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Abstract

In this paper, we investigate the dynamic properties of an overlapping generations’ model with capital
accumulation and publicly funded inventions under three different expectations: perfect foresight, myopic
expectations and adaptive expectations. We show that considering productive public expenditures in the
model will increase the dimension of the dynamical system. To study the dynamic behavior of a high-
dimensional dynamical system, we focus on the case when the elasticity of publicly funded invention
to output is small and approximate the system by using a one-dimensional dynamical system. This
approximation method provides an efficient way to rigorously prove the existence of chaos in high-
dimensional dynamical systems. We show that when agents are perfectly foresighted, there exists a unique,
nontrivial steady state which is a global attractor. Cycles or even chaos may occur under myopic and
adaptive expectations when the inter-temporal elasticity of substitution of consumption is large enough.
Furthermore, we find that the impact of fiscal policy is sensible to the expectation formation.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

There have been growing interests in studying how expectation formations affect the
economic behavior in inter-temporal macroeconomic models. Traditional models usually assume
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that agents are perfectly foresighted. However, this assumption does not seem very reasonable
in reality. For example, agents would construct their expectations of the future based on current
or past information, or simply nothing. We say that agents are myopic if they expect the future
situation to be the same as the current situation. Another example is that agents are able to
learn from the past experiences and there is a learning process for them when developing their
expectations. This is referred as adaptive expectations.

It is illustrated by several studies that complex dynamics or chaos can easily arise in
overlapping generations (OLG) models with different expectation formations. The occurrence
of multiple equilibria in an OLG model with capital accumulation and perfect foresight has
been shown by Galor and Ryder (1989). Benhabib and Day (1982) study an OLG model with
myopic expectations and credit expansion. The dynamic transitions in an OLG model under
perfect foresight and myopic expectations are compared by Michel and de la Croix (2000). They
find that only when the myopic dynamics is monotonic that a study of the myopic dynamics can
characterize the perfect foresight dynamics. If the myopic dynamics is not monotonic, cyclical
oscillations and chaotic dynamics will appear under myopic expectations. In this situation,
economic transitions under myopic and perfect foresight are very different.

The concept of adaptive expectations have been widely used in macroeconomic models.2

Among these studies, Grandmont (1985) adopts an OLG model without capital accumulation,
but with elastic labor supply, to analyze dynamic properties under adaptive expectations. He
shows that chaotic motion can arise when the curvature of the utility function is large enough
to cause strong income effects. Longo and Valori (2001) develop an OLG model with different
expectations to study local properties around steady states and derive stability conditions in each
case. Global properties of dynamics in a standard OLG model with different expectations are
studied by Chen et al. (in press). It is shown that the dynamics is simple under perfect foresight.
However, dynamics will become complicated under myopic and adaptive expectations if the
inter-temporal elasticity of substitution of consumption is large enough.

Conventional studies of macroeconomics usually assume that government expenditures are
non-productive. The idea of productive public expenditures is introduced into an endogenous-
growth model by Barro (1990). The consideration of productive public expenditures will change
the returns to scale in a production function of reproducible factors. Following this idea, Antinolfi
et al. (2001) develop an OLG model with productive public expenditures and study how the
dynamic behavior of the economy is affected by the degree of returns to scale. Their analysis
shows that constant returns to reproducible factors is a bifurcation point. However, in order to
simplify the analysis, a log-linear utility function is assumed in their study. Unfortunately, this
assumption will exclude the role of expectations in determining the dynamic behavior of the
economy since the saving function is independent of the expected real interest rate under a log-
linear utility function.

In this paper, we construct an OLG model with capital accumulation and publicly funded
inventions to study the dynamic properties and the possibility of chaotic motion under perfect
foresight, myopic expectations and adaptive expectations. Unlike Antinolfi et al. (2001) who
adopt a log-linear utility function, we use a CES utility function in order to study the role of
expectation formations in determining the dynamic behavior of the economy. We assume that
households need to pay the income tax to the government and the tax revenue is used to support
inventive activities (such as constructions, infrastructures and R&D) which are beneficial to the

2 See Grandmont (1985, 1998), Chiarella (1988), Hommes (1994, 2002), Brock and Hommes (1997), Longo and
Valori (2001) and Chiarella and He (2003).
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private production. We show that the inclusion of productive public expenditures will increase
the dimension of the dynamical system by one and this will in turn increase the difficulties of
the analysis. The dynamic transition of the economy can be represented by two-dimensional
dynamical systems (a second-order difference equation) under perfect foresight and myopic
expectations. Under adaptive expectations, the dynamical system representing the dynamic
behavior of the economy becomes three dimensional (a three-dimensional dynamical system).

Our study indicates that economic dynamics is qualitatively different under different
expectation formations of the real interest rate. We find that when agents are perfectly
foresighted, there exists a unique, nontrivial steady state which is a global attractor. Dynamics
can be rather complex under the other two types of expectation formations within a reasonable
range of the tax rate. Furthermore, we show that the inter-temporal elasticity of substitution is
an important determinant to the complexity of economic dynamics under myopic and adaptive
expectations. A sufficiently large inter-temporal elasticity of substitution will induce cycles or
even chaotic motion. Under adaptive expectations, the complexity of dynamics also depends
on the learning process of expectation formations. Cycles or chaotic motion will emerge as
agents rely more heavily on the current information when forming their expectations. That is,
the chaotic dynamics under adaptive expectations is inherited from the chaotic dynamics under
myopic expectations. We also show that under myopic and adaptive expectations, the tax rate
will affect the dynamic behavior and a sufficiently high tax rate can prevent the economy from
chaotic dynamics.

