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Abstract: We determine necessary and sufficient conditions for a com-
plete multipartite graph to admit a set of 1-factors whose union is the whole
graph and, when these conditions are satisfied, we determine the minimum
size of such a set. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 239–250, 2008
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1. INTRODUCTION

All graphs considered will be finite, simple and undirected, unless stated otherwise.
We denote by V (G) and E(G), respectively, the vertex and edge set of a graph G.
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The order of G is |V (G)|. The maximum degree of G will be denoted by �(G) and
its chromatic index by χ′(G).

Let G be a graph of even order. A 1-factor (or perfect matching) of G is a
1-regular spanning subgraph, that is, a set of exactly |V (G)|

2 independent edges.1 G
is 1-extendable if every edge of G belongs to at least one 1-factor of G. A 1-factor
cover of G is a set F of 1-factors of G such that ∪F∈F = E(G). Notice that G admits
a 1-factor cover if and only if it is 1-extendable. If G is 1-extendable, a 1-factor
cover of minimum cardinality will be called an excessive factorization.

Thus, a 1-factorization of G is a 1-factor cover F with the property that all the
1-factors inF are pairwise disjoint. Any 1-factorization is an excessive factorization,
but the converse is obviously not true. For example, the Petersen graph has no
1-factorization, but has an excessive factorization consisting of five 1-factors (see
[2]). The graphs which admit an excessive factorization are precisely those that
have a 1-factor cover, that is, those that are 1-extendable.

Let G be a 1-extendable graph. The excessive index of G, denoted χ′
e(G), is

the size of an excessive factorization of G. We define χ′
e(G) = ∞ if G is not

1-extendable.
Bonisoli [1] and Wallis [6] considered 1-factor covers of the complete graph K2n

which do not contain a 1-factorization of K2n.
Bonisoli and Cariolaro [2] introduced the concept of excessive factorization,

defined the parameter χ′
e(G), and studied excessive factorizations of regular graphs.

They posed a number of open problems and conjectures. A first question is, of
course, to determine χ′

e(G) for any graph G. It is observed in [2] that this problem
is NP-hard since, if G is regular and has even order, then χ′

e(G) = �(G) if and only
if G is 1-factorizable, and to determine whether a regular graph G is 1-factorizable
is NP-complete. Therefore, we can expect to be able to determine χ′

e(G) only for
some specific classes of graphs.

In this article, we consider the class of complete multipartite graphs. Hoffman
and Rodger [3] determined the chromatic index of all complete multipartite graphs.
Here, we shall determine the excessive index χ′

e(G) of any complete multipartite
graph G.

We will often use, without further reference, the following fact, proved by
de Werra [7] and, independently, by McDiarmid [4]. If a multigraph G has a
k-edge coloring, that is, if k ≥ χ′(G), then it also has an equalized k-edge color-
ing, namely a k-edge coloring such that each color class has size either � |E(G)|

k
� or

� |E(G)|
k

	.
We shall also need the concept of excessive coloring. An excessive coloring

of a graph G is an assignment of (possibly more than one) colors to each of the
edges of G such that the edges on which a given color appears are independent
(i.e., they form a matching). Thus an excessive coloring can be simply specified

1 To be precise, a 1-factor F of G is a 1-regular spanning subgraph of G and a perfect matching is the edge set of
F, but the two terms are often used interchangeably in the literature.
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as a collection of matchings of G whose union is E(G). It is normally interesting
to consider this concept when additional restrictions are imposed on the matchings
which form the color classes. For example, when each color class is a 1-factor, the
corresponding excessive coloring is equivalent to a 1-factor cover.

2. 1-EXTENDABLE COMPLETE MULTIPARTITE GRAPHS

We adopt the notation G = K(n1, n2, . . . , nr) to designate a complete multipar-
tite graph with partite sets of size n1, n2, . . . , nr, where n1 ≥ n2 ≥ n3 ≥ . . . ≥ nr.
We also let V1, V2, . . . , Vr denote the r partite sets of G. By definition, for each
i, Vi is an independent set of ni vertices of G which are joined to every vertex
in G − Vi.

Trivially, the complete bipartite graph K(m, n) is 1-extendable if and only if
m = n, in which case it actually has a 1-factorization. Therefore, χ′

e(K(m, n)) = n

if n = m and ∞ otherwise. From now on we make the convention that all com-
plete multipartite graphs considered have r partite sets, where r ≥ 3. The fol-
lowing lemma is probably well known, but we give a full proof for the sake
of completeness.

