] earlier. However, we remark that in [2] the
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main goal is to give a modular-function interpretation of Apéry’s irrationality results, so the argument is not readily
applicable to general situations. Thus, the main purpose of the present article is to present a method that works for
more general differential equations. In Section 2 we will briefly review Beukers’ argument, and then describe our
general approach. In Sections 3 and 4, we specialize our method to the cases where the nonzero singularity closest
to the origin corresponds to an elliptic point or a cusp of the underlying modular curve. The examples we work out
include cases (e), (h), and (β) of [1]. These are some of the examples where [1] fails to determine their Apéry limits.
We also give two examples in which the Apéry limits are values of L-functions associated with cusp forms.

As a by-product, our analysis in one particular example leads us to a family of identities involving the special
values of L-functions associated with modular forms of weight 3. (See Lemma 5 in Section 5.) A typical example is

∑
n≡1 mod 12

cn

n2
= 2 + √

3

3

∞∑
n=1

cn

n2

for the cusp form f (τ) = η(2τ)3η(6τ)3 = ∑∞
n=1 cne

2πinτ of weight 3. The proof of these identities is independent
of differential equations and Apéry limits. We expect that our argument can be extended to modular forms of higher
weight, but we do not attempt to do so since this will be too far astray from the main topic of the paper.

After finishing this paper, Zudilin kindly informed of us that in an unpublished manuscript [7], Zagier also has
described an approach to the determination of Apéry limits very close to ours (presumably in the same spirit as [2]),
but we do not know to what extent the two papers overlap.

2. Modular-function approach

Recall that a result of Stiller [4] (see also [6]) states that if A(τ) is a (meromorphic) modular form of weight k with
character χ and t (τ ) is a non-constant modular function on a subgroup 	 of SL(2,R) commensurable with SL(2,Z),
then A,τA, . . . , τ kA, as functions of t , are linearly independent solutions of a (k + 1)st order linear differential
equation LA = 0 with algebraic functions of t as coefficients. We assume that the differential equation LA = 0 has
polynomial coefficients. This is true whenever t (τ ) is a uniformizer (Hauptmodul) of the modular curve X(	). From
now on we assume that 	 is of genus zero so that such a uniformizer exists. We assume that t (i∞) = 0 and the Fourier
expansion of A(τ) starts from 1. Then the differential equation satisfied by A and t has local exponents all equal to
0 at t = 0. When the function t : τ �→ t (τ ) is locally one-to-one and A(τ) is holomorphic at a point τ0, the function
A(τ) is a well-defined analytic function of t near t0 = t (τ0). Conversely, if either t : τ �→ t (τ ) is not locally one-to-one
at τ = τ0 or A(τ0) = ∞, then t0 is a singularity of the differential equation. Thus, singular points t0 = t (τ0) of the
differential equation LA(t) = 0 can occur at four types of points where

(1) t0 corresponds to an elliptic point of the modular curve X(	), or
(2) t0 corresponds to a cusp of X(	), or
(3) A(t0) = ∞, or
(4) t0 is a branch point of the covering map X(	) → P

1(C) given by h(τ) → t (τ ), where h(τ) is a Hauptmodul of 	.

Examples.

(1) Apéry’s differential equation (1) has a modular-function parameterization given by

t (τ ) =
(

η(τ)η(6τ)

η(2τ)η(3τ)

)12

, A(τ) = (η(2τ)η(3τ))7

(η(τ )η(6τ))5
. (3)

They are modular on 	0(6) + ω6. There are four singularities 0,17 ± 12
√

2, and ∞. The points t = 0 and ∞
correspond to the two cusps ∞ and 1/2. The points t = 17 − 12

√
2 and 17 + 12

√
2 correspond to the elliptic

points τ = i/
√

6 and τ = 2/5 + i/5
√

6 of order 2 fixed by
( 0 −1

6 0

)
and

( 12 −5
30 −12

)
, respectively.

(2) Apéry’s differential equation (2) is satisfied by

t (τ ) = q

∞∏(
1 − qn

)5( n
5 )

, (4)

n=1
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A(τ) = 1 +
∞∑

n=1

(
3q5n−4

1 − q5n−4
+ q5n−3

1 − q5n−3
− q5n−2

1 − q5n−2
− 3q5n−1

1 − q5n−1

)
, (5)

where q = e2πiτ and ( n
5 ) is the Legendre symbol. The functions are modular on 	1(5). The singularities

0,∞, (11 − 5
√

5)/2, (11 + 5
√

5)/2 are the values of t (τ ) at the four cusps ∞, 2/5, 0, and 1/2, respectively.

We now briefly review Beukers’ argument [2]. Assume that t0 = 0, t1, . . . , tm are singularities of the differential
equation LA = 0 with |t1| < |t2| < · · · . Let A(t) = 1 + ∑

ant
n be the t-expansion of A. In general, the radius of

convergence of the series is |t1|. If the inhomogeneous differential equation LB(t) = t has a holomorphic solution
B(t) = t + ∑∞

n=2 bnt
n near t = 0, this series B(t) in general also has a radius of convergence equal to |t1|. Now

suppose that there is a constant c such that the series B(t) − cA(t) has a larger radius of convergence, i.e., such that
t1 is no longer a singularity of B(t) − cA(t). This would mean that the sequence {bn/an} converges to c. Moreover,
the larger the ratio |t2/t1| is, the better the rate of convergence is. For example, in Apéry’s differential equation for
ζ(3), we have t1 = 17 − 12

√
2, t2 = 17 + 12

√
2 and t2/t1 = (17 + 12

√
2)2 = 1153.999 . . . . Using the theory of

modular forms, Beukers [2] showed that with the choice of constant c = ζ(3)/6, the series B(t) − cA(t) no longer
has a singularity at t1. Then the exceptionally large ratio t2/t1 is sufficient to imply the irrationality of ζ(3). We now
explain why the constant c is ζ(3)/6.

Lemma 1. Let 	 be a discrete subgroup of SL(2,R) commensurable with SL(2,Z). Let A(τ) be a modular form of
weight k and t (τ ) be a non-constant modular function on 	 such that t (i∞) = 0. Let

L: θk+1 + rk(t)θ
k + · · · + r0(t)

be the differential operator annihilating A. Assume that g(t) is a rational function of t . Then a solution of the inho-
mogeneous differential equation LB(t) = g(t) is given by

B = A

q∫ (
· · ·

( q∫ (
q dt/dq

t

)k+1
g(t)

A

dq

q

)
· · ·

)
dq

q
, (6)

where the integration is iterated k + 1 times, and q = e2πiτ .

Remark. We did not specify the starting points and the paths of integration in (6) because different choices just give
different coefficients di in general solutions d0A + d1τA + · · · + dkτ

kA + B0(t), where B0(t) is a fixed solution
of LB(t) = g(t). However, when the integrand is a holomorphic modular form

∑∞
n=1 cnq

n that vanishes at i∞, we
specify the solution to be

B = A

q∫
0

(
· · ·

( q∫
0

( ∞∑
n=1

cnq
n

)
dq

q

)
· · ·

)
dq

q
= A

∞∑
n=1

cn

nk+1
qn.