This paper also contributes to the literature on complex dynamics by providing a technique
to study the dynamic behavior in a high-dimensional dynamical system in the methodological
point of view.3 Even for a one-dimensional dynamical system, the study of global properties
of complex dynamic is not easy. Hence, instead of providing rigorous proofs, most studies
of complex dynamics focus only on numerical experiments. The difficulties of examination
and tractability of the dynamic behavior under high-dimensional dynamical systems confine
researchers to limit their analysis in one-dimensional dynamical systems and there are very
few papers studying economic models generating complex dynamics under high-dimensional
dynamical systems.

Recently, with more advanced mathematical methods and computer techniques developed,
some economists start to explore the possibility of complicated dynamics in two-dimensional
dynamical systems by showing either numerical simulation results or solid proofs. When
analyzing the dynamic behavior of a one-dimensional dynamical system in economics, the most
widely used type of chaos is Li–Yorke chaos due to its easiness of verification. However, the
Li–Yorke theorem works only for one-dimensional dynamical systems and we need to use a
different type of chaos to study the dynamic behavior for high-dimensional dynamical systems.

To prove the existence of chaotic dynamics in high-dimensional systems is a nontrivial
task. Medio and Negroni (1996) provide interesting simulation results for the occurrence
of chaos in two-dimensional OLG models with various settings. A computer-assisted proof
generating homoclinic bifurcation associated with the stable and unstable manifolds of an
autarkic steady state in de Vilder (1996) shows that a two-dimensional OLG model with
elastic labor supply and Leontief technology can exhibit chaotic dynamics. By locating a
so-called Smale’s horseshoe in the phase space, a geometric method is used by Feichtinger
et al. (1997) to show that a two-dimensional “addiction” model can generate erratic and

3 Here we refer a difference equation with the order greater than or equal to 2 as a high-dimensional dynamical system.
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unpredictable consumption patterns of the addicted persons. Chen and Li (2008) also use the
Smale horseshoe method to show that a two-dimensional cash-in-advance model with persistent
habits of both cash-goods and credit-goods consumptions contains chaotic structure. Yokoo
(2000) offers a singular perturbation method to prove that a Diamond type two-dimensional
OLG model with government debt can exhibit complicated dynamics assured by the presence
of a transverse homoclinic point associated to a golden rule steady state. For the existence of
the transverse homoclinic point in a two-dimensional system, one needs to first find a transverse
homoclinic point for its reduced singular (i.e., one-dimensional) system and then slightly perturb
it into the corresponding nonsingular two-dimensional system without destroying the transverse
homoclinic point. Onozaki et al. (2003) also use the singular perturbation method to show that
a nonlinear cobweb model with adaptive production adjustment will exhibit chaotic dynamics if
the singular one-dimensional mapping has negative Schwarzian derivatives and has a homoclinic
point. Furthermore, both Yokoo (2000) and Onozaki et al. (2003) also prove the existence of a
strange attractor (i.e., observable chaos) due to homoclinic bifurcation.

We choose entropic chaos for our analysis of a high-dimensional dynamical system in this
paper. Our goal is to study the stability property of the equilibria if the dynamics is simple and
to provide sufficient conditions (with rigorous proofs) for the occurrence of entropic chaos if
the dynamics is complex. To achieve this goal, we first reduce the dimension of the dynamical
system to one by considering the case when public expenditures are non-productive. We then
extend our analysis to the case when the elasticity of publicly funded invention to output is
small and apply the perturbation method recently developed by Li and Malkin (2006) and Juang
et al. (2005) to approximate the high-dimensional dynamical system by perturbing the one-
dimensional dynamical system and verify the existence of entropic chaos (positive topological
entropy) under certain conditions. That is, we propose an efficient method to rigorously prove
the exhibition of chaos for high-dimensional systems. For the generalized version of a high-
dimensional OLG model with productive public expenditures, we only need to examine the
occurrence of Li–Yorke ordering (Eq. (19)) or Mitra’s ordering (Eq. (20)) for a reduced one-
dimensional system, then apply a multi-dimensional perturbation result of Juang et al. (2005)
and Li and Malkin (2006) to verify the occurrence of chaotic dynamics in high-dimensional
systems under adaptive or myopic expectations. Our methodology can be easily applied to other
economic and social scientific models which are high dimensional; moreover, it is free from the
constraint of invertibility of the system, which sometimes becomes an obstruction for researchers
in proving chaos for high-dimensional dynamical systems.

The remainder of the paper is organized as follows. The next section develops an OLG model
with capital accumulation and publicly funded inventions. In Section 3, we consider an economy
under perfect foresight and study its dynamic property. In Section 4, we modify the model by
assuming that agents have either adaptive expectations or myopic expectations, and show that
cycles and chaotic dynamics can appear under certain conditions. The final section concludes
our study. Proofs of Proposition 1, Lemma 1, and Theorem 1 are given in the Appendices.

2. The model

We consider an infinite-horizon, discrete time overlapping generations’ (OLG) model. Agents
live for two periods, each period covering approximately thirty years, corresponding to young
agents and old agents. There is no population growth and we normalize the population size to
1. Agents have identical preference and only care about their consumptions in each period. For
agents born in period t , we use c1t and c2t+1 to denote their consumptions in the first period and
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in the second period of life, respectively. We consider a CES utility function:

U (c1t , c2t+1) =


c

1−
1
σ

1t − 1

1 −
1
σ

+ β
c

1−
1
σ

2t+1 − 1

1 −
1
σ

, if σ 6= 1,

log c1t + β log c2t+1, if σ = 1,

(1)

where σ > 0 is the inter-temporal elasticity of substitution of consumption and β ∈ (0, 1) is the
discount factor. In this paper, we assume that σ 6= 1 so that the expectation of the real interest
rate can affect the saving decisions of agents.