Lemma 1. The graph G = K(n1, n2, . . . , nr) has a 1-factor if and only if

1.
∑r

i=1 ni is even;
2. n1 ≤ ∑r

i=2 ni.

Proof. The first of the above conditions is clearly necessary in order for the
graph G to have a 1-factor, as G must have even order. To see the necessity of
the second, it suffices to see that any 1-factor of G must match the vertices of V1

(the first partite set) to the vertices of the complement (since the vertices in V1

are mutually nonadjacent). Hence, the two conditions are necessary. To see the
sufficiency, assume both conditions hold. We prove the existence of a 1-factor by
induction on k, where 2k = ∑r

i=2 ni − n1.
If k = 0, then we have n1 = ∑r

i=2 ni and a 1-factor of G is easily obtained by
matching the vertices of V1 to the vertices of V2 ∪ V3 ∪ · · · ∪ Vr. Assume now that
the theorem holds for any G with

∑r
i=2 ni − n1 < 2k and consider the case of a G

with
∑r

i=2 ni − n1 = 2k. Let x ∈ Vr and y ∈ Vr−1 and consider the edge e = xy. We
prove that there is a 1-factor of G containing this edge. This is equivalent to proving
that the graph G − x − y has a 1-factor. But it is easily seen that the graph G − x − y

is complete multipartite with partite sets V ′
1, V

′
2, . . . , V

′
r , where |V ′

i | = ni for all
i ≤ r − 2 and |V ′

r−1| = nr−1 − 1 and |V ′
r | = nr − 1. Moreover, G − x − y satisfies

the inductive hypothesis, since |V ′
2| + |V ′

3| + · · · + |V ′
r−1| + |V ′

r | − |V ′
1| = 2k − 2.

Thus, G − x − y has a 1-factor and hence G has the desired 1-factor. �

Using Lemma 1, it is easy to determine which complete multipartite graphs admit
an excessive factorization, as given by the following theorem.
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Theorem 1. The graph K(n1, n2, . . . , nr) is 1-extendable if and only if

1.
∑r

i=1 ni is even;
2. n1 <

∑r
i=2 ni.

Proof. Let G = K(n1, n2, . . . , nr) and suppose G is 1-extendable. The first
condition follows immediately from the fact that G has a 1-factor. Let e be an
edge joining the second and third partite sets. By the fact that G is 1-extendable,
there exists a 1-factor F containing e. Clearly, this 1-factor must match the vertices
of the first partite set onto the vertices of the complement, but the two vertices
which are the endpoint of e are F-saturated. Hence, the condition (2) above (which
is clearly equivalent to n1 ≤ ∑r

i=2 ni − 2, given the parity of G) must hold.
Conversely, suppose G satisfies both conditions above. We prove that G is 1-

extendable. Let e ∈ E(G). We prove the existence of a 1-factor F containing e.
Equivalently, we prove that the graphG − x − y has a 1-factor , wherexy = e. With-
out loss of generality, we can assume x ∈ Vi, y ∈ Vj, and i < j. But then G − x −
y ∼= G1 = K(n1, n2, . . . ni−1, ni − 1, ni+1, . . . , nj−1, nj − 1, nj+1, . . . , nr) andG1

is easily seen to satisfy the hypotheses of Lemma 1. Hence, G1 has a 1-factor and
G has the desired 1-factor. �

3. SOME LEMMAS

Theorem 1 gives necessary and sufficient conditions for a complete multipartite
graph G to admit an excessive factorization, that is, to satisfy χ′

e(G) < ∞. We are
now left with the task of determining precisely χ′

e(G) for all such graphs.
We start by giving some lower bounds. One obvious lower bound is the maximum

degree of G, because every edge incident with a vertex of maximum degree must
belong to a distinct 1-factor in an excessive factorization. Thus, χ′

e(G) ≥ �(G)
holds, not only for complete multipartite graphs, but for all graphs G (in fact an
easy argument along the same line also shows that, for all graphs G, χ′

e(G) ≥ χ′(G),
but we shall not need this stronger inequality here).

The next lower bound is less trivial. Let G = K(n1, n2, . . . , nr). Let Vi be the
ith partite set of G. Let Ei be defined as

Ei = E(G − Vi).