In particular, this is what we refer to in the examples in the next two sections.

Proof. The proof uses the standard method of variation. Here we only prove the case k = 1; general cases can be
proved in the same way.

For convenience, we set

G1 = q dt/dq

t
, G2 = q dA/dq

A
.

Then we have

θA = A
G2

G1
, θτ = 1

2πiG1
. (7)

We will look for two functions p1(t) and p2(t) such that B = p1A + p2τA will solve the differential equation
LB(t) = g(t). We have θB = Aθp1 + τAθp2 + p1θA + p2θ(τA). At this point, we make an additional assumption
that p1 and p2 satisfy
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Aθp1 + τAθp2 = 0

so that

θB = p1θA + p2θ(τA).

Differentiating again, we obtain

θ2B = θp1θA + θp2θ(τA) + p1θ
2A + p2θ

2(τA).

Since A and τA are solutions of L, we find

LB = θ2B + r1θB + r2B = θp1θA + θp2θ(τA).

Therefore, if p1 and p2 satisfy{
Aθp1 + τAθp2 = 0,

θAθp1 + θ(τA)θp2 = g(t),

then B = p1A + p2τA is a solution of LB(t) = g(t). Solving the linear equations and using the expressions in (7),
we find

θp1 = −2πiτgG1

A
, θp2 = 2πigG1

A
.

It follows that

B(t) = −2πiA

t∫
τgG1

A

dt

t
+ 2πiτA

t∫
gG1

A

dt

t
.

Making the change of variable t �→ q , we obtain

B(t) = −2πiA

q∫
τgG2

1

A

dq

q
+ 2πiτA

q∫
gG2

1

A

dq

q
.

(Again, although t → q is a one-to-many mapping, different choices of branches just give different solutions.) Finally,
applying integration by parts to the first integral, we conclude that

B(t) = A

q∫ ( q∫
gG2

1

A

dq

q

)
dq

q
.

This proves the lemma for the case k = 1. General cases can be proved in the same way. �
Lemma 2. Let all the notations be given as in Lemma 1. The function(

q dt/dq

t

)k+1
g(t)

A

in the above lemma is a modular form of weight k + 2 on 	 with character χ .

Proof. The lemma is an immediate consequence of the well-known property that (q dt/dq)/t is a modular form of
weight 2 on 	 with trivial character. �
Example. Let t (τ ) and A(τ) be given as in (3), which satisfy Apéry’s differential equation (1) for ζ(3). Then we have

q dt/dq

t
= 1

2

(
E2(τ ) − 2E2(2τ) − 3E2(3τ) + 6E2(6τ)

)
,

where E2(τ ) = 1 − 24
∑∞

n=1 nqn/(1 − qn). By Lemma 1, a solution of the inhomogeneous solution LB = t near
t = 0 is given by
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B(t) = A(t)

q∫
0

q∫
0

q∫
0

f (τ)
dq

q

dq

q

dq

q
,

where

f (τ) =
(

q dt/dq

t

)3
t

(1 − 34t + t2)A
= 1

240

(
E4(τ ) − 28E4(2τ) + 63E4(3τ) − 36E4(6τ)

)
and E4(τ ) = 1 + 240

∑∞
n=1 n3qn/(1 − qn) is the normalized Eisenstein series of weight 4 on SL(2,Z).

Since the singularity t = 17 − 12
√

2 corresponds to the elliptic point τ = i/
√

6 fixed by
( 0 −1

6 0

)
, the assertion that

B(τ)− cA(τ), as a function of t , is not singular at t = 17−12
√

2 is equivalent to that B(τ)− cA(τ) is invariant under
the substitution τ → −1/6τ . Now we have A(−1/6τ) = −6τ 2A(τ). Thus, to prove the latter assertion, it suffices to
show that the function

E(τ) =
q∫

0

q∫
0

q∫
0

f (τ)
dq

q

dq

q

dq

q

satisfies

E(−1/6τ) − ζ(3)

6
= − 1

6τ 2

(
E(τ) − ζ(3)

6

)
. (8)

For this purpose, Beukers invoked the standard method of Mellin transforms. By the Mellin inversion formula, one
can write

E(−1/6τ) = 1

2πi

2+i∞∫
2−i∞

	(s)L(s + 3)

(
2πi

6τ

)−s

ds,

where 	(s) is the Gamma function and

L(s) = ζ(s)ζ(s − 3)
(
1 − 28 · 2−s + 63 · 3−s − 36 · 6−s

)
is the L-function associated with the modular form f (τ). We then check that the integrand has simple poles only at
s = 0 and s = −2. Moving the line of integration to the left of Re s = −2, counting residues, making a change of
variable s �→ −2 − s, using the functional equation(

2π

6

)−s

	(s)L(s) = −
(

2π

6

)s−4

	(4 − s)L(4 − s),

and then applying the Mellin inversion formula again, we deduce that (8) indeed holds. (See [2, Proposition 1] for
more details. See also the examples in Sections 3 and 4.) This basically summarizes Beukers’ argument.

As we have remarked earlier, the focus of [2] is to give a modular-function proof of Apéry’s irrationality results.
Therefore, the differential equations considered there are very well-behaved in some sense. That is, the Apéry limits c

of them all have the special property that the functions B(t) − cA(t) no longer have singularities at t1. However, in
many cases, we do not need such a strong property in order for the Apéry limits to exist. For example, consider the
differential equation

θ2A + 3t
(
18θ2 + 18θ + 7

)
A + 729t2(θ + 1)2A = 0.

It has three singularities 0, −1/27, and ∞. The local exponents at these points are {0,0}, {−2/3,−1/3}, and {1,1},
respectively. Thus, near t = −1/27, the solution A(t) = 1 + ∑

ant
n has a series expansion

A(t) = c1(t + 1/27)−2/3 + c2(t + 1/27)−1/3 + · · ·
for some constants c1 and c2, at least one of which is nonzero. On the other hand, we can show that the solution
B(t) = t + ∑

bnt
n of
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θ2B + 3t
(
18θ2 + 18θ + 7

)
B + 729t2(θ + 1)2B = t

behaves asymptotically as

A(t)
(
d0 + d1(t + 1/27)1/3 + · · ·)

near t = −27. Therefore, we have

B(t) − d0A(t) = A(t)
(
d1(t + 1/27)1/3 + · · ·).

We then can apply the Tauberian theorems to conclude that∣∣∣∣bn

an

− d0

∣∣∣∣ � 1

n1/3
.

To determine the exact value of d0, we use the theory of modular forms. The detailed computation is carried out in the
next section.

In general, if the singular point t1 = t (τ1) closest to the origin corresponds to an elliptic point τ1 of order n, then
the local exponents at t1 take the form a1/n < · · · < ak+1/n for some integers ai , at least one of which is relatively
prime to n. If the (k + 1)-times iterated integral E(τ) in Lemma 1 is a holomorphic function of τ at τ1, then the
same argument as that in the previous paragraph will imply that the Apéry limit is equal to E(τ1), provided that the
differential equation does not have another singularity t2 of the same modulus as t1. Likewise, if the singular point t1
corresponds to a cusp, then the local exponents are all equal to a rational number a. In this case, we have

A(t) = (t − t1)
a
(
ck logk(t − t1) + ck−1 logk−1(t − t1) + · · ·).