Each agent is endowed with one unit of time in each period. Young agents use all the time for
work to earn the real wage rates (wt ) for consumptions and savings (st ). When agents become
old, they spend all the time for leisure and consume their savings from the previous period.
Households need to pay the income tax to the government. We use τ to represent the constant
tax rate. The budget constraints for young and old agents are:

c1t + st ≤ (1 − τ)wt , (2)

c2t+1 ≤ Re
t+1st , (3)

where Re
t+1 represents the expected real interest rate.

The young generation will maximize Eq. (1) subject to Eqs. (2) and (3), together with:

c1t ≥ 0 and c2t+1 ≥ 0.

The optimal saving decision given by the young agents is:

st (wt , Re
t+1) =

(1 − τ)wt

1 + β−σ (Re
t+1)

1−σ
. (4)

Eq. (4) shows that when considering a CES utility function with σ 6= 1, the expectation of the
real interest rate will affect the savings of young people. Note that in the study of Antinolfi et al.
(2001), they adopt a log-linear preference. Although doing so can simplify the analysis, it ignores
the impact of the expected real interest rate on savings because with a log-linear preference,
saving function is independent of the expected real interest rate. In the following analysis, we
will show that the expected real interest rate plays an important role in determining the dynamic
behavior of the economy.

We assume that technology progress is possible. However, unlike studies of R&D models
which assume that technological progress occurs due to the monopoly power of firms, we assume
that technological inventions are supported by the government. Following Barro (1990), we
assume that government runs a balanced budget. In each period, all the tax revenue (Tt = τwt )
is used to provide public services to improve the technology of private production.4 These
public services include any institution and infrastructure which are beneficial to the productivity
of output. The level of technology can be transferred from the old generation to the young
generation.5 However, this transfer may not be complete and we use ρ ∈ [0, 1] to denote

4 This is referred to as productive public expenditures by Barro (1990) and as publicly funded invention by Antinolfi
et al. (2001).

5 See Shell (1966) and Jovanovic and Nyarko (1995). Similar idea can be found in Romer (1990) who argues that there
should be an accumulation of “knowledge” for production by stating that “an engineer working today is more productive
because he or she can take advantage of all additional knowledge accumulated as design problems which were solved
during the last 100 years”.
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the depreciation rate of knowledge of technology during the transferring process. Using At to
represent the publicly funded invention, the law of motion of technology is:

At+1 = Tt + (1 − ρ)At . (5)

The production function is:

Yt = g(At ) f (Kt , L t ),

where Kt is the capital and L t is the labor used for production in period t . The function g(At )

represents the effects of publicly funded invention (At ) on the production of output. Following
Antinolfi et al. (2001), we assume that the production function is constant returns to scale in Kt
and L t and is homogeneous of degree λ in At and Kt .

To be more precise, we assume that f (Kt , L t ) = K α
t L1−α

t exhibits a Cobb–Douglas function
with α ∈ (0, 1) representing the capital share to output. We also assume that g(At ) = Aλ−α

t .
Hence, we consider the following specific production function:

Yt = Aλ−α
t K α

t L1−α
t .

To reflect the situation that public services are not harmful for production, we assume that λ ≥ α.
Note that the difference between λ and α is the elasticity of publicly funded invention to output
and represents how efficiently the tax revenue is used by the government. The larger the (λ − α)
is, the more efficiently the tax revenue is used. In an extreme case where λ = α, the publicly
funded invention is not beneficial to the private production and the tax revenue is wasted.

The factor prices are:

wt = (1 − α)Aλ−α
t kα

t , (6)

Rt = αAλ−α
t kα−1

t , (7)

where Rt represents the real interest rate and kt is the capital per worker.
The capital market clearing condition implies that kt+1 = st (wt , Re

t+1). Thus, the dynamic
behavior of the economy is characterized by the laws of motion of the level of technology and
capital per worker:

At+1 = τwt + (1 − ρ)At , (8)

kt+1 =
(1 − τ)wt

[1 + β−σ (Re
t+1)

1−σ ]
. (9)

Eq. (9) indicates that the dynamic transition of the economy depends on the expectation of
the real interest rate. Most studies of inter-temporal optimization assume that households are
perfectly foresighted. However, in reality, households would be myopic or have a learning
process for the expectation formations. Hence, in the following sections, we will study the
dynamic behavior under three different formations of the expected real interest rate.

As we will see later, the dimension of the dynamical system composed by Eqs. (8) and (9) is
higher than 1. An analysis of a high-dimensional dynamical system is much more complicated
than the analysis of a one-dimensional dynamical system.6 The methodology of our analysis is

6 The difficulties for the analysis of a high-dimensional dynamical system have also been demonstrated by Antinolfi
et al. (2001). Hence, in order to give a formal bifurcation analysis, several assumptions like log-linear preferences and a
complete depreciation of the knowledge about technology (ρ = 1) are made to simplify the model.
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that we first consider a special case of λ = α. Under this situation, the law of motion of capital
per worker (Eq. (9)) is independent of the technological progress. Hence, the dynamic transition
of the economy is governed by the difference equation of capital per worker and we can reduce
the order of the dynamical system. We then extend our analysis to the case where λ is close to α.
In the whole paper, we focus our analysis on the case where λ is close to α and study the dynamic
behavior under different expectations.

3. Perfect foresight

In this section, we study the economy where agents are perfectly foresighted. That is,

Re
t+1 = Rt+1.

Using Eqs. (6) and (7) to substitute factor prices in Eqs. (8) and (9), the dynamical system
representing the economic transition is:

At+1 = τ(1 − α)Aλ−α
t kα

t + (1 − ρ)At , (10)

kt+1 = st (wt , Rt+1) =
(1 − τ)(1 − α)Aλ−α

t kα
t

1 + β−σ (αAλ−α
t+1 kα−1

t+1 )1−σ
. (11)

Eqs. (10) and (11) indicate that the economic transition is composed by a two-dimensional
dynamical system.