Define

σi(G) =
⌈

2|Ei|
|V (G)| − 2|Vi|

⌉
. (1)

Since the vertices of Vi are independent in G, any 1-factor F of G must contain
exactly ni edges joining Vi to G − Vi. Thus, in particular, the 1-factor F contains
exactly |V (G)|−2|Vi|

2 edges from Ei. It follows from (1) that any 1-factor cover must
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contain at least σi(G) 1-factors. This proves that

χ′
e(G) ≥ max

1≤i≤r
σi(G).

As shown next, the quantity max1≤i≤r σi(G) is particularly simple to evaluate,
since it is always equal to σ1(G).

Proposition 1. Let G = K(n1, n2, . . . , nr). Then

σ1(G) = max
1≤i≤r

σi(G),

where the parameters σi(G) are defined in (1).

Proof. We start by observing that

σk(G) = 2
∑

1≤i<j≤r;i,j �=k ninj∑r
i=1 ni − 2nk

.

Therefore, Proposition 1 follows from the truth of the following inequality in-
volving positive integers x1, x2, . . . , xr, where x1 = max1≤i≤r xi:

∑
2≤i<j≤r xixj∑r
i=1 xi − 2x1

≥
∑

1≤i<j≤r;i,j �=k xixj∑r
i=1 xi − 2xk

. (2)

By the arbitrariety of the xis (i > 1), we can assume k = 2. Further, if x1 = x2

there is clearly nothing to prove because the two sides of (2) are in this case identical.
Thus, we may assume that x1 > x2. We have to prove that( ∑

2≤i<j≤r

xixj

)(
r∑

i=1

xi − 2x2

)
≥

( ∑
1≤i<j≤r;i,j �=2

xixj

)(
r∑

i=1

xi − 2x1

)
.

Let ξ = x3 + x4 + · · · + xr and let η = ∑
3≤i<j≤r xixj. Using these notations, we

can rewrite the above inequality as

(x2ξ + η)(x1 − x2 + ξ) ≥ (x1ξ + η)(x2 − x1 + ξ).

Multiplying out, simplifying and rearranging the terms, we obtain

(x1 − x2)ξ2 − (x2
1 − x2

2)ξ − 2η(x1 − x2) ≤ 0.

Dividing by x1 − x2, which is positive by assumption, we obtain

ξ2 − (x1 + x2)ξ − 2η ≤ 0.

But we have

ξ2 = (x3 + x4 + · · · + xr)
2 = x2

3 + x2
4 + · · · + x2

r + 2

·
∑

3≤i<j≤r

xixj = x2
3 + x2

4 + · · · + x2
r + 2η.
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Thus, the problem is reduced to showing that

x2
3 + x2

4 + · · · + x2
r ≤ (x1 + x2)(x3 + x4 + · · · + xr).

Using the assumption that x1 = max1≤i≤r xi and the fact that

x2
3 + x2

4 + · · · + x2
r ≤ x1(x3 + x4 + · · · + xr) < (x1 + x2)(x3 + x4 + · · · + xr),

we conclude the proof. �
Thus, we have two nontrivial lower bounds on χ′

e(G), one is �(G) and the
other is σ1(G). Neither of the two is necessarily worse or better than the other. For
example, if G = K(5, 4, 3) then σ1(G) = 12 > �(G) = 9, but if G = K(4, 4, 4, 2)
then σ1(G) = 11 < �(G) = 12.

Let

τ(G) = max{σ1(G), �(G)}.
By what we have just proved, we have

Lemma 2. Let G be a 1-extendable complete r-partite graph. Then

χ′
e(G) ≥ τ(G).

In the next section, we shall prove that the above inequality is indeed an equality
by proving the following theorem.

Theorem 2. Let G be a 1-extendable complete r-partite graph. Then

χ′
e(G) = τ(G) = max{σ1(G), �(G)}.

We shall use the following lemma, which can be seen as an extension of Hall’s
Theorem. It generalizes a theorem of Bondy ([5, Theorem 13.3, p.109]). Inter alia, it
completely solves the problem of characterizing the excessive colorings of G − V1

which extend to 1-factor covers of G, for any complete multipartite graph G.

