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Abstract

Positron emission tomography (PET) can provide in vivo, quantitative and functional information for diagnosis; however, PET image
quality depends highly on a reconstruction algorithm. Iterative algorithms, such as the maximum likelihood expectation maximization (MLEM)
algorithm, are rapidly becoming the standards for image reconstruction in emission-computed tomography. The conventional MLEM algorithm
utilized the Poisson model in its system matrix, which is no longer valid for delay-subtraction of randomly corrected data. The aim of this
study is to overcome this problem. The maximum likelihood estimation using the expectation maximum algorithm (MLE-EM) is adopted
and modified to reconstruct microPET images using random correction from joint prompt and delay sinograms; this reconstruction method is
called PDEM. The proposed joint Poisson model preserves Poisson properties without increasing the variance (noise) associated with random
correction. The work here is an initial application/demonstration without applied normalization, scattering, attenuation, and arc correction.
The coefficients of variation (CV) and full width at half-maximum (FWHM) values were utilized to compare the quality of reconstructed
microPET images of physical phantoms acquired by filtered backprojection (FBP), ordered subsets-expected maximum (OSEM) and PDEM
approaches. Experimental and simulated results demonstrate that the proposed PDEM produces better image quality than the FBP and OSEM
approaches.
© 2007 IPEM. Published by Elsevier Ltd. All rights reserved.
PACS: 87.59.Vb; 87.59.Qx; 87.59.Sz; 87.59.−e
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. Introduction

The high spatial resolution and sensitivity of microPET
ake it an ideal modality for in vivo gene imaging. Those

mages can be employed to monitor the effects of gene ther-
py inside animal bodies. High-quality image reconstruction
s important when establishing a solid basis for quantitative
tudy of microPET images [1,2].
The maximum likelihood estimation with expectation-
aximization (MLE-EM) algorithms has been utilized to

econstruct emission-computed tomography [3,4]. Statistical

∗ Corresponding author. Tel.: +886 3 5731870; fax: +886 3 5728745.
E-mail address: hslu@stat.nctu.edu.tw (H.H.-S. Lu).

t
c
a
a
a
f

350-4533/$ – see front matter © 2007 IPEM. Published by Elsevier Ltd. All right
oi:10.1016/j.medengphy.2007.05.013
nalysis that supports positron emission tomography (PET)
as been discussed elsewhere [5]. The MLE-EM technique
an model randomness in emission tomography with the
symptotic efficiency of MLE by applying the row opera-
ion and monotonic convergence using the EM algorithm.
urthermore, the EM algorithm can be parallelizable for 3D
ET image reconstruction [6].

The generation of quantitative PET images requires that
he effects of random coincidences and coincidence effi-
iency are corrected [7,8]. One random correction approach

pplies single count rates to a prompt sinogram [9]. This
pproach is generally based on geometrical and physical char-
cteristics. However, this approach makes many assumptions
or approximations that can decrease the accuracy of random
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orrection below that obtained using methods that utilize both
rompt and delay sinograms. An alternative approach applies
andom pre-correction to sinograms by subtracting the delay
inogram from a prompt sinogram before processing of
mages reconstruction. The random pre-correction using var-
ous approximations has been applied to correct accidental
or random) coincidental events [10,11]. Novel methods
ave been developed to approximate random pre-correction
12–14]. However, random pre-correction increases vari-
nce (noise) [13,15]. Since the distribution of random
re-correction is no longer Poisson-distributed, the shifted
oisson methods and saddle-point (SD) approximation have
een generated to enhance approximation in [16]. This study
roposes a joint Poisson model with MLE-EM reconstruc-
ion and random correction to prompt and delay sinograms
ithout using approximations or increasing variance.
Simulations, physical phantoms and real mouse studies of

he proposed reconstruction method using the microPET R4
ystem were performed. This study considered analyzed and
ssessed reconstruction of 2D data obtained from 3D sino-
rams after applying the Fourier rebinning (FORE) method
17] to verify the proposed approach. The proposed tech-
ique can also be utilized by future studies reconstructing
D images.

. Methodology

Two independent Poisson models associated with prompt
nd delay sinograms are labeled (1) and (2).