In order to study the global dynamics of the two-dimensional system, we start our analysis for
the case when public expenditures are non-productive (that is, λ = α). Under this circumstance,
Eq. (11) is independent of At and the order of the dynamical system is reduced to 1. The dynamic
transition of the economy is governed by the difference equation of order one in kt and kt+1:

kt+1[1 + β−σ (αkα−1
t+1 )1−σ

] = (1 − τ)(1 − α)kα
t . (12)

Fig. 1(i) displays the law of motion of capital per worker when σ = 10. It indicates that
dynamics is simple and the nontrivial steady state is stable. Fig. 1(ii) shows that similar to the
case of σ = 10, dynamics of the system kt 7−→ kt+1 in Eq. (12) with different values of σ

(σ = 0.3 and 3) is also simple and the nontrivial steady state is stable in each case.
We then extend our study to the case when λ is near α and the dynamical system is two

dimensional. The following proposition illustrates that there exists a unique, nontrivial steady
state which is a global attractor under perfect foresight when λ is near α.

Proposition 1. If λ is near α, then the economy under perfect foresight, i.e., the dynamics
(At , kt ) 7−→ (At+1, kt+1) in Eqs. (10) and (11), has a unique nonzero steady state which is
globally attracting.

Proof. See Appendix A. �

4. Adaptive and myopic expectations

Under adaptive expectation, there is a learning process for households to construct their
expectations. To be more specific, we consider a first-order autoregressive adaptive expectation
of the real interest rate. That is, Re

t+1 is constructed based on current and past information with
decreasing weights. With µ ∈ (0, 1], Re

t+1 can be written as
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Fig. 1. The graphs of the diagonal line and the system kt 7−→ kt+1 in Eq. (12) with α = 1/3, β = 0.9930, λ = α, and
τ = 0.2, and (i) σ = 10, (ii) σ = 0.3, 3, 10.

Re
t+1 =

∞∑
i=0

µ(1 − µ)i Rt−i = (1 − µ)Re
t + µRt . (13)

Eq. (13) shows that Re
t+1 can be represented by Re

t and Rt with weights (1 − µ) and µ,
respectively. An increase in µ implies that agents depend more heavily on the current information
(Rt ) when forming their expectations. Note that when µ = 1, Re

t+1 = Rt and agents are myopic
since they completely rely on current information to form their expectations. Substituting Eq.
(13) into Eq. (9), the law of motion of capital per worker can be rewritten as:

(1 − τ)(1 − α)Aλ−α
t+1 kα

t+1 = kt+2

1 + β−σ

µαAλ−α
t+1 kα−1

t+1 + (1 − µ)β
σ

1−σ

×

(
(1 − τ)(1 − α)Aλ−α

t kα
t

kt+1
− 1

) 1
1−σ

1−σ
 . (14)

Therefore, dynamic transition of the economy can be expressed by Eq. (10) and (14).
From Eq. (10), we can derive that:

kt =

[
At+1 − (1 − ρ)At

τ(1 − α)Aλ−α
t

] 1
α

. (15)

Substituting Eq. (15) for terms t, t + 1, and t + 2 into Eq. (14), we can obtain the difference
equation of order three in At , At+1, At+2, and At+3 as follows:

(1 − τ)

τ

[
At+2 − (1 − ρ)At+1

]
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=

(
At+3 − (1 − ρ)At+2

τ(1 − α)Aλ−α
t+2

) 1
α

1 + β−σ

[
µα

(
1

τ(1 − α)

) α−1
α

×
[
At+2 − (1 − ρ)At+1

] α−1
α A

λ−α
α

t+1 + (1 − µ)β
σ

1−σ

×

(
(1 − τ)

τ

[
At+1 − (1 − ρ)At

] α−1
α
[
τ(1 − α)Aλ−α

t

] 1
α

) 1
1−σ

]1−σ
 . (16)

Hence, the economic dynamics is represented by a three-dimensional dynamical system.
To examine the possibility of entropic chaos (see Definition 1) in the three-dimensional

system, we first check Mitra’s ordering (Eq. (20)) for a reduced one-dimensional system which
approximates the three-dimensional system, then apply a multi-dimensional perturbation result
of Juang et al. (2005) and Li and Malkin (2006) to obtain the existence of entropic chaos for the
three-dimensional system. To reduce the three-dimensional system represented by Eq. (16) to a
one-dimensional system, we consider the case when λ = α, ρ = 1 and µ = 1. Then Eq. (16) can
be written as the following equation:

At+3 = fσ (At+2), (17)

where fσ : [0, ∞) → [0, ∞) is a one-parameter family of functions defined by

fσ (x) =
Gxα[

1 + β−1
( x

H

) (1−α)(σ−1)
α

]α , where
{

G = τ 1−α(1 − α)(1 − τ)α,

H = τ(1 − α)(αβ)
α

1−α ,
(18)

with parameter σ .
When complex dynamics appears, even the analysis of a one-dimensional dynamical system

is not easy. Because of the convenience of verification, the most popular type of chaotic motions
studied in one-dimensional dynamical systems is the Li–Yorke chaos.7 The Li–Yorke Theorem
(Li and Yorke (1975), Theorem 1) says that for any continuous interval map h, if there is a point
p such that

h3(p) < p < h(p) < h2(p), (19)

then h exhibits Li–Yorke chaos, where hs denote the composition of s copies of h. The
Proposition 2.3 of Mitra (2001) demonstrates that for any unimodal map h, if there exist a modal
point xc and a fixed point x̄ satisfying

h2(xc) < xc and h3(xc) < x̄, (20)

then h2 exhibits Li–Yorke chaos.
For the reduced one-dimensional system fσ in Eq. (18), Fig. 2(i) indicates that the inequalities

of Eq. (20) are satisfied for fσ with σ = 10, so it exhibits Li–Yorke chaos. Fig. 2(ii) shows that