Lemma 3. Let C be a set (of colors) and let s, t be positive integers, with s ≤ t ≤
|C|. Let T = {y1, y2, . . . , yt} be a set of cardinality t and let S = {x1, x2, . . . , xs}
be a set (disjoint from T) of cardinality s. For each y ∈ T , let L(y) ⊂ C be a set
of colors. Let, for each α ∈ C, Tα = {y ∈ T ; | α ∈ L(y)}. Consider the complete
bipartite graph X with bipartition (T, S). There exists an excessive coloring ψ of X
with color set C such that, for each α ∈ C, the color class corresponding to α is a
perfect matching from S to Tα if and only if the following conditions are satisfied:

1. every α ∈ C is contained in precisely s sets of the family {L(y) | y ∈ T };
2. |L(y)| ≥ s (for all y ∈ T ).

Proof. Assume that there exists an excessive coloring as in the statement of
the lemma. Then clearly condition (1) is satisfied since the existence of a perfect
matching from S to Tα implies |Tα| = s. Condition (2) follows from the fact that
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every y ∈ T is incident with s edges in the graph X, and each of these edges must
be assigned at least one distinct color by ψ, this color being in L(y). Thus, the two
conditions above are necessary for the existence of ψ. We now show that they are
sufficient.

Consider the bipartite graph B1 with bipartition (T, C), where there is an edge
between y and α if and only if α ∈ L(y). By assumption, degB1

(α) = s for all α ∈ C
and degB1

(y) ≥ s for all y ∈ T .
Let B2 be a spanning subgraph of B1 such that

degB2
(y) = s for all y ∈ T.

Since B2 is bipartite and �(B2) = s, by Kőnig’s Theorem B2 has an s-edge coloring
π with colors {1, 2, . . . , s}. We now define an edge coloring θ of X as follows: if
y is joined in B2 to color α by an edge colored j, we color the edge yxj of X by
color α. It is easy to see that the coloring θ is well defined, and that it is in fact a
proper edge coloring of X. To obtain the required excessive coloring of X, it is now
sufficient, for each color α, to extend arbitrarily the color class Cα corresponding
to α to a perfect matching from S to Tα. �

Instead of proving Theorem 2 directly, in the next section we shall prove the
following theorem, whose equivalence with Theorem 2 will be established below.

Theorem 3. Let G = K(n1, n2, . . . , nr) be a 1-extendable complete r-partite
graph and let H = K(n2, n3, . . . , nr). Then there exists an excessive coloring φ

of H with exactly τ(G) colors such that each color class misses exactly n1 vertices
of H and each vertex of H misses at least n1 colors.

Using Lemma 3, we now prove the equivalence between Theorems 2 and 3.

Lemma 4. Theorem 2 holds for G if and only if Theorem 3 does.

Proof. Assume Theorem 2 is true for the graph G = K(n1, n2, . . . , nr). Let ψ

be an excessive factorization of G. Then ψ, when viewed as an excessive coloring,
consists of τ(G) color classes. Let H = G − V1, where V1 is the largest partite set
of G. Then H ∼= K(n2, n3, . . . , nr). Clearly, the restriction φ of ψ to E(H) makes
Theorem 3 true for the graph G. Hence, if Theorem 2 holds for G then Theorem 3
does. For the converse, let G and H be as above and assume Theorem 3 holds for
G. By Theorem 3, there exists an excessive coloring φ of H with τ(G) color classes
such that each color class is a matching missing exactly n1 vertices of H and each
vertex of H misses at least n1 colors. We now extend φ to an excessive coloring
of G as follows. Let C be the color set of φ. For each vertex v ∈ V (H), let L(v) be
the set of colors missing at v, that is, the set of colors which do not appear on any
of the edges incident with v. By the conditions satisfied by φ, |L(v)| ≥ n1 for all
v ∈ V (H) and every color α ∈ C appears on exactly n1 of the sets L(v), v ∈ V (H).
Therefore, the conditions of Lemma 3 are satisfied by the color set C, the family
of sets L = {L(v) | v ∈ V (H)} and the set S = V1. By Lemma 3, there exists an
excessive coloring ψ of the complete bipartite graph U with bipartition (V (H), V1)
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such that, for every color α, the color class corresponding to α is a perfect matching
from S to Tα, where Tα is the set of vertices in V (H) which are missing (with respect
to φ) color α. Therefore, it is easily seen that the map ρ defined by

ρ(e) =
{

φ(e) if e ∈ E(H), and

ψ(e) if e ∈ E(U).

is an excessive coloring of G which uses τ(G) colors and such that every color class
is a 1-factor of G. Therefore, ρ is a 1-factor cover of G consisting of τ(G) 1-factors,
and, by Lemma 2, this number is necessarily the minimum, which proves that ρ is
an excessive factorization of G. Thus, Theorem 2 holds for G. This concludes the
proof of Lemma 4. �

4. THE MAIN RESULT

We now prove Theorem 2 for all those complete multipartite graphs for which
σ1(G) > �(G) by proving the following.