∗
p(d) ∼ Poisson(λ∗(d)), (1)

∗
d(d) ∼ Poisson(λ∗

r (d)), (2)

here λ∗(d) = λ∗
t (d) + λ∗

r (d) = ∑
bP(b, d)λt(b) + λ∗

r (d),
b = 1, 2, . . . , B, and d = 1, 2, . . . , D.

The term n∗
p(d) is the number of coincidental events in the

rompt sinogram at the dth projection line of response (LOR),
hich is formed by two detectors with the Poisson parameter
r mean, λ*(d); n∗

d(d) is the number of random coinciden-
al events in the delay sinogram with the Poisson parameter
∗
r (d); P(b,d) is the system probability matrix from the bth
ixel to the dth detection tube. Parameters λt(b) and λ∗

r (d)
re unknown and must be estimated. Parameter λt(b) rep-
esents the intensities of true coincidental events. Appendix
A.3) lists the log-likelihood of observed data in the prompt
nd delay sinograms. Since the MLE is difficult to determine
y maximizing Eqs. (1) and (2) numerically, the EM algo-
ithm is utilized (see Appendix A). Eqs. (3) and (4) are the
th iteration steps of the PDEM.

i−1

i
t(b) = λt (b)∑D

d=1P(b, d)

∑D

d=1

n∗
p(d)p(b, d)∑B

b′=1p(b′, d)λi−1
t (b′) + λ∗i−1

r (d)
, (3)

t
p
d
m
a
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∗i
r (d)=1

2

[
n∗

p(d)λ∗i−1
r (d)∑B

b′=1p(b′, d)λi−1
t (b′) + λ∗i−1

r (d)
+ n∗

d(d)

]
,

(4)

here i = 1,2, . . . I is the number of iterations.
The MLE-EM algorithm of joint the prompt and delay

inograms is described as follows and such a scheme is called
DEM reconstruction.

.1. Algorithm for PDEM reconstruction

. Set initial parameters using filtered backprojection (FBP),
the method of moments (MME) or alternative approach.

. Update the parameters by applying Eqs. (3) and (4).

. If |lin(λi−1
t (b), λ∗i−1

r (d)) − lin(λi
t(b), λ∗i

r (d))| < tolerance,
then the iteration is terminated; otherwise, go to step
2 and replace the old parameter values with new
values.

This method preserves Poisson properties and corrects
ias iteratively. In this study, P(b,d) was computed from
ORs and the locations of pixels based on the geomet-

ic characteristics of the microPET R4, including number
f detectors, image size, field of view (FOV), ring diame-
er, and number of angular views. The matrix size of one
lice is 96 × 84. There are 96 angular views and 84 LORs
or each angular view during image scanning. Furthermore,
ach P(b,d) can be identified from its detector pairs of LOR
nd image pixel location. Therefore, the PDEM reconstructs
he sinogram after being rebinned by FORE approach in the

icroPET system.

. System configurations of microPET R4 and data
andling

The phantoms and small animals were injected with F-18
DG and were scanned by the microPET R4. The microPET
4 system consists of 32 rings with 192 detectors per ring; the

mages were reconstructed using 128 × 128 pixels. Transax-
al projection bin size was 1.213 mm, and axial slice thickness
as 1.2115 mm. Coincidence timing window was set at
× 10−9 s. The lower and upper level energy thresholds
ere 350 and 750 keV, respectively. Span of the data set
as 3, and maximum ring difference (MRD) of the data set
as 31.
The data handling is described as follows: first, list mode

ata were histogramed into the 3D data with a span of 3
nd MRD of 31, which are sized 2 × 703 × 96 × 84 (i.e.,
sinograms (prompt and delay) × 703 slices × 96 angular

iews × 84 projection lines (LORs)) and stored as floating
ype data. The second data were obtained using random

re-correction and were sized 1 × 703 × 96 × 84. These 3D
ata were rebinned into 2D sinograms using the FORE
ethod with dead time and decay corrections. The attenu-

tion, normalization, scattering, and arc corrections were not
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ig. 1. The modified Shepp-Logan head image was used for simulation st
he PDEM technique reconstructed better images than did FBP and OSEM
aximum values.

erformed for simplicity as this study only focused on eval-
ation of random corrections. These further corrections for
DEM reconstruction will need more investigation in future
tudies.