Under the same condition on E(τ), we will also be able to determine the Apéry limit, although the rate of convergence,
in general, is |bn/an − d0| � 1/ logn, which is extremely slow.

In the following two sections, we will determine the Apéry limits of several examples using the above ideas.

3. Elliptic point cases

In this section, we will explain in more detail how to determine the Apéry limits when the singularity t1 closest
to the origin corresponds to an elliptic point τ1. Throughout the section, we assume that 	 is a discrete subgroup
of SL(2,R) of genus zero commensurable with SL(2,Z), A(τ) is a (meromorphic) modular form of weight k with
character χ on 	, and t (τ ) is a uniformizer of the modular curve X(	) so that the differential equation LA(t) = 0
satisfied by A and t has polynomial coefficients. We also assume that A(i∞) = 1 and t (i∞) = 0 so that the differential
equation has local exponents all equal to 0 at t = 0. We let B(t) = tj + · · · be the solution of LB(t) = jk+1tj

holomorphic at t = 0, where j is a positive integer less than the maximal degree of the coefficients of L. For a
function f , with a slight abuse of notations, we write f (τ) if we consider f as a function of τ , and write f (t) if we
consider it as a (multi-valued) function of t .

Let h(t) be the coefficient of θk+1 in the differential equation LA = 0. We assume that the integrand

f (τ) =
(

q dt/dq

t

)k+1
tj

Ah(t)

inside (6) is a holomorphic modular form so that its L-function converges in some half-plane. Note that, by the
assumption that t (i∞) = 0 and A(i∞) = 1, the constant term of the Fourier expansion

∑∞
n=1 cnq

n of f (τ) is 0.
According to the discussion in the previous section, the Apéry limit is equal to the value of the (k + 1)-times iterated
integral

E(τ) =
q∫

0

(
· · ·

( q∫
0

f (τ)
dq

q

)
· · ·

)
dq

q
=

∞∑
n=1

cn

nk+1
qn

at τ1. Now to evaluate E(τ1), we express E(τ) using the Mellin inversion formula
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e−x = 1

2πi

c+i∞∫
c−i∞

	(s)x−s ds

which holds for all c > 0 and all complex numbers x with Rex > 0, and then try to deduce information about E(τ1) by
complex analytic argument. For example, if f (τ) is an eigenfunction with eigenvalue ε of the Atkin–Lehner involution
ωN = ( 0 −1

N 0

)
for some positive integer N , then by an argument similar to that in the proof of (8), we can show that

E(−1/Nτ) = ε−1(
√

Nτ)−kE(τ) + (residues).

Then we set τ = i/
√

N to get the value of E(i/
√

N ) (provided that ikε �= 1). When the elliptic element that fixes
τ1 is not

( 0 −1
N 0

)
, the situation is more complicated. Assume that f (τ) is modular on 	0(N). If we apply the Mellin

inversion formula in a straightforward manner and write

E(τ) = 1

2πi

c+i∞∫
c−i∞

	(s)L(s + k + 1, f )

(
2πτ

i

)−s

ds,

the complex analytic argument will yield

E(τ) = ε

τ k

∞∑
n=1

c∗
n

nk+1
e−2πin/Nτ + (residues),

where c∗
n denote the Fourier coefficients of (

√
Nτ)−k−2f (−1/Nτ) (which is a modular form on 	0(N) since ωN

normalizes 	0(N)). At this point, it is not clear how one should proceed to obtain information about E(τ1). In such
a situation, we need to apply the Mellin inversion formula in a different way. The key observation is the following
simple fact.

Lemma 3. For a matrix
(

a b
c d

) ∈ SL(2,R) with c > 0 and for a pair of functions g,g∗ : H → C, the relation

g

(
aτ + b

cτ + d

)
= ε(cτ + d)kg∗(τ )

holds for some constant ε and some integer k if and only if

g

(
τ

c
+ a

c

)
= ε(−τ)−kg∗

(
− 1

cτ
− d

c

)
holds.

Proof. We have

τ

c
+ a

c
=

(
a b

c d

)(
− 1

cτ
− d

c

)
.

This proves the lemma. �
Now if g(τ) = ∑∞

n=0 cnq
n and g∗(τ ) = ∑∞

n=0 c∗
nq

n in the above lemma are holomorphic modular forms, then the
lemma yields a functional equation between the pair of functions

L(s) =
∞∑

n=1

cn

ns
e2πina/c, L∗(s) =

∞∑
n=1

c∗
n

ns
e−2πind/c.

(See Lemma 4 below.) Using the functional equation, we deduce that

E

(
− 1

cτ
− d

c

)
= ε

τ k
E

(
τ

c
+ a

c

)
+ (residues).

We then make a suitable choice of τ such that −1/cτ − d/c = τ/c + a/c = τ1 and an evaluation of E(τ1) follows.
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We now prove the functional equation between L(s) and L∗(s) in the following lemma. The lemma may have
appeared somewhere in literature. However, failing to locate such a reference, we give a complete proof here. Notice
that when g = g∗ is a modular form of weight k on 	0(N) that is an eigenfunction of the Atkin–Lehner involution
wN with eigenvalue ε, the lemma gives the familiar functional equation

ikε

(
2π√
N

)−s

	(s)L(s, g) =
(

2π√
N

)s−k

	(k − s)L(k − s, g)

for the L-function L(s, g) of g.

Lemma 4. Let 	 and 	∗ be two discrete subgroups of SL(2,R) commensurable with SL(2,Z) such that the cusp ∞
has width 1. Assume that g(τ) = ∑∞

n=0 cnq
n and g∗(τ ) = ∑∞

n=0 c∗
nq

n are holomorphic modular forms of weight k on
	 and 	∗, respectively. Suppose that γ = (

a b
c d

)
with c > 0 is a matrix in SL(2,R) such that

g

(
aτ + b

cτ + d

)
= ε(cτ + d)kg∗(τ ) (9)

for some constant ε. Then the two functions

L(s) =
∞∑

n=1

cn

ns
e2πina/c, L∗(s) =

∞∑
n=1

c∗
n

ns
e−2πind/c

satisfy the functional equation(
2π

c

)−s

	(s)L(s) = ikε

(
2π

c

)s−k

	(k − s)L∗(k − s). (10)

Proof. For the ease of representation, here we only prove the case where the constant terms c0 and c∗
0 are 0. The case

c0, c
∗
0 �= 0 can be proved by a minor modification. First of all, setting τ = (−dτ + b)/(cτ − a) in (9), we obtain

g∗
(−dτ + b

cτ − a

)
= ε−1(−1)k(cτ − a)kg(τ ),

which by Lemma 3 is equivalent to

g∗
(

τ

c
− d

c

)
= ε−1τ−kg

(
− 1

cτ
+ a

c

)
. (11)

We now consider the integral

∞∫
0

ys−1g

(
iy

c
+ a

c

)
dy.

