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Abstract

We have successfully demonstrated SONOS memories with embedded Si-NCs in silicon
nitride. This new structure exhibits excellent characteristics in terms of larger memory
windows and longer retention time compared to control devices. Using the same thickness
2.5 nm of the bottom tunneling oxide, we found that N,O is better than O, oxide. Retention
property is improved when the thickness of N,O is increased to 3.0 nm.

(Some figures in this article are in colour only in the electronic version)

Silicon—oxide—nitride—oxide-silicon (SONOS) non-volatile
memories have been proposed to overcome the oxide thickness
limit of a conventional floating gate structure [1, 2]. In
SONOS, charges can be stored in the nitride which offers
several advantages over the traditional floating gate flash
memory: simple process, higher density, no floating gate
coupling effect, multi-bit operation and elimination of the
drain-induced turn-on effect [3-5]. Although scaled SONOS
can be operated at a low bias, endurance and data retention are
still challenging [6]. Recently, metal-oxide-semiconductor
(MOS) memories with embedded silicon nanocrystals have
attracted a great interest to mitigate the problem of retention
and endurance [7-11]. In this paper, SONOS memories with
embedded silicon nanocrystals (Si-NCs) are proposed. Si-
NGCs are introduced inside the silicon nitride film of SONOS
structure [12]. We found that the memory window of SONOS
with Si-NCs can be increased 2.5 times and the endurance can
also be increased significantly.

Figure 1 shows the device’s structure. P-type silicon
(1 0 0) wafers were used. After the local-oxidation-of-silicon,
or LOCOS, isolation step, a tunneling oxide was first thermally
grown in N,O (2.5 and 3.0 nm) or O, (2.5 nm). Then,
a 3 nm thick silicon nitride film was deposited in a low-
pressure chemical vapor deposition (LPCVD) system using
SiH,Cl, and NHj3 at 780 °C. Wafers were deposited on a
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thin amorphous silicon layer which was grown in LPCVD
by using SiHy (85 sccm, pressure ~100 mTorr, at 550 °C).
This amorphous silicon layer was crystallized into Si-NCs in
the following elevated temperature step of nitride deposition.
To sandwich Si-NCs, a top 4 nm silicon nitride was capped
on the amorphous silicon nucleation. A blocking oxide about
20 nm was then deposited using high-density plasma chemical-
vapor-deposition (HDPCVD). A 200 nm thick poly-Si film was
deposited as the control gate. Standard MOSFET fabricating
steps were followed to complete final devices.

The formation of Si-NCs was confirmed by atomic force
microscopy (AFM) as shown in figures 2(a)—(c). Compared
to the control one (figure 2(a)), the roughness was increased
as the deposition time of SiH, was increased from 1.5 min to
2 min. The average size was estimated to be around §—-10 nm
and the density can be as high as 3-7 x 10'! cm™2. Si-NCs
distribution and sizes obtained with AFM were verified using
HR-TEM (results to be published elsewhere). These Si-NCs
are well separated with an average distance of >6 nm, which
ensures electrical isolation between two NCs. The C-V was
measured from the transistor with a W/L of 100 x 100 pum?
when source/drain were grounded. Figure 3 shows program
window of all samples. The programmed state was achieved
by a constant Vg = 25 V for 10 s. The program windows
of SONOS, SONOS with Si-NCs deposited for 1.5 min and
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Figure 1. The cross-sectional scheme of a Si-NCs SONOS memory
structure with the nitride film embedded with the silicon
nanocrystals.
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2 min are 3.85 V, 6.25 V and 8.98 V, respectively. It is noted
that the program window of Si-NCs is larger than that of the
control sample. And large Si-NCs size (2 min) results in a
large memory window due to the increased trapping site. The
Si-NCs memory window of 8.98 V is large enough for multi-
level operation. For this sandwiched structure with embedded
Si-NCs, the electrons could be stored in Si-NCs, or at the
interface of silicon nitride and Si-NCs. However, from a
rough calculation, the charge in each dot would be around
10, which could not result in such a memory window. An
alternative explanation is trapping by nitride traps, while Si-
nanodots facilitate injection of electrons from the substrate.
Therefore the relatively large resultant memory window can
be obtained for SONOS with embedded Si-NCs.

The threshold voltage shown in figure 4 is extracted
from the constant drain current at 10~7 A. The data retention
characteristics of the different Si-NC memories at a high
temperature of 250 °C are shown in figure 4(a). SONOS
with Si-NCs exhibits a good performance than the control one.
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Figure 2. AFM pictures of Si nanocrystals deposited on Si;N, (a) control sample, () Si-NCs_1m30s sample and (c) Si-NCs_2 min sample,
with the same growth conditions. The densities are, respectively, 6.7 x 10" and 3 x 10" cm?. The diameters are about, respectively, 8 and

10 nm.
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Figure 3. Program window characteristic was a different sample. The program windows of control, Si-NCs_1m30s and Si-NCs_2 min

sample are about 3.58 V, 6.25 V and 8.98 V, respectively.
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Figure 4. (a) Data retention characteristics of different Si-NCs sizes when programming AV, =2V at T = 250 °C. (b) Data retention
characteristics of different tunnel oxide films when programming AV, =2V at T = 250 °C.

SONOS with Si-NCs shows only about 0.08 V degradation for
10*s. Only 14% charge loss when extrapolates to 10 years. It
is known that data loss of SONOS is mainly due to thermionic
emission and direct tunneling of charges [13]. The retention
performance was not degraded though the trapping efficiency
of the memory media with Si-NCs strongly improved.
Figure 4(b) shows the data retention characteristics of different
tunnel oxides with an initial programming AV, =2V atT =
250 °C. Itis found that, with the same thickness of 2.5 nm, N,O
is better than 2.5 nm O, oxides due to better quality [14, 15].
On the other hand, retention property is improved when
thickness of N,O is increased to 3.0 nm, resulting from the
reduction of direct tunneling probability.

In conclusion, we have successfully demonstrated
SONOS memories with embedded Si-NCs in silicon nitride.
Based on the above result, embedded Si-NCs in silicon nitride
of SONOS memories exhibit excellent characteristics in terms
of larger memory windows and long retention time.
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