Two matrices were constructed using the software embed-
ed in microPET R4 (i.e., microPET manager V1.6.4). The
rst matrix was 2 × 63 × 96 × 84 (i.e., 2 sinograms (prompt
nd delay) × 63 slices × 96 angular views × 84 projection
ines (LORs)) and stored as floating type data. This matrix
as reconstructed using PDEM. The PDEM was compared
ith the built-in reconstruction schemes, such as 2D FBP

nd OSEM methods, in the microPET R4 system. The
econd matrix was obtained using the FORE and on-line
andom pre-corrected data. The 2D OSEM, using 16 sub-
ets with four iterations, and the 2D FBP were applied to
econstruct the microPET images for comparison with the

DEM results. The default cut-off filter of 0.5 was used with
amp filtering of the 2D FBP. No reconstructed image was
moothed.

c
a
l

ig. 2. The 31st slice of the 28 line source phantom reconstructed using the three
icroPET R4 system. All images were rescaled using their own maximum values.
he images are shown in the rectangular window. Table 1 presents comparisons of
he line profiles of PDEM were less noisy than those of FBP and OSEM.
%, 10% and 30% random noise. All images were rescaled using their own

. Simulation, phantom and mouse studies

.1. Simulation studies

This study utilized a modified Shepp-Logan’s head phan-
om with dimension 128 × 128 pixels as the simulated object
o assess and compare the images reconstructed using
DEM, FORE + FBP, and FORE + OSEM. We assumed that

he simulated diameter of a ring was 28.28 mm and FOV
iameter was 20 mm. Target image was 128 × 128 pixels
20 mm × 20 mm) and rescaled intensity was ≤100. For each
ixel intensity, λt(b), was known and then input into λ∗

t (d);
ext, λ∗

r (d) is equal to the multiplication of a given noise
atio to λ∗

t (d); n∗
p and n∗

d can be simulated using the Poisson
istribution with parameters λ∗

t (d) and λ∗
r (d) as applied to

qs. (1) and (2). Total counts (sum of prompt and delayed

ounts) were 276,794, 316,383 and 342,407 with 5%, 10%
nd 30% noise levels, respectively, for the three slices simu-
ated. The prompt and delayed sinograms had the same matrix

methods. Both FBP and OSEM are reconstruction methods built into the

their FWHMs.
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Table 1
Average and standard deviation (in mm) of 28 FWHMs for horizontal
and vertical line profiles measured for comparing the spatial resolutions
of PDEM, OSEM and FBP

Methods Horizontal line profile Vertical line profile

Average Standard deviation Average Standard deviation

PDEM 1.795 0.302 1.775 0.334
OSEM 1.890 0.527 1.863 0.548
FBP 3.641 0.595 3.663 0.624

Those values are measured at the 31st slice. We used line sources in air,
thus iterative reconstructions tend to yield narrow point spread images as
iteration number increases. Meanwhile, the outer diameter of a line source
w
t
O

s
(
r
s
F
r
b
F

4

s
p
o
(

Table 2
A circular ROI with a radius of 9 pixels to the center of the uniform phantom
was utilized to compare noise levels between PDEM, FBP and OSEM

PDEM FBP OSEM

Average 1146.51 1107.66 1105.36
Standard deviation 36.26 46.82 65.56
C
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as 1.27 mm in this study. The FWHM in this table is used to compare
he point spread ranges of reconstructed images between PDEM, FBP and
SEM.

ize of 96 × 84 (i.e., 96 angular views × 84 projection lines
LORs)) with floating type data. Three random noise ratios of
andom to true coincidence counts, 5%, 10% and 30% were
imulated. The quality of images obtained using the PDEM,
BP and OSEM were compared (Fig. 1). The simulated
esults demonstrate that the quality of images reconstructed
y the PDEM exceeds that of images reconstructed by the
ORE + FBP and FORE + OSEM.