We have
∞∫

0

ys−1g

(
iy

c
+ a

c

)
dy =

∞∑
n=1

cne
2πina/c

∞∫
0

ys−1e−2πny/c dy

=
(

2π

c

)−s

	(s)

∞∑
n=1

cn

ns
e2πina/c =

(
2π

c

)−s

	(s)L(s).

Now we break the integral into two parts as usual, one from 0 to 1 and the other from 1 to ∞. For the integral from 0
to 1, we make a change of variable y �→ 1/y and obtain

1∫
ys−1g

(
iy

c
+ a

c

)
dy =

∞∫
y1−sg

(
i

cy
+ a

c

)
dy

y2
.

0 1
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Substituting the relation (11) with τ = iy into the last expression, we see that

1∫
0

ys−1g

(
iy

c
+ a

c

)
dy = ikε

∞∫
1

yk−s−1g∗
(

iy

c
− d

c

)
dy

and

(
2π

c

)−s

	(s)L(s) =
∞∫

1

ys−1g

(
iy

c
+ a

c

)
dy + ikε

∞∫
1

yk−s−1g∗
(

iy

c
− d

c

)
dy.

By the same token, we can also show that

(
2π

c

)−s

	(s)L∗(s) =
∞∫

1

ys−1g∗
(

iy

c
− d

c

)
dy + ε−1(−i)k

∞∫
1

yk−s−1g

(
iy

c
+ a

c

)
dy.

Upon the substitution s �→ k − s into the last expression, we immediately get the claimed functional equation. This
completes the proof. �

We now give two examples to illustrate our method.

Example 1. Consider the differential equation

θ2A + 3t
(
18θ2 + 18θ + 7

)
A + 729t2(θ + 1)2A = 0. (12)

This is case (h) that [1] fails to identify the Apéry limit. According to [1], Arne Meurman conjectures that the limit
is 2π2/81 − L(2, χ3)/2, where L(s,χ3) is the Dirichlet L-function associates with χ3 = ( ·

3 ). Meurman also suggests
the following Ramanujan-like formula

∞∑
n=1

(
n

3

)
(−e−π/

√
3)n

n2(1 − (−e−π/
√

3)n)
= 2π2

81
− 1

2
L(2, χ3).

Here we prove that these conjectures are indeed correct.
We first note that (12) is the differential equation satisfied by

t (τ ) = η(3τ)12

η(τ)12
, A(τ) = 1

1 + 27t (τ )

(
1 + 6

∞∑
n=1

(
n

3

)
qn

1 − qn

)
,

where A(τ) is a modular form of weight 1 on 	0(3) with character

χ

(
a b

c d

)
=

(
d

3

)
. (13)

The singular points 0, ∞, and −1/27 correspond to the cusps ∞, 0, and the elliptic point

τ0 = 3 + √−3

6
,

respectively. Using Lemma 1 we find a solution of

θ2B + 3t
(
18θ2 + 18θ + 7

)
B + 729t2(θ + 1)2B = t

is given by

B(t) = A(t)

q∫ q∫ (
q dt/dq

t

)2
t

A(t)(1 + 27t)2

dq

q

dq

q
= A(t)

q∫ q∫
η(3τ)9

η(τ)3

dq

q

dq

q
.

0 0 0 0
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The local exponents of the differential equation at −1/27 are −1/3 and −2/3. Thus, near t = −1/27, we have the
series expansion

A(t) = c1(t + 1/27)−2/3 + c2(t + 1/27)−1/3 + · · ·
for some constants ci with at least one of c1 and c2 being nonzero. Now write

E(τ) =
q∫

0

q∫
0

η(3τ)9

η(τ)3

dq

q

dq

q
.

Regardless of what the constants c1 and c2 are, we have

B(t) − E(τ0)A(t) = A(t)
(
E(t) − E(τ0)

) = A(t)
(
0 + d1(t + 1/27)1/3 + · · ·).

At this point, the Tauberian theorems (using, for example, [3, Corollary 1.7.3]) already assert that if A(t) = 1 +∑
n ant

n and B(t) = t + ∑
n bnt

n, then we have∣∣∣∣
∑N

n=1 bn∑N
n=1 an

− E(τ0)

∣∣∣∣ � N−1/3

as N → ∞. To get the stronger statement bn/an → E(τ0), we consider the sequences a′
n = an − an−1 and b′

n =
bn − bn−1, whose generating functions are (1 − t)A(t) and (1 − t)B(t), respectively. Since these two functions have
similar asymptotic behaviors as A(t) and B(t) near t = −1/27, the same Tauberian theorem implies that∣∣∣∣bn

an

− E(τ0)

∣∣∣∣ � n−1/3.

In particular, the Apéry limit is E(τ0). It remains to determine the value of E(τ0) = E((3 + √−3 )/6).
The integrand f (τ) = η(3τ)9/η(τ)3 in the definition of E(τ) is in fact the Eisenstein series of weight 3 associated

with the cusp 0 with the same character as (13). It can be written as

∞∑
n=1

n2(qn − q2n)

1 − q3n
=

∞∑
n=1

n2
∞∑

k=1

(
k

3

)
qkn.

It follows that

E(τ) =
∞∑

n=1

∞∑
k=1

1

k2

(
k

3

)
qkn.

Our strategy is to use Lemma 4 to show that

E(−1/3τ + 1/3) = 1

τ
E(τ/3 + 2/3) + r(τ )

for some function r(τ ) involving τ and special values of Dirichlet L-functions. Then we set τ = (−1 + √−3 )/2.
With this choice of τ , we have

− 1

3τ
+ 1

3
= τ

3
+ 2

3
= 3 + √−3

6
= τ0.

From this we can obtain the values of E(τ0).
Write the Fourier coefficients of qn in f (τ) as cn. We apply Lemma 4 with g = g∗ = f ,

γ =
(

a b

c d

)
=

(
2 −1
3 −1

)
,

ε = g(χ) = −1, and define

L(s) =
∞∑ cne

4πin/3

ns
, L∗(s) =

∞∑ cne
2πin/3

ns
.

n=1 n=1
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By the Mellin inversion formula, we have

E(−1/3τ + 1/3) =
∞∑

n=1

cne
2πin/3

n2
e−2πin/3τ = 1

2πi

3/2+i∞∫
3/2−i∞

	(s)L∗(s + 2)

(
2πi

3τ

)−s

ds. (14)

We then move the line of integration to Re s = −5/2 and make a change of variable s �→ −1 − s. (By the expression
of L(s) in terms of ζ(s) and L(s,χ3) given later in (16), we see that this is justified.) We obtain

E(−1/3τ + 1/3) = (residues) + 1

2πi

3/2+i∞∫
3/2−i∞

	(−1 − s)L∗(1 − s)

(
2πi

3τ

)s+1

ds.

Now Lemma 4 implies that(
2π

3

)−s

	(s)L∗(s) = −i

(
2π

3

)s−3

	(3 − s)L(3 − s).

It follows that

	(−1 − s)L∗(1 − s) = 	(1 − s)L∗(1 − s)

s(s + 1)
= −i

(
2π

3

)−1−2s
	(s + 2)L(s + 2)

s(s + 1)

= −i

(
2π

3

)−1−2s

	(s)L(s + 2),

and we have

E(−1/3τ + 1/3) = (residues) + 1

2πiτ

3/2+i∞∫
3/2−i∞

	(s)L(s + 2)

(
2πτ

3i

)−s

ds.