7 Definition of Li–Yorke chaos: A map h : I → I is said to exhibit Li–Yorke chaos on an interval I if the following
conditions are satisfied: (A) h has periodic points of all periods; here by a periodic point p of period t, we mean that
ht (p) = p and hi (p) 6= p for 0 < i < t; (B) there exists an uncountable set S ⊂ I such that (B1) if x, y ∈ S with
x 6= y then limt→∞ sup |ht (x) − ht (y)| > 0 and limt→∞ inf |ht (x) − ht (y)| = 0; (B2) if x ∈ S and y ∈ I is periodic
then limt→∞ sup |ht (x) − ht (y)| > 0.
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Fig. 2. (i) The graphs of y = f10(x) and y = x , and the first three iterates of an initial point under f10; (ii) the graphs
of fσ (x) with σ = 3, 6, 10 and α = 1/3, β = 0.9930, and τ = 0.2.

for different values of σ , the function fσ attains the same value at a particular point which is
H = τ(1 − α)(αβ)

α
1−α . That is, for any σ1, σ2 > 0, we have that fσ1(H) = fσ2(H). This fact

will play a role in the proof of the following lemma, which gives a sufficient condition of the
occurrence of chaotic dynamics for the second iterate of fσ .

Lemma 1. Let fσ be as in Eq. (18). If 1 −
α(1+β)

1−α
< τ < 1 −

αβ
1−α

, then for all large σ , the map
f 2
σ exhibits Li–Yorke chaos.

Proof. See Appendix B. �

We have shown that chaotic dynamics in the sense of Li and Yorke can occur when σ is large
enough in the special case which is one dimensional. We then turn to examine the possibility
of chaotic motion in a more general case represented by Eq. (16) which is three dimensional.
Since the Li–Yorke theorem works only for one-dimensional dynamical systems, we study the
possibility of entropic chaos for the high-dimensional case represented by Eq. (16). Note that in
one-dimensional dynamical systems, the existence of Li–Yorke chaos also implies the presence
of entropic chaos. We consider the Li–Yorke chaos instead of entropic chaos in the special case
because of its easiness of verification. One may also use a criterion for entropic chaos in the
special case but doing so will complicate the analysis.

The definitions of topological entropy and entropic chaos are given as follows; refer to
Robinson (1999):

Definition 1. Let g : X → X be a continuous map on a space X with metric d. For n ∈ N and
ε > 0, a set S ⊂ X is called an (n, ε)-separated set for g if for every pair of points x, y ∈ S with
x 6= y, there exists an integer k with 0 ≤ k < n such that d(gk(x), gk(y)) > ε. The topological
entropy of g is defined to be
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htop(g|X)

= lim
ε→0,ε>0

lim sup
n→∞

log(max{#(S) : S ⊂ X is an (n, ε) − separated set for g})

n
,

where #(S) is the cardinality of elements of S.
We say that g has entropic chaos on X if htop(g|X) > 0.

Topological entropy has played a fundamental role in the theory of chaos. Its concept is a
mathematical formulation of exponential divergence of nearby initial conditions. It describes the
total exponential complexity of the orbit structure with a single number in a rough but expressive
way. The topological entropy is positive for chaotic systems and is zero for non-chaotic systems.
For any continuous interval map h, one has the relation between Li–Yorke chaos and entropic
chaos, due to Misiurewicz (1979), that h must exhibit entropic chaos if ht exhibits Li–Yorke
chaos for some t . Therefore, Lemma 1 implies that the reduced one-dimensional system (18)
exhibits entropic chaos.

We then approximate the three-dimensional dynamical system by using the one-dimensional
dynamical system. In the following theorem, we give a sufficient condition for the existence of
entropic chaos under adaptive expectations for λ near α, ρ near 1, and µ close to 1.

Theorem 1. Let 1 −
α(1+β)

1−α
< τ < 1 −

αβ
1−α

. If σ is sufficiently large, then for all λ near α, ρ

near 1 and µ near 1, the economy under adaptive expectations, i.e., Eqs. (10) and (14), exhibits
entropic chaos.

Proof. See Appendix C. �

Theorem 1 gives a sufficient condition of the presence of chaotic motion. It shows that within
a reasonable range of the tax rate, entropic chaos will occur if the inter-temporal elasticity of
substitution is large enough or if the weight of the current information is large enough in the
expectation formation.8 Fig. 3 presents the bifurcation diagrams of At and kt with varying σ

when µ = 0.95, λ − α = 0.05 and ρ = 0.95. From Fig. 3, we can see that an increase of σ will
induce deterministic cycles and the system will get into the region of chaotic motion when σ is
large enough.

Fig. 4 shows the bifurcation diagrams of At and kt with varying value of µ given the same
parameter values of µ, λ − α and ρ as those in Fig. 3. It displays that if µ is small, there is a
unique positive steady state. As µ increases, agents will put a higher weight on the current real
interest rate when forming their expectations and cycles and complex dynamics start to emerge
with an increase in µ. A sufficiently large value of µ will cause chaos.

When µ = 1, agents are myopic and the dynamical system becomes two dimensional. In
fact, the requirement of a sufficiently large value of µ implies that the chaotic motion of the
dynamical system under adaptive expectations is inherited from the chaotic behavior of the
dynamical system under myopic expectations. On the other hand, an increase in the weight of
previous expectations (1 − µ) in the expectation formation can help reduce the complexity of
the dynamic motion from chaos to cyclical movements, or even to simple dynamics.9 When

8 For example, when α =
1
3 and β = 0.9930, the range of τ for the occurrence of chaos in Theorem 1 is between

13.01% and 63.01% if (λ − α), (1 − ρ) and (1 − µ) are sufficiently small.
9 Notice that this result in an OLG model differs from the findings in the cobweb models where there is only simple

dynamics under myopic expectations while chaotic dynamics may appear under adaptive expectations (see Chiarella
(1988) and Hommes (1994)).
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Fig. 3. The bifurcation diagram on varying σ with α = 1/3, β = 0.9930, λ = α + 0.05, ρ = 0.95, τ = 0.2, and
µ = 0.95 for (i) At and (ii) Kt .