.2. Phantom studies

The first physical phantom was 28 homogenous line

ources with an outer diameter of 1.27 mm for each line. This
hantom was utilized to assess the performance and accuracy
f reconstruction quality between the FBP, OSEM and PDEM
Fig. 2). The spatial resolution was measured using FWHMs

t
(

n

ig. 3. The reconstructed 40th slice from a uniform phantom was used to investig
he position of the investigated line profile. All images were rescaled using their ow
nlarged central parts. Table 2 presents comparisons of their CVs.
oefficient of variation (%) 3.16 4.23 5.93

hose values were measured at the 40th reconstructed slice.

rom vertical and horizontal line profiles (Table 1). We used
inear interpolation to evaluate the profiles of FWHMs. The
verage and standard deviation of FWHMs in reconstruction
mages using the PDEM were smaller than those obtained by
BP and OSEM.

The second phantom was a uniform cylinder 7.6 cm high
ith an inner radius of 20 mm; this phantom was utilized to

ompare image quality obtained using the FBP, OSEM and
DEM. Imaging scan time was 1200 s using the microPET
4 after injection of 276 �Ci F-18 FDG. Three reconstruction

echniques were applied to reconstruct the 40th slice (Fig. 3).
econstruction images were presented with the associated
entral line profiles. Reconstruction images obtaining using
he PDEM had better quality than those generated by the FBP
nd OSEM on their line profiles. A circular region of interest
ROI) was employed to measure the noise level for the differ-
nt reconstruction methods. The lowest value for coefficient
f variation (CV), which is the ratio of standard deviation
o mean, was obtained by using the PDEM reconstruction

Table 2).

The PDEM reconstructed better quality images with lower
oise levels than the reconstructed approaches built into the

ate noise level generated by the three approaches. The white line indicates
n maximum values. The images are shown in the rectangular window with
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Fig. 4. Coronal and sagittal images of a mouse image reconstructed using PDEM (left), FBP (middle) and OSEM (right). The images reconstructed by PDEM
have less noise than those reconstructed by FBP and OSEM, as shown in the respective line profile across the heart. The narrow and high peak demonstrates
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he contrast of a reconstructed image. The profile of FORE + FBP has an in
ORE + FBP is worse. The vertical (top images) and horizontal (middle ima
urther investigation in future studies. The images are shown in the rectangu

icroPET R4 system during investigations of line and uni-
orm phantoms. Notably, in all reconstruction processing,
here was no attenuation, scatter, normalization, or arc correc-
ion. However, dead time and decay correction were applied
hen rebinning 3D sinograms into 2D data.

.3. Mouse studies

The PDEM method was applied to real data for small mice
o compare the quality of reconstructed images with that of
mages reconstructed using FBP and OSEM. A real normal

ice weighed 20 g. Imaging scan time was 600 s using the
icroPET R4 following an injection of 240.5 �Ci F-18 FDG.
his mouse was used to perform image quality under a normal
mount of F-18 FDG.

All 63 slices after FORE were reconstructed using the
DEM, FBP and OSEM. Fig. 4 presents coronal and sagit-

al images of a real mouse reconstructed by the PDEM;
he absence of normalization on the other hand is obvi-

us in the images (stripe appearance), these images are less
oisy and have clearer boundaries than those reconstructed
y the FBP and OSEM. Imaging results demonstrate that
he PDEM reconstructed images with better contrast and

c
m
c
a

bias that demonstrates the quality of image contrast and edge boundary of
ipes in this figure may be due to rebinning from 3D to 2D, which will need
dow with enlarged central parts.

learer boundaries than those reconstructed with the FBP and
SEM.

. Discussion

The benefit of the proposed method for PDEM recon-
truction is that it retains the characteristics of the Poisson
istribution without increasing estimate variance. In physi-
al phantom and real mice studies, the PDEM reconstructed
icroPET images with higher quality than those recon-

tructed by methods built into the microPET R4 system,
s determined by comparing CVs and FWHMs. Since the
icroPET R4 scanner supports prompt and delayed coinci-

ences, the PDEM technique can be utilized to reconstruct
igh-resolution microPET images using random correction,
s demonstrated. Although computational cost of the PDEM
ethod is high, increases in computer speed will decrease

rocessing time; relatively faster algorithms can be feasibly
eveloped in future studies. The PDEM method was suc-

essfully applied for the microPET reconstruction, this novel
ethod can be utilized in future work to reconstruct clini-

al PET images based on the same physical principle of data
cquisition and mathematical models.
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. Conclusion

This study proposed a novel PDEM method for PET
econstruction using random coincidence correction. The
DEM method reconstructs images with lower CVs and
maller FWHMs than those generated by methods built into
icroPET R4. The PDEM method has the same benefits as

he MLE-EM method in PET reconstruction—namely, row
peration, linear complexity, monotonic convergence, non-
egativity and parallelizability.