By the Mellin inversion formula again, the integral in the last expression is precisely E(τ/3 + 2/3). That is, we have

E(−1/3τ + 1/3) = (residues) + 1

τ
E(τ/3 + 2/3). (15)

It remains to compute the residues.
We have

L∗(s) =
∞∑

n=1

∞∑
k=1

n2
(

k

3

)
e2πink/3

nsks
.

Partitioning the double sum according to the residue classes modulo 3 and simplifying, we obtain

L∗(s) = −1

2
ζ(s − 2)

(
1 − 33−s

)
L(s,χ3) +

√
3i

2
L(s − 2, χ3)ζ(s)

(
1 − 3−s

)
. (16)

Using the fact that ζ(s) has zeros at negative even integers and L(s,χ3) has zeros at negative odd integers, we see that
the integrand

	(s)L∗(s + 2)

(
2πi

3τ

)−s

= 	(s)

(
2πi

3τ

)−s

×
(

−1

2
ζ(s)

(
1 − 31−s

)
L(s + 2, χ3) +

√
3i

2
L(s,χ3)ζ(s + 2)

(
1 − 3−2−s

))

in (14) has poles only at s = 0 and s = −1. We find that the residue at s = 0 is

Ress=0 = −1
ζ(0)(1 − 3)L(2, χ3) +

√
3i

L(0, χ3)ζ(2)(1 − 1/9). (17)

2 2
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With the evaluations ζ(0) = −1/2, L(0, χ3) = 1/3, and ζ(2) = π2/6, we simplify the expression into

−1

2
L(2, χ3) + 2

√
3π2i

81
.

Also, the residue at s = −1 is

−
(

−1

2
ζ(−1)(1 − 9)L(1, χ3) +

√
3i

2
L′(−1, χ3)(1 − 1/3)

)
2πi

3τ
.

Using the functional equation(
π

3

)−(s+1)/2

	

(
s + 1

2

)
L(s,χ3) =

(
π

3

)−(2−s)/2

	

(
2 − s

2

)
L(1 − s,χ3)

for L(s,χ3), one may deduce that

L′(−1, χ3) = 3
√

3

4π
L(2, χ).

Together with the evaluations ζ(−1) = −1/12 and L(1, χ3) = π
√

3/9, we find that the residue at s = −1 can be
simplified as

Ress=−1 = 2πi
√

3

81τ
+ 1

2τ
L(2, χ). (18)

In summary, the above computation (15), (17), (18) shows that

E(−1/3τ + 1/3) = −τ − 1

2τ
L(2, χ) + τ + 1

τ

2π2i
√

3

81
+ 1

τ
E(τ/3 + 2/3).

Setting τ = (−1 + √−3 )/2, we find

E

(
3 + √−3

6

)
= 2π2

81
− 1

2
L(2, χ3).

We summarize the above computation as follows.

Theorem 1. Let {an} and {bn} be the sequences satisfying the recursive relation

(n + 2)2un+2 + (
54n2 + 162n + 129

)
un+1 + (n + 1)2un = 0 (un = an or bn)

with the initial values a0 = 1, a1 = −21, b0 = 0, and b1 = 1. Then we have∣∣∣∣bn

an

− 2π2

81
+ 1

2
L(2, χ3)

∣∣∣∣ � n−1/3

as n → ∞. Moreover, the evaluation

∞∑
n=1

(
n

3

)
(−e−π/

√
3)n

n2(1 − (−e−π/
√

3)n)
= 2π2

81
− 1

2
L(2, χ3)

holds.

Example 2. In this example, we will construct a differential equation whose Apéry limits give a good rational ap-
proximation to the value L(2, f ) at 2 of the L-function associated with the cusp form f (τ) = η(τ)3η(7τ)3. The
Hauptmodul of the genus-zero group 	0(7) + ω7 is given by η(τ)4/η(7τ)4 + 49η(7τ)4/η(τ)4. We set

t (τ ) =
(

η(τ)4

4
+ 14 + 49

η(7τ)4

4

)−1

= q − 10q2 + 49q3 − 184q4 + · · · .

η(7τ) η(τ )
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The value of t (τ ) at the unique cusp ∞ is obviously 0, and at the elliptic points i/
√

7, (5 + √−3 )/14, and
(7 + √−7 )/14, it takes the values 1/28, 1, and ∞, respectively. According to Lemma 1 and the discussion at the
beginning of this section, we can basically choose any rational function g(t) such that g(0) = 0 and its numerator has
a degree smaller than its denominator and then set

A(τ) =
(

q dt/dq

t

)2
g(t)

f (τ )
.

Then the differential equation satisfied by t and A will give us a rational approximation to L(2, f ).
Here we choose g(t) = t/(1 − 29t + 28t2). With this choice, we find

A(τ) = 1 + 2
∞∑

n=1

(
n

7

)
qn

1 − qn

and the differential equation satisfied by t and A is

(1 − t)2(1 − 28t)θ2A − 14t (1 − t)2θA − (
2t + 4t2)A = 0.

The solution B(t) of the inhomogeneous differential equation

(1 − t)2(1 − 28t)θ2B − 14t (1 − t)2θB − (
2t + 4t2)B = t (1 − t)

has a t-expansion B(t) = t + 45t2/4 + · · · . Furthermore, we can show that B(t) − L(2, f )A(t) has no singularity at
t = 1/28. Therefore, we have the following good rational approximation to L(2, f ).

Theorem 2. Let f (τ) = η(τ)3η(7τ)3 be the cusp form of weight 3 with character χ
(

a b
c d

) = ( d
7 ) on 	0(7) and L(s,f )

be its associated L-function. Let {an} and {bn} be sequences satisfying

(n + 3)2un+3 − (
30n2 + 134n + 150

)
un+2 + (

57n2 + 142n + 81
)
un+1 − (

14n + 28n2)un = 0

with the initial values

a0 = 1, a1 = 2, a2 = 24, b0 = 0, b1 = 1, b2 = 45/4.

Then we have∣∣∣∣bn

an

− L(2, f )

∣∣∣∣ � 28−n.

4. Cusp cases

Let t (τ ) and A(τ) be given and assume that the integrand in (6) is a holomorphic modular form that vanishes at
i∞ as before. In this section we consider the cases where the singularity t1 closest to the origin corresponds to a cusp
α of the modular curve X(	). Pick an element in σ = (

a b
c d

) ∈ SL(2,R) (preferably lying in the normalizer of 	 in
SL(2,R)) such that σ∞ = α. Note that the asymptotic behavior of A(τ) near α is determined by that of A(στ) in a
neighborhood of ∞. To be more precise, we have A(στ) = (cτ +d)kA∗(τ ) for some modular form A∗(τ ) of weight k

on the group σ−1	σ . Also, t∗(τ ) = t (σ τ)− t1 is an algebraic function of t that vanishes at ∞. Then for some positive
integer r depending on the order of A∗(τ ) at ∞, A∗(τ )r has a power series expansion in t∗. The term (cτ + d)k gives
a logarithmic factor dk logk t∗ + · · · + d0. Therefore

A(στ) = (
dk logk t∗ + · · · + d0

)
(t∗)a × (a power series in t∗)

for some rational number a. (The number a in fact is equal to the local exponent of the differential equation at t1.)
This gives us the asymptotic behavior of A(τ) near α.