Fig. 4. The bifurcation diagram on varying µ with α = 1/3, β = 0.9930, λ = α + 0.05, ρ = 0.95, τ = 0.2, and σ = 10
for (i) At and (ii) Kt .

the system becomes myopic dynamics, an immediate consequence of Theorem 1 is given in the
following corollary:

Corollory 1. Let 1 −
α(1+β)

1−α
< τ < 1 −

αβ
1−α

. If σ is sufficiently large, then for all λ near α and
ρ near 1, the economy under myopic expectations exhibits entropic chaos.

Corollary 1 provides a sufficient condition for the presence of ergodic chaos under myopic
expectations and it demonstrates the important role of the inter-temporal elasticity of substitution
in determining the existence of complex dynamics.

Theorem 1 also implies that the tax rate can affect the complexity of the dynamic behavior.
To examine the effects of the tax rate on dynamic properties of the economy, the bifurcation
diagrams of kt with varying τ under adaptive expectations and myopic expectations are
respectively given in Fig. 5(i) and (ii). Fig. 5(i) shows that under adaptive expectations, chaotic
motion and cycles appear when τ is (roughly) between 10% and 35%. On the other hand,
Fig. 5(ii) shows that chaotic motion or cycles will occur if τ is (roughly) less than 33%.
These two figures indicate that the occurrence of chaotic motion is sensible to the expectation
formation (or the value of µ). Comparing Fig. 5(i) with Fig. 5(ii), we find that under myopic
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Fig. 5. The bifurcation diagram for kt on varying τ with α = 1/3, β = 0.9930, λ = α + 0.05, ρ = 0.95, and σ = 10 for
(i) adaptive expectations with µ = 0.95, and (ii) myopic expectations.

expectations, government can avoid chaotic dynamics only by setting the tax rate to a sufficiently
high level. However, under adaptive expectations, government can prevent the economy from
chaotic dynamics either by increasing the tax rate to a sufficiently high level or by decreasing it
to a sufficiently low level. This implies that the effects of fiscal policies could be quite different
under myopic and adaptive expectations.

5. Conclusion

In this paper, we study the dynamic behavior in an OLG model with capital accumulation and
publicly funded inventions under three different types of expectations: perfect foresight, myopic
expectations and adaptive expectations. Since including the productive public expenditures into
the model will increase the dimension of the dynamical system, we propose a new approach to
study the dynamic properties of high-dimensional dynamical systems generated by economic
models. We first reduce the dimension of the dynamical system by assuming that public
expenditures are not productive (λ = α). Then we expand our analysis to the case where λ

is close to α and approximate this high-dimensional dynamical system (λ > α) by using the
low-dimensional dynamical system (λ = α). In the literature of economic dynamics, there are
very few papers studying the global property of a high-dimensional dynamical system due to its
difficulties of examination and tractability. With this new technique, economists can explore
many other interesting issues without restricting their models to one-dimensional dynamical
systems.

Our results indicate that qualitative properties of the dynamic behavior are very different
under different expectations. We show that under perfect foresight, the nonlinear dynamics will
contain a unique, nontrivial steady state which is a global attractor. The dynamics may become
rather complex under myopic and adaptive expectations. In both cases, the complexity of the
dynamics is affected by the tax rate. Under myopic expectations, cycles will emerge as the
inter-temporal elasticity of substitution increases and chaotic dynamics can occur when the
inter-temporal elasticity of substitution is large enough. Under adaptive expectations, both
the inter-temporal elasticity of substitution and the weight of past information when forming
expectations are important to determine the complexity of economic dynamics. Cycles and
chaotic motion will emerge as the inter-temporal elasticity of substitution increases or as
households depend more on the current information when constructing their expectations. Hence,
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our work emphasizes the importance of the expectation formation when constructing inter-
temporal macroeconomic models.
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Appendix A

Proof of Proposition 1. First, we consider the case ρ 6= 1. We obtain that (At , kt ) is a function
of (At+1, kt+1) in an explicit form as follows. Multiplying Eq. (10) by (1 − τ) gives us:

(1 − τ)(1 − α)Aλ−α
t kα

t =
(1 − τ)At+1 − (1 − τ)(1 − ρ)At

τ
. (21)

By plugging Eq. (21) into Eq. (11), we get:

At =
1

(1 − τ)(1 − ρ)
[(1 − τ)At+1 − τkt+1 − τkt+1β

−σ (αAλ−α
t+1 kα−1

t+1 )1−σ
]. (22)

Plugging Eq. (22) back into Eq. (10) gives us:

kt =

{
(1 − τ)λ−α−1(1 − ρ)λ−α

[kt+1 + kt+1β
−σ (αAλ−α

t+1 kα−1
t+1 )1−σ

]

(1 − α)[(1 − τ)At+1 − τkt+1 − τkt+1β−σ (αAλ−α
t+1 kα−1

t+1 )1−σ ]λ−α

} 1
α

. (23)

Thus the backward dynamics is governed by Eqs. (22) and (23).
In order to study the dynamic behavior for λ close to α, we shall first consider the boundary

case when λ = α, then apply the structural stability theorem to prove that simple dynamics
occurs for λ near α. Assuming that λ = α, the backward dynamics becomes:

At =
1

(1 − τ)(1 − ρ)
[(1 − τ)At+1 − τkt+1 − τkt+1β

−σ (αkα−1
t+1 )1−σ

], (24)

kt =

 1
(1 − τ)(1 − α)

kt+1

1 + β−1

(
k1−α

t+1

αβ

)σ−1


1
α

. (25)

From Eq. (25), one can easily check that the backward subsystem kt+1 7−→ kt has a globally
repelling fixed point, say k̄. Putting k̄ into Eq. (24), we have the globally repelling fixed point,
denoted by Ā, for the subsystem At+1 7→ At . Thus ( Ā, k̄) is the unique nonzero fixed point for
Eqs. (10) and (11), and it is globally attracting for the forward dynamics. By using the structurally
stable theorem (Robinson, 1999), one has the same dynamic phenomena for the systems with λ

near α.
For the case when ρ = 1, we also use the structural stability theorem while the systems are

parametrized by λ around the center α. Let λ = α. Then Eq. (11) becomes Eq. (25) again and



H.-J. Chen, M.-C. Li / Mathematical Social Sciences 56 (2008) 109–126 123

the backward subsystem kt+1 7→ kt has a globally repelling fixed point k̄. Putting k̄ into Eq.
(10) with ρ = 1, we have the globally repelling fixed point Ā for the subsystem At+1 7→ At .
Therefore, for all λ near α, the forward dynamics has a unique nonzero fixed point which is
globally attracting. �

Appendix B

Proof of Lemma 1. It is sufficient to show that the inequalities in Eq. (20) are satisfied for fσ ;
indeed, Mitra’s result implies that f 2

σ exhibits Li–Yorke chaos.
First, we observe some basic properties of fσ . Note that fσ is a family of continuous functions

with parameter σ > 0, and both G and H are independent of σ (G and H are given in Eq. (18)).
It is easy to see that fσ (H) =

G Hα

[1+β−1]α
is constant for all σ ; see Fig. 2(ii). If x < H fixed, then

fσ (x) is strictly increasing and approaches Gxα provided that σ increases and goes to ∞, and if
x > H fixed, then fσ (x) is strictly decreasing and tends to 0 provided that σ increases and goes
to ∞.

First, we prove the uniqueness of the critical point for fσ . From elementary calculation, we
have that:

f ′
σ (x) =

G

{
αβ − [σ(1 − α) − 1]

( x
H

) (1−α)(σ−1)
α

}
βx1−α

[
1 + β−1

( x
H

) (1−α)(σ−1)
α

]1+α
.

Let σ > 1
1−α

. Then fσ has a unique critical point at:

xc = H

[
αβ

σ(1 − α) − 1

] α
(1−α)(σ−1)

and fσ is strictly increasing on (0, xc] and is strictly decreasing on [xc, ∞).
Second, we prove that fσ has a unique nonzero steady state. Let g(x) = fσ (x)/x . Since

g′(x) = −
fσ (x)

x2

1 − αβ + [σ(1 − α) − 1]
( x

H

) (1−α)(σ−1)
α

1 + β−1
( x

H

) (1−α)(σ−1)
α

 < 0,

for all x > 0, g is strictly decreasing; hence g is a one-to-one function. Because limx→0 g(x) =

∞ and limx→∞ g(x) = 0, as x ∈ (0, ∞) increases the value of g(x) strictly decreases. By the
intermediate value theorem, there exists a unique point, namely x̄ , such that g(x̄) = 1. Thus, x̄
is the unique nonzero steady state for fσ ; moreover, fσ (x) > x for 0 < x < x̄ , and fσ (x) < x
for x > x̄ . Note that there is no explicit expression of x̄ although it is the solution of the equation
fσ (x) = x .

Third, we decide the ordering of the critical point xc and the steady state x̄ . By L’Hospital’s
rule, we have:

lim
σ→∞

( fσ (xc) − xc)

= lim
σ→∞


G Hα

[
αβ

σ(1−α)−1

] α
(1−α)(σ−1)[

1 + β−1
(

αβ
σ(1−α)−1

)]α − H

[
αβ

σ(1 − α) − 1

] α
(1−α)(σ−1)
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= G Hα
− H

= τ(1 − α)(αβ)
α2

(1−α) [(1 − τ)α(1 − α)α − (αβ)α].

Since τ < 1 −
αβ

1−α
, we get that if σ is large then fσ (xc) > xc. Hence, combining this with

the conclusion about x̄ in the previous paragraph, we have 0 < xc < x̄ . Moreover, since
limx→0+ fσ (x) = 0 and fσ is strictly increasing on (0, xc], there is a unique point x p in (0, xc)

which is a preimage x̄ of under fσ , i.e., fσ (x p) = x̄ .
We further decide the ordering of the critical point xc and the steady state H . Since τ >

1 −
α(1+β)

1−α
, we have that for any σ > 0:

fσ (H) − H =
G Hα

(1 + β−1)α
− H

= τ(1 − α)(αβ)
α2

(1−α) [(1 − τ)α(1 − α)α − (αβ + α)α] < 0.

Hence, x̄ < H .
It is not difficult to see that limσ→∞( fσ (xc) − H) = limσ→∞( fσ (xc) − xc). Thus for

τ < 1 −
αβ

1−α
, we have that if σ is large then H < fσ (xc). So far, we have shown that if

σ > 0 is large, then 0 < x p < xc < x̄ < H < fσ (xc).

Let ε > 0 be so small that max{ε, Gεα
} < min{

H
2 , xc}. By the L’Hospital’s rule, the critical

point xc of fσ is strictly increasing and tends to H as σ increases and goes to ∞. Together with
the facts above, we can take σ > 0 so large that H

2 < xc < H , H < fσ (xc), and f 2
σ (xc) < ε.