This study investigated the images reconstructed using
ORE + PDEM, which was applied to physical phantoms
nd real mouse data. The noise level, spatial resolutions and
oundary of images reconstructed using the FORE + PDEM
ere better than those generated using the FORE + FBP and
ORE + OSEM.

High-contrast, less noisy mouse images with clear object
oundaries can be generated using the proposed PDEM
ethod, as demonstrated from real mouse data acquired from

he microPET R4 system.
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ppendix A

Two independent Poisson models associated with prompt
nd delay sinograms (A.1) and (A.2), are employed.

∗
p(d) ∼ Poisson(λ∗(d)), (A.1)

∗
d(d) ∼ Poisson(λ∗

r (d)), (A.2)

here λ∗(d) = λ∗
t (d) + λ∗

r (d) =
∑

b

P(b, d)λt(b) + λ∗
r (d),

b = 1, 2, . . . , B, and d = 1, 2, . . . , D.

Then, the incomplete log-likelihood of the prompt and
elay sinograms are as follows:

lin(λt(b), λ∗
r (d))
=
D∑

d=1

{
−2λ∗

r (d) −
B∑

b=1

P(b, d)λt(b) + n∗
p(d)ln(λ∗

r (d)

+
B∑

b=1

P(b, d)λt(b)) + n∗
d(d)(ln(λ∗

r (d))

}
(A.3)

C

s
c

& Physics 30 (2008) 680–686 685

First, the observed data, n∗
p(d) and n∗

d(d) are treated as
ncomplete data. The EM algorithm uses all data. One possi-
le model of complete data is given by (A.4) and (A.5).

∗
p(b, d) ∼ Poisson(p(b, d)λt(b)), (A.4)

∗
d(d) ∼ Poisson(λ∗

r (d)). (A.5)

here n∗
p(b, d) is the number of emissions at the bth pixel

etected by the dth tube; n∗
d(d) is the number of random

r accidental coincidence (AC) events detected by the dth
ube in the delay window; n∗

p(b, d) and n∗
d(d) are assumed to

e statistically independent;n∗
p(d) = ∑B

b=1n
∗
p(b, d) + n∗

d(d).
ccording to models (A.4) and (A.5), the joint log-likelihood

unction of PDEM is

L(λt(b), λ∗
r (d))

=
∑

d

∑
b

{n∗
p(b, d)ln(P(b, d)λt(b)) − P(b, d)λt(b)}

+
∑

d

{n∗
d(d)ln(λ∗

r (d)) − λ∗
r (d)}. (A.6)

The E-step computes the conditional expectation of the
og-likelihood of complete data, given the observed incom-
lete data and old parameter values; λ0

t is initialized by
he FBP and λ∗0

t is initialized by the method of moments,
¯∗

d = ∑
dn

∗
d(d)/D. This is a function of new parameter val-

es of λi
t and λ∗i

t , where i is the number of iterations, and the
ormula is given in (A.7).

Q(λi
t(b), λ∗i

r (d)|λi−1
t (b), λ∗i−1

r (d))

= E[L(λi
t(b), λ∗i

r (d))]|n∗
p, n

∗
d, λ

i−1
t (b), λ∗i−1

r (d)].

(A.7)

The M-step determines the λi
t and λ∗i

r values that maximize
A.7), as can be achieved by setting the first derivatives to 0,
ielding the solutions given in (A.8) and (A.9).

i
t(b) = λi−1

t (b)∑D
d=1P(b, d)

∑D

d=1

× n∗
p(d)p(b, d)∑B

b′=1p(b′, d)λi−1
t (b′) + λ∗i−1

r (d)
. (A.8)

∗i
r (d)=1

2

[
n∗

p(d)λ∗i−1
r (d)∑B

b′=1p(b′, d)λi−1
t (b′) + λ∗i−1

r (d)
+ n∗

d(d)

]
.

(A.9)
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