Theorem 4. Let G be a 1-extendable complete multipartite graph such that
σ1(G) > �(G). Then χ′

e(G) = σ1(G).

Proof. Let G = K(n1, n2, . . . , nr) and let H = G − V1
∼= K(n2, n3, . . . , nr),

where V1 is the largest partite set of G, and assume that G is 1-extendable and
σ1(G) > �(G). By Lemma 4, it will suffice to show that Theorem 3 holds for G.
Thus, we need to find an excessive coloring φ of H with exactly σ1(G) color classes,
each of which misses exactly n1 vertices of H and with respect to which each vertex
of H misses at least n1 colors. Let m = |V (H)|−n1

2 . Notice that σ1(G) = ⌈ |E(H)|
m

⌉
. Let

m1 = |E(H)| − (σ1(G) − 1)m. Notice that 0 < m1 ≤ m.
We prove that there exists an edge-coloring of H with σ1(G) − 1 color classes of

size m and 1 color class of size m1.
By assumption G has a 1-factor, and hence H has a matching of size m. Let M1

be a matching in H of size m1. Consider the graph H − M1. We have

χ′(H − M1) ≤ χ′(H) ≤ χ′(G) = �(G) ≤ σ1(G) − 1.

Hence, there exists a (σ1(G) − 1)-edge coloring of H − M1. Notice that |E(H −
M1)| = (σ1(G) − 1)m. But then there exists an equalized (σ1(G) − 1)-edge color-
ing of H − M1, so that each color class has size exactly m.

Putting back the matching M1 as an additional color class, we have the required
edge coloring of H. But now, in order to obtain an excessive coloring of H as in
Theorem 3, we just need to extend the color class M1 to an arbitrary color class
(matching) of size m of H. The excessive coloring φ thus defined is such that any
vertex v of H of degree degH (v) “sees” at most degH (v) + 1 colors, because the
only possible edges with multiple colors are those in M1. Thus, at any vertex of H
there are at most

σ1(G) − (degH (v) + 1) ≥ σ1(G) − �(H) − 1 ≥ �(G) − �(H) = n1
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colors missing. Notice that each color class ofφ is a matching of size m and hence (by
the definition of m) misses exactly n1 vertices of H. Therefore, φ verifies Theorem 3
for G, and hence (by Lemma 4) it verifies Theorem 2 for G. This terminates the
proof. �

To terminate the proof of Theorem 2, we need to settle the case σ1(G) ≤ �(G).
The following notation will be helpful in the sequel. If Z is a graph, v ∈ V (Z) and
k is an integer, the k-deficiency of v in Z is the quantity

k def(v) = k − degZ(v)

and the k-deficiency of Z is defined as

k def(Z) =
∑

v∈V (Z)

k def(v) =
∑

v∈V (Z)

(k − degZ(v)).

Notice that, if k = �(G), then the k-deficiency of Z is usually called deficiency of
Z and denoted by def(Z).

Proposition 2. Let G = K(n1, n2, . . . , nr) and let H = G − V1
∼=

K(n2, n3, . . . , nr). Then the following two conditions are equivalent:

1. σ1(G) ≤ �(G);
2. �(G) def(H) ≥ n1�(G).

Proof. Condition 1 is equivalent to

2|E(H)|
|V (H)| − n1

≤ �(G),

that is,

2|E(H)| ≤ (|V (H)| − n1)�(G),

that is, ∑
v∈V (H)

degH (v) ≤ (|V (H)| − n1)�(G),

that is, ∑
v∈V (H)

(degH (v) − �(G)) ≤ −n1�(G).

Changing sign, we have

�(G) def(H) ≥ n1�(G)

which is condition 2. �
We will need the following lemma.