By the same token, to determine the asymptotic behavior of B(t) near t = t1, we need to consider B(στ) in a
neighborhood of ∞. Let f (τ) be the modular form of weight k + 2 inside the integral in (6). We apply Lemma 4 to
f (τ) and f ∗(τ ) = (cτ + d)−k−2f (τ), which is a modular form on σ−1	σ . We then use the functional equation to
find the asymptotics of B(t). The actual computation is similar to that for the elliptic point cases. We now give some
examples.
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Example 3. Consider the differential equation

θ2A − 4t
(
8θ2 + 8θ + 3

)
A + 256t2(θ + 1)2A = 0,

which is case (e) in [1]. It is conjectured that the Apéry limit is L(2, χ−1)/2, where χ−1 is the odd Dirichlet character
modulo 4. We now show that this is indeed the case. The differential equation is the one satisfied by

t (τ ) = η(τ)8η(4τ)16

η(2τ)24
, A(τ) = η(2τ)22

η(τ)12η(4τ)8
,

where A(τ) is a meromorphic modular form of weight 1 on 	0(4) with character

χ

(
a b

4c d

)
= (−1)cχ−1(d), (19)

and t (τ ) is a modular function on 	0(4). By Lemma 1,

B(τ) = A(τ)

q∫
0

q∫
0

η(τ)4η(4τ)8

η(2τ)6

dq

q

dq

q

is a solution of the inhomogeneous θ2B − 4t (8θ2 + 8θ + 3)B + 256t2(θ + 1)2B = t . The singularities 0, 1/16, ∞
correspond to the cusps ∞, 0, and 1/2, respectively, and the local exponents are {0,0}, {−1/2,−1/2}, and {1,1}.
Since

A(−1/4τ) = τ

2i

η(2τ)22

η(τ)8η(4τ)12
,

we know that

A(t) = (t − 1/16)−1/2(c1 log(t − 1/16) + c2 + · · ·)
as t approaches 1/16 for some nonzero constant c1. (The exact value of c1 is not important, as it suffices to know that
it is not zero.) Let

E(τ) =
q∫

0

q∫
0

η(τ)4η(4τ)8

η(2τ)6

dq

q

dq

q
.

In the following we will show that

E(−1/4τ) = 1

2
L(2, χ−1) − π2i

32τ
+ i

8τ

q∫
0

q∫
0

η(τ)8η(4τ)4

η(2τ)6

dq

q

dq

q
. (20)

This would imply that

B(t) − 1

2
L(2, χ−1)A(t) = (t − 1/16)−1/2(d0 + · · ·).

Then we deduce from the Tauberian theorems that∣∣∣∣bn

an

− 1

2
L(2, χ−1)

∣∣∣∣ � 1

logn
.

(Again, we shall apply the Tauberian theorems to the sequence a′
n = an − an−1 and b′

n = bn − bn−1 with generating
functions (1 − t)A(t) and (1 − t)B(t) to get the stronger conclusion.) We now prove (20).

The function η(τ)4η(4τ)8/η(2τ)6 is in fact the Eisenstein series of weight 3 associated with the cusp 1/2 with
character given by (19). Its q-expansion can be alternatively written as

η(τ)4η(4τ)8

η(2τ)6
=

∞∑
(−1)n−1 n2qn

1 + q2n
.

n=1
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Then by the Mellin inversion formula

E(−1/4τ) = 1

2πi

3/2+i∞∫
3/2−i∞

	(s)L(s + 2)

(
2πi

4τ

)−s

ds,

where

L(s + 2) =
∞∑

n=1

(−1)n−1n2
∞∑

k=1

(−1)k−1

((2k − 1)n)s+2
= ζ(s)L(s + 2, χ−1)

(
1 − 21−s

)
.

Moving the path of integration to Re s = −5/2 and making a change of variable s �→ −1 − s, we obtain

E(−1/4τ) = 1

2
L(2, χ−1) − π2i

32τ

+ 1

2πi

3/2+i∞∫
3/2−i∞

	(−1 − s)ζ(−1 − s)L(1 − s,χ−1)
(
1 − 22+s

)(2πi

4τ

)s+1

ds.

Using the functional equations for ζ(s) and L(s,χ−1) and the Legendre duplication formula for 	(s), we find the
integral on the right-hand side is equal to

1

2πi

i

2τ

3/2+i∞∫
3/2−i∞

	(s)ζ(s + 2)L(s,χ−1)
(
1 − 2−s−2)(−πiτ)−s ds.

By the Mellin inversion formula again, this is equal to

i

8τ

q∫
0

q∫
0

∞∑
n=1

(−1

n

)
n2qn/2

1 − qn

dq

q

dq

q
= i

8τ

q∫
0

q∫
0

η(τ)4η(4τ)8

η(2τ)6

dq

q

dq

q
.

This establishes (20). In summary, what we have shown is the following result.

Theorem 3. Let {an} and {bn} be the sequences satisfying

(n + 2)2un+2 − (
32n2 + 96n + 76

)
un+1 + (n + 1)2un = 0 (un = an or bn)

with the initial values a0 = 1, a1 = 12, b0 = 0, and b1 = 1. Then∣∣∣∣bn

an

− 1

2
L(2, χ−1)

∣∣∣∣ � 1

logn

as n → ∞.

Example 4. Let f (τ) = η(2τ)3η(6τ)3 be the cusp form of weight 3 on 	0(6) + ω3 with character

χ

(
a b

6c d

)
= (−1)c

(
d

3

)
, χ

(
3 −1
6 −3

)
= i.

We will find a rational approximation to L(f,2).
Choose

t (τ ) = η(6τ)5η(2τ)

η(τ )5η(3τ)
, A(τ) = η(τ)2η(3τ)3

η(2τ)η(6τ)
, (21)

where t (τ ) is modular on the smaller group 	0(6). The differential equation satisfied by t and A is

(1 + 8t)2(1 + 9t)θ2A + 9t (1 + 8t)2θA + 2t
(
1 + 16t + 72t2)A = 0.
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The singularities 0, −1/9, −1/8, and ∞ correspond to the cusps ∞, 1/2, 1/3, and 0, respectively. Set g(t) = t/(1 +
8t)(1 + 9t) so that(

q dt/dq

t

)2
g(t)

A
= f (τ).