Then ε < x p; otherwise, x̄ = fσ (x p) ≤ fσ (ε) < Gεα < H
2 < xc; a contradiction. By strict

monotonicity of fσ on (0, xc], we get that f 3
σ (xc) = fσ ( f 2

σ (xc)) < fσ (ε) < fσ (x p).
Finally, we summarize the ordering of all the relevant values as follows:

0 < xc < x̄ < fσ (xc), 0 < f 2
σ (xc) < ε < xc and f 3

σ (xc) < fσ (ε) < fσ (x p) = x̄ .

Therefore, the inequalities in (20) with the modal point xc are satisfied; hence f 2
σ exhibits

Li–Yorke chaos. �

Appendix C

The following theorem is a simple version of Theorem 3 of Juang et al. (2005). Also refer to
Theorem 3.3 of Li and Malkin (2006).

Theorem 2. Let S be a subset of Rn with n ≥ 1 and γ0 ∈ S. Consider a difference equation of
order m in the form

Φγ (At , . . . , At+m) = 0, t ≥ 0, (26)

where γ ∈ S is a parameter and the real-valued function Φγ is defined on a cube [B, C]
m+1

⊂

Rm+1 with constants B < C. Assume that (i) Φγ is C1 on [B, C]
m for each γ ∈ S; (ii) the

function γ 7→ Φγ is continuous on S; and (iii) for i = 1, . . . , m + 1, the function γ 7→ ∂iΦγ is
continuous on S, where ∂iΦγ are the partial derivatives of Φγ with respect to the i th variable.
Suppose that for γ = γ0, the difference equation (26) is reduced to a difference equation of order
one in the form At+m − ϕ(At+m−1) = 0, t ≥ 0, where ϕ : [B, C] → R is a C2 function with
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positive topological entropy.10 Let Yγ be the set of solutions for Eq. (26), i.e. the set of sequences
A = (A0, A1, A2, . . .) such that for any t ≥ 0,

1. At ∈ [B, C]; and
2. m + 1 consecutive components At , . . . , At+m of A satisfy Eq. (26).

Let θ be the shift map on Yγ , i.e., θ(A) = A′, where A′
t = At+1 for all t ≥ 0.

Then there exists a neighborhood U of γ0 in S such that for any γ ∈ U, there is a closed
θ -invariant subset Γγ of Yγ in the product topology such that htop(θ |Γγ ) > 0.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will apply Theorem 2 together with Lemma 1 to prove the desired
result. Fix α, β and τ such that 1 −

α(1+β)
1−α

< τ < 1 −
αβ

1−α
. Denote γ0 = (α, 1, 1) and let

T = {γ = (λ, ρ, µ) : λ ≥ α, 0 ≤ ρ ≤ 1, 0 < µ ≤ 1}. Then T is a subset of R3 and
γ0 ∈ T . Let C be a positive number which is much larger than G Hα , where G and H are given
in Eq. (18). Derived from Eq. (16) with σ ≥ 1, for γ in a neighborhood of γ0 in T , we define
Φγ : [0, C]

4
→ R by

Φγ (At , At+1, At+2, At+3)

= At+3 − (1 − ρ)At+2 −

τ(1 − α)Aλ−α
t+2

{
(1−τ)

τ
[At+2 − (1 − ρ)At+1]

}α

{1 + β−σ [P + Q]1−σ }α
, (27)

where

P = µα

(
1

τ(1 − α)

) α−1
α

[At+2 − (1 − ρ)At+1]
α−1
α A

λ−α
α

t+1 ,

Q = (1 − µ)β
σ

1−σ

(
(1 − τ)

τ
[At+1 − (1 − ρ)At ]

α−1
α [τ(1 − α)Aλ−α

t ]
1
α

) 1
1−σ

.

Thus if γ = γ0 then Φγ (At , At+1, At+2, At+3) = At+3 − fσ (At+2), where fσ is given in
Lemma 1. In the proof of Lemma 1, we have shown that limσ→∞( fσ (xc)) = G Hα , the global
maximum of fσ , where xc is the critical point of fσ . Thus for C larger than G Hα , if γ is in a
neighborhood S of γ0 in T , then Φγ (At , At+1, At+2, At+3) is well defined for all t ≥ 0. For
γ ∈ S, let Yγ be the set of solutions of the difference equation:

Φγ (At , At+1, At+2, At+3) = 0, t ≥ 0. (28)

Then Yγ is the set of equilibrium paths for Eq. (28). Let θ be the shift map on Yγ , then
the dynamics of θ is equivalent to the one of At 7→ At+1 for Eq. (28) by the conjugacy
{At }t≥0 7→ A0.

It is clear that Φγ is C1 on [0, C]
4 for each γ ∈ S and that the function γ 7→ Φγ is continuous

on S and so are γ 7→ ∂iΦγ for i = 1, 2, 3, 4. Now taking γ → γ0, the definition of Φγ

implies that Eq. (28) is reduced to a difference equation of order one in which the limit function
is At+3 − fσ (At+2) = 0. In Lemma 1, we have shown that if σ is large, then f 2

σ exhibits
Li–Yorke chaos. Due to Misiurewicz (1979), we get that the topological entropy htop( fσ ) > 0.

10 In Juang et al. (2005) and Li and Malkin (2006), [B, C] is replaced by [B, C] \ V for some open set V ⊂ [B, C] so
that therein the function ϕ is allowed to be not differentiable or even not continuous at some interior points of V . Here
we consider the simple case when V = ∅.
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By Theorem 2, we get that for all γ = (λ, ρ, µ) near γ0 = (α, 1, 1) enough, there is a closed
θ -invariant subset Γγ of Yγ in the product topology, such that htop(θ |Γγ ) > 0. Therefore, the
dynamics of the economy system has entropic chaos. �
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