Lemma 5. Let G = K(n1, n2, . . . , nr) be a 1-extendable complete multipartite
graph such that σ1(G) ≤ �(G) and let H = G − V1

∼= K(n2, n3, . . . , nr). Assume
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that there exists a multigraph H∗ containing H as a spanning subgraph such that H∗

is obtained by replicating some of the existing edges of H but without adding edges
between nonadjacent vertices of H. Suppose furthermore that �(H∗) = �(H) and
�(G) def(H∗) ≤ n1�(G). Then χ′

e(G) = �(G).

Proof. Let H, H∗ be as in the statement of Lemma 5. The condition

�(G) def(H∗) ≤ n1�(G)

is equivalent (arguing as in Proposition 2) to

|E(H∗)| ≥ 1

2
(|V (H)| − n1)�(G). (3)

By possibly removing some of the edges from H∗, we can assume that the sign of
equality holds in (3) and hence that

|E(H∗)| = 1

2
(|V (H)| − n1)�(G), (4)

which is equivalent to

�(G) def(H∗) = n1�(G). (5)

Let v ∈ V (H) = V (H∗). By assumption, the edges incident with v which are in
H∗ but not in H are at most

�(H) − degH (v) ≤ �(H) − (|V (H)| − n1) = n1 − nr ≤ n1 − 1,

so that (denoting by µ(H∗) the maximum multiplicity of the edges of H∗) we have
µ(H∗) ≤ n1, since H is a simple graph. But then, by Vizing’s Theorem, we have

χ′(H∗) ≤ �(H∗) + µ(H∗) ≤ �(H) + n1 = �(G).

Thus, H∗ is �(G)-edge colorable. But then, in particular, H∗ has an equalized
�(G)-edge coloring, which we denote by ϕ. It follows by (4) that each color class
of ϕ contains exactly 1

2 (|V (H)| − n1) edges. Since �(H∗) = �(H) = �(G) − n1,

it follows that every vertex of H∗ misses at least n1 of the colors given by ϕ.
Let ψ be the excessive coloring of H obtained by assigning to the edge xy ∈ E(H)

all the colors assigned by ϕ to the edges xy ∈ E(H∗). Then clearly ψ is an ex-
cessive coloring of H using �(G) colors, such that each color class contains
exactly 1

2 (|V (H)| − n1) edges and each vertex misses at least n1 colors. Thus,
ψ satisfies Theorem 3 and hence, by Lemma 4, Theorem 2 holds for G, as
we wanted. �

We are ready to prove the following theorem, which, together with Theorem 4,
proves Theorem 2.
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Theorem 5. Let G be a 1-extendable complete multipartite graph such that
σ1(G) ≤ �(G). Then χ′

e(G) = �(G).

Proof. By Lemma 5, it suffices to prove the existence of a multigraph H∗ as
specified in the statement of Lemma 5.

Let H∗ be a maximal multigraph which is a spanning supergraph of H obtained
by replicating existing edges of H without introducing edges between nonadja-
cent vertices of H and such that �(H∗) = �(H). We prove that H∗ satisfies the
conditions of Lemma 5.

Claim 1. There can be at most one partite set Vi of H∗ containing vertices of
degree less than �(H).

This is obvious since otherwise we could add to H∗ an edge by replicating an
existent edge xy of H∗ without violating the constraints on the maximum degree
but contradicting the maximality of H∗.

Conclusion. If all the vertices in V (H∗) have degree �(H) there is clearly nothing
to prove, since then

�(G) def(H∗) = n1|V (H)| ≤ n1�(G)

and all the conditions of Lemma 5 are satisfied.
Thus, we can assume (by Claim 1) that there is exactly one partite set Vi of H∗

containing vertices of degree less than �(H).
But then

�(H) def(H∗) =
∑
v∈Vi

(�(H) − degH∗(v))

≤
∑
v∈Vi

(�(H) − degH (v)) = ni(ni − nr).

Hence

�(G) def(H∗) ≤ ni(ni − nr) + n1(|V (G)| − n1). (6)

Using the fact that n1 ≥ ni ≥ nr, it is easily seen that

ni(ni − nr) ≤ n1(n1 − nr).

Hence, using (6), we see that

�(G) def(H∗) ≤ n1(n1 − nr) + n1(|V (G)| − n1) = n1(|V (G)| − nr) = n1�(G).

Therefore, H∗ satisfies all the conditions of Lemma 5 and hence Theorem 5 is
proved. �

Proof of Theorem 2. This follows immediately from Theorems 4 and 5.
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