Let A(t) = 1 + ∑∞
n=1 ant

n and B(t) = t − 7t2 + ∑∞
n=3 bnt

n be the solution of

(1 + 8t)2(1 + 9t)θ2B + 9t (1 + 8t)2θB + 2t
(
1 + 16t + 72t2)B = t + 8t2

holomorphic at t = 0. We now compute the limit of bn/an. For this purpose, we need to determine the behavior of

E(τ) =
q∫

0

q∫
0

f (τ)
dq

q

dq

q

near the cusp 1/2. Choose

σ = 1√
3

(
3 −2
6 −3

)
∈ 	0(6) + ω3,

and consider E(στ).
Since f (στ) = i(2

√
3τ − √

3 )3f (τ), according to Lemma 4, if f (τ) = ∑∞
n=1 cnq

n, then the function

L(s) =
∞∑

n=1

(−1)n
cn

n2
= −L(s,f )

satisfies(
π√

3

)−s

	(s)L(s) =
(

π√
3

)s−3

	(3 − s)L(3 − s).

Also, we have

E

(
− 1

2
√

3τ
+ 1

2

)
= 1

2πi

3/2+i∞∫
3/2−∞

	(s)L(s + 2)

(
πi√
3τ

)−s

ds.

The integrand has simple poles at s = 0 and s = −1 with residues

Ress=0 = L(2) = −L(2, f ), Ress=−1 = −L(1)

(
πi√
3τ

)
= i

τ
L(2, f ).

Using the functional equation for L(s) and the Mellin inversion formula, we find

E

(
− 1

2
√

3τ
+ 1

2

)
+ L(2, f ) = i

τ

(
E

(
τ

2
√

3
+ 1

2

)
+ L(2, f )

)
.

By Lemma 3, this amounts to

E(στ) + L(2, f ) = i(2
√

3τ − √
3 )−1(E(τ) + L(2, f )

)
.

Since A(τ) satisfies

A(στ) = −i(2
√

3τ − √
3 )A(τ),

we have

A(στ)
(
E(στ) + L(2, f )

) = A(τ)
(
E(τ) + L(2, f )

)
.

From this we see that the function A(τ)(E(τ) + L(2, f )), as a function of t , is holomorphic at t = −1/9. Therefore,
we have the following approximation of L(2, f ).
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Theorem 4. Let f (τ) = η(2τ)3η(6τ)3 and L(s,f ) be its associated L-function. Let {an} and {bn} be the sequences
satisfying

(n + 3)2un+3 + (
25n2 + 109n + 120

)
un+2 + 16

(
13n2 + 35n + 24

)
un+1 + 144(2n + 1)2un = 0

with the initial values

a0 = 1, a1 = −2, a2 = 10, b0 = 0, b1 = 1, b2 = −7.

Then we have∣∣∣∣bn

an

+ L(2, f )

∣∣∣∣ � (8/9)n.

Remark. Observe that the result in the above example shows that the composition t �→ τ �→ F(τ) = A(τ)(E(τ) +
L(2, f )) is a single-valued analytic function at t = −1/9. This in turn implies that the function F(τ) is invariant
under the substitution τ �→ γ τ for any γ in the stabilizer subgroup of 1/2 in 	0(6). This observation leads us to some
interesting identities for the values of L-functions. We will discuss these identities in the next section.

Example 5. Consider the differential equation

θ3A − 8t (2θ + 1)
(
2θ2 + 2θ + 1

)
A + 256t2(θ + 1)3A = 0.

This is equation (β) in [1]. We now determine its Apéry limit. The differential equation is satisfied by

t (τ ) = η(τ)8η(4τ)16

η(2τ)24
, A(τ) = η(2τ)20

η(τ)8η(4τ)8
.

They are modular on 	0(4). The singularities 0, 1/16, ∞ correspond to the cusps ∞, 0, 1/2, respectively. The
solution of the inhomogeneous differential equation

θ3B − 8t (2θ + 1)
(
2θ2 + 2θ + 1

)
B + 256t2(θ + 1)3B = t

is B(τ) = A(τ)E(τ), where

E(τ) = 1

240

q∫
0

q∫
0

q∫
0

(
E4(τ ) − 17E4(2τ) + 16E4(4τ)

)dq

q

dq

q

dq

q
.

We have

A(−1/4τ) = −4τ 2A(τ).

To determine the Apéry limit, we should study how E(τ) transforms under the substitution τ �→ −1/4τ . As usual, we
apply the Mellin inversion formula and write

E(−1/4τ) = 1

2πi

3/2+i∞∫
3/2−i∞

	(s)L(s + 3)

(
2πi

4τ

)−s

ds,

where

L(s) = ζ(s)ζ(s − 3)
(
1 − 17 · 2−s + 16 · 2−2s

)
satisfies

π−s	(s)L(s) = πs−4	(4 − s)L(4 − s).

Moving the line of integration to Re s = −7/2, counting the residues, making a change of variable s → −2 − s, using
the functional equation above, and invoking the Mellin inversion formula, we obtain

E(−1/4τ) = 7

16
ζ(3) − π3i

64τ
− 7

64τ 2
ζ(3) + 1

4τ 2
E(τ).

From this we deduce the following result.
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Theorem 5. Let {an} and {bn} be the sequences satisfying

(n + 2)3un+2 − 8(2n + 3)
(
2n2 + 6n + 5

)
un+1 + 256n3un = 0 (un = an or bn)

with the initial values a0 = 1, a1 = 8, b0 = 0, and b1 = 1. Then we have∣∣∣∣bn

an

− 7

16
ζ(3)

∣∣∣∣ � 1

logn

as n → ∞.

5. Identities involving L-values

Let the functions t (τ ), A(τ), f (τ), and E(τ) be given as in Example 4. Following the remark at the end of the
example, we know that the function F(τ) = A(τ)(E(τ) + L(2, f )) satisfies F(γ nτ) = F(τ) for all integers n, where
γ = ( 7 −3

12 −5

)
is a generator of the stabilizer subgroup of the cusp 1/2 in 	0(6). Now we have A(γ τ) = (12τ − 5)A(τ).

Thus, the function E(τ) satisfies E(γ τ) + L(2, f ) = (12τ − 5)−1(E(τ) + L(2, f )). By Lemma 3, this is equivalent
to

E

(
τ

12
+ 7

12

)
+ L(2, f ) = −τ

(
E

(
− 1

12τ
+ 5

12

)
+ L(2, f )

)
. (22)

On the other hand, we have f (γ τ) = (12τ − 5)3f (τ). By Lemma 4, letting cn denote the Fourier coefficients of
f (τ) = ∑∞

n=1 cnq
n, the pair of functions

L(s) =
∞∑

n=1

cn

n2
e14πi/12, L∗(s) =

∞∑
n=1

cn

n2
e10πi/12

satisfy(
π

6

)−s

	(s)L(s) = i3
(

π

6

)s−3

	(3 − s)L∗(3 − s).

Then, arguing as before, we have

E

(
− 1

12τ
+ 5

12

)
= L∗(2) − 1

τ
L(2) − 1

τ
E

(
τ

12
+ 7

12

)
. (23)

Comparing (22) and (23), we find

∞∑
n=1

cn

n2
e14πin/12 =

∞∑
n=1

cn

n2
e10πin/12 = −

∞∑
n=1

cn

n2
.

Now we observe that the deduction of (22) and (23) is really independent of differential equations and rational
approximations. Thus, we expect that identities of this type must exist in a general situation.

Lemma 5. Let 	 = 	0(N) or 	1(N). Let α = p/q �= ∞ be a cusp of 	. Let f (τ) = ∑∞
n=1 cnq

n be a holomorphic
modular form of weight 3 on 	 with character χ . Assume that f (τ) vanishes at ∞ and α. Then for any γ = (

a b
c d

)
with c > 0 in the stabilizer subgroup of α in 	 such that χ(γ ) = 1, we have

L(2) = L∗(2) = Lα(2),

where the L-functions are defined by

L(s) =
∞∑

n=1

cn

ns
e2πina/c, L∗(s) =

∞∑
n=1

cn

ns
e−2πind/c, Lα(s) =

∞∑
n=1

cn

ns
e2πinα

for Re s > 3 and then continued analytically to the whole complex plane.
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Proof. Let C be the path consisting of the vertical line from −d/c + i∞ to −d/c, the semi-circle from −d/c to α,
and the vertical line from α to α + i∞. Consider the integral∫

C

(cτ + d)f (τ) dτ.

Since −d/c is equivalent to ∞ under 	, by the assumption that f (τ) vanishes at ∞ and α, the integral is convergent.
Therefore, it is equal to 0 because f (τ) is assumed to be a holomorphic modular form. Now we make a change of
variable τ → γ −1τ in the integral from −d/c to α. We have

α∫
−d/c

(cτ + d)f (τ) dτ =
α∫

i∞

(
cγ −1τ + d

)
f (γ τ)

dτ

(−cτ + a)2
=

α∫
i∞

f (τ) dτ.

It follows that
−d/c+i∞∫
−d/c

(cτ + d)f (τ) dτ =
α+i∞∫
α

(cτ + d − 1)f (τ ) dτ. (24)

Now recall that a stabilizer γ of the cusp α = p/q takes the from(
1 + pqm −p2m

q2m 1 − pqm

)

for some integer m. Hence, (24) can be written as

−d/c+i∞∫
−d/c

(cτ + d)f (τ) dτ =
α+i∞∫
α

(cτ − cα)f (τ) dτ.

Finally, the two sides of the above identity are equal to

ic

4π2
L∗(2),

ic

4π2
Lα(2),

respectively. This gives L∗(2) = Lα(2). By a similar argument, we can also show that L(2) = Lα(2). This proves the
lemma. �
Example 6. Consider the differential equation(

1 − 11t − t2)θ2A − (
11t + 2t2)θA − (

3t + t2)A = 0,

appearing in Apéry’s sequence for ζ(2), where t and A are given by (4) and (5). Using Lemma 1, we find a solution
for the inhomogeneous differential equation(

1 − 11t − t2)θ2B − (
11t + 2t2)θB − (

3t + t2)B = t

is given by B(t) = A(t)E(t), where

E(t) =
q∫

0

q∫
0

( ∑
n≡1 mod 5

−2
∑

n≡2 mod 5

+2
∑

n≡3 mod 5

−
∑

n≡4 mod 5

)
n2qn

1 − qn

dq

q

dq

q
. (25)

In [2], Beukers mentioned that it can be shown that

A

(
τ

5τ + 1

)(
E

(
τ

5τ + 1

)
− ζ(2)

5

)
= A(τ)

(
E(τ) − ζ(2)

5

)
,

but did not give details. Here, we will prove this transformation formula using Lemma 5.
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Since A(τ/(5τ + 1)) = (5τ + 1)A(τ), by Lemma 3, it suffices to prove that

E

(
− 1

5τ
− 1

5

)
− ζ(2)

5
= − 1

τ

(
E

(
τ

5
+ 1

5

)
− ζ(2)

5

)
. (26)

Let f (τ) = ∑
n=1 cnq

n be the modular form of weight 3 in the definition of E(τ) in (25). It satisfies f (τ/(5τ + 1)) =
(5τ + 1)3f (τ). Now, by the usual argument, we find

E

(
− 1

5τ
− 1

5

)
= L∗(2) + L(2)

τ
− 1

τ
E

(
τ

5
+ 1

5

)
,

where L(s) = ∑
cne

2πin/5/ns and L∗ = ∑
cnn

−2πin/5/n2. Now applying Lemma 5 with
( 1 0

5 1

)
that fixes 0, we have

L(2) = L∗(2) = L(2, f ) =
∞∑

n=1

cn

n2
,

which is shown to be ζ(2)/5 in [2]. This gives the desired equality (26).

Corollary 1. Let
∑∞

n=1 cnq
n be the Fourier expansion of f (τ) = η(2τ)3η(6τ)3. Let L(s,f ) = ∑∞

n=1 cn/ns be the
L-function associated with f . Then we have

∑
n≡1 mod 12

cn

n2
= 2 + √

3

3
L(2, f ),

∑
n≡7 mod 12

cn

n2
= 2 − √

3

3
L(2, f ).

Proof. Obviously, cn is 0 whenever n is even. Also, using Jacobi’s triple product identity, we have

η(2τ)3η(6τ)3 =
( ∞∑

n=0

(−1)n(2n + 1)q(2n+1)2/4

)( ∞∑
n=0

(−1)n(2n + 1)q3(2n+1)2/4

)
.

From this we see that cn = 0 whenever n ≡ 5,11 mod 12. Thus, letting L1 = ∑
n≡1 mod 12 cn/n2, L2 =∑

n≡7 mod 12 cn/n2, and L3 = ∑
3|n cn/n2, we have L(2, f ) = L1 + L2 + L3. Moreover, since c3n = c3cn for all n,

we have L3 = −L(2, f )/3. It follows that

L1 + L2 = 4

3
L(2, f ). (27)

We now apply Lemma 5 with the matrix
( 1 0

12 1

)
, which fixes the cusp 0. Lemma 5 gives

e2πi/12(L1 − L2) +
∞∑

n=1

c3n

(3n)2
in = L(2, f ).

Comparing the real parts, we find

L1 − L2 = 2√
3
L(2, f ). (28)

Combining (27) and (28), we obtain the claimed identities. �
Corollary 2. Let

∑∞
n=1 cnq

n be the Fourier expansion of f (τ) = η(4τ)6. Let L(s,f ) = ∑∞
n=1 cn/ns be the L-function

associated with f . Then we have∑
n≡1 mod 16

cn

n2
−

∑
n≡9 mod 16

cn

n2
= cos

π

8
L(2, f ),

∑
n≡5 mod 16

cn

n2
−

∑
n≡13 mod 16

cn

n2
= − sin

π

8
L(2, f ).
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Proof. Clearly, the coefficients cn vanishes for all n not congruent to 1 modulo 4. Let Li , i = 0, . . . ,3, denotes∑∞
n≡4i+1 mod 16 cn/n2. Apply Lemma 5 with the matrix

( 1 0
16 1

)
, which fixes the cusps 0. We obtain

e2πi/16(L0 − L2) + e10πi/16(L1 − L3) = L(2, f ).

Comparing the real parts and the imaginary parts of the two sides, we find

cos
π

8
(L0 − L2) − sin

π

8
(L1 − L3) = L(2, f ), sin

π

8
(L0 − L2) + cos

π

8
(L1 − L3) = 0.

From this, we obtain the claimed identities. �
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