
SECURITYAND COMMUNICATION NETWORKS
Security Comm. Networks. 2008; 1:325–335
Published online 6 June 2008 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.32

An efficient pattern matching scheme in LZW compressed
sequences

Tsern-Huei Lee*,y and Nai-Lun Huangy

Department of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, ROC

Summary

Compressed pattern matching (CPM) is an emerging research field addressing the problem: given a compressed

sequence and a pattern, process the sequence with minimal (or no) decompression to find the pattern occurrence(s)

in the uncompressed sequence. It can be applied to detect malwares and confidential information leakage in

compressed files directly. In this paper, we report our work of CPM in Lempel–Ziv–Welch (LZW) compressed

sequences. We propose an efficient bitmap-based realization of the Amir–Benson–Farach algorithm. We also

generalize the algorithm to find all pattern occurrences and report their absolute positions in the uncompressed

sequence. Experiments are conducted to test the space requirements of our proposed generalization and two related

CPM schemes which can also be realized with bitmaps. Results show that our proposed generalization requires the

least amount of storage for moderate and long patterns. We also conduct experiments to compare the throughput

performance of our proposed generalization with these two related CPM schemes and the decompress-then-search

scheme. Results show that our proposed generalization outperforms the decompress-then-search scheme

significantly. When scanning a file with pattern occurrences, our proposed generalization performs slightly better

than the two related CPM schemes. The difference is significant when scanning a file with no pattern occurrence.

Copyright # 2008 John Wiley & Sons, Ltd.

KEY WORDS: bit-parallelism; compressed pattern matching; information search and retrieval; LZW compres-

sion; malwares detection; string matching

1. Introduction

As the population of communication network users

grows at a rapid rate, it is expected that the network be

capable of delivering data more effectively. In other

words, how to utilize the transmission bandwidth

efficiently is a key upon which the success of the

communication network heavily relies. Obviously, an

economic way to utilize limited bandwidth efficiently

is to send smaller amount of data by using data

compression mechanisms. Accordingly, compressed

pattern matching (CPM) that performs pattern search

directly on the compressed data without decompres-

sion gains more and more attention. The CPM pro-

blem is often defined as: given a compressed sequence

and a pattern, process the sequence with minimal

(or no) decompression to find the pattern occur-

rence(s) in the uncompressed sequence. One possible

application of CPM is to detect malware if the

signature of the malware is treated as the pattern to

*Correspondence to: Tsern-Huei Lee, Department of Communication Engineering, National Chiao Tung University, Hsinchu,
Taiwan 300, ROC.
yE-mail: tlee@banyan.cm.nctu.edu.tw
yE-mail: nellen.cm938@nctu.edu.tw

Copyright # 2008 John Wiley & Sons, Ltd.

be searched. Another possible application is for the

detection of confidential information leak where the

pattern represents a unique string of the confidential

information.

Since Lempel–Ziv–Welch (LZW) algorithm [1] is

one of the most effective and popular lossless com-

pression algorithms, CPM in LZW compressed se-

quences is quite important. In the last decade, several

related researches have been conducted. The first

CPM algorithm which finds the first pattern occur-

rence in an LZW compressed file was presented in

Reference [2]. It takes O(nþ m2) time and space,

where n and m are, respectively, the lengths of the

compressed sequence and the pattern. This algorithm

is now well known and will be referred to as the

Amir–Benson–Farach (ABF) algorithm in this paper.

The analysis in Reference [2] shows that one can trade

between the amount of extra space required and the

time used with different implementations. However,

Reference [2] proposed the algorithm without realiz-

ing it (according to Tao and Mukherjee’s personal

communication with Amir [3]). Thus, no experimen-

tal results are available to show the practical perfor-

mance. Details of the ABF algorithm are presented in

Section 3. In Reference [3], the ABF algorithm is

extended to find all pattern occurrences. The basic

idea is to use a flag to indicate that complete pattern

occurs inside a compressed data block, in addition to

checking pattern occurrences across two consecu-

tive blocks. However, there is no clear description

of how to implement the extended algorithm. In

Reference [4], another CPM algorithm was proposed

to do decompression and pattern matching on-the-fly.

It still needs partial decompression, which may

result in relatively high computation complexity.

Reference [5] presented a general scheme to find all

pattern occurrences in sequential blocks and realized

the scheme by using the technique of bit-parallelism.

This scheme can be applied to Ziv–Lempel family

[1,6,7], including LZ77, LZ78, and LZW compressed

sequences and will be referred to as the Navarro–

Raffinot (NR) scheme in this paper. Another bitmap-

based implementation for finding all pattern occur-

rences in LZW compressed sequences was indepen-

dently proposed in Reference [8], which will be

referred to as the Kida scheme. The NR scheme and

the Kida scheme will be briefly described in Section 6.

These two schemes, which can be realized with

bitmaps, are variations of the ABF algorithm and

will be compared with our work in Section 7.

In this paper, we present our work of CPM in LZW

compressed sequences. We propose a bitmap-based

realization of the ABF algorithm. Moreover, a gen-

eralization of the ABF algorithm to find all pattern

occurrences and report their absolute positions in the

uncompressed sequence is presented. Experiments

are conducted to compare both throughput and space

performance of our proposed generalization with the

NR scheme, the Kida scheme, and the decompress-

then-search scheme. Results show that our proposed

generalization is significantly faster than the decom-

press-then-search scheme and slightly faster than the

NR scheme and the Kida scheme when there are

pattern occurrences. When searching a file with no

pattern occurrence, our proposed generalization has

the best throughput performance. Moreover, our pro-

posed generalization has better space performance

than both the NR scheme and the Kida scheme for

moderate and long patterns.

The rest of this paper is organized as follows.

Sections 2 and 3 give reviews of LZW and ABF

algorithms, respectively. The proposed bitmap-based

realization of the ABF algorithm is presented in

Section 4, followed by the generalization for all

pattern occurrences in Section 5. Section 6 describes

the most related works, that is, the NR scheme and the

Kida scheme. Experimental results and comparisons

are shown in Section 7. Finally, Section 8 concludes

this paper.

2. The LZW Compression Algorithm

In this section, we briefly review the LZW compres-

sion algorithm and the corresponding decompression

procedure [1]. The notations used here are similar to

those in Reference [2]. Let S ¼ c1c2c3 � � � cu be the

uncompressed sequence (or text) of length u over

alphabet � ¼ fa1; a2; a3; . . . ; aqg, where q is the

size of the alphabet. The LZW compressed format

of S is S � Z and each code in S � Z is S � Z½i�, where
1 � S � Z½i� � nþ q� 1 for i ¼ 1; � � � ; n. The pattern

being searched is P ¼ p1p2p3 � � � pm, where m denotes

the length of P and pi 2 � for 1 � i � m. For con-

venience, we use the notation S1S2 to denote the

concatenation of two strings S1 and S2.

The LZW is a dictionary-based compression algo-

rithm that uses a trie TS to generate the compressed

sequence. Each node on TS contains:

� A node number: a unique number in the range [0,

nþ q� 1]. (‘node N’ or ‘N’ represents ‘the node

numbered N’ in this paper.)

� A label: a symbol in � [fNULLg.

326 T.-H. LEE AND N.-L. HUANG

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

� A chunk: the string that the node represents. It is

simply the concatenation of the labels on the path

from root to the node.

TS and the compressed sequence are constructed as

follows:

1. TS is initialized as a (qþ 1)-node trie consisting of

a root node numbered 0 and labeled NULL and q

child nodes numbered 1; 2; � � � ; q. Child node i is

labeled ai.

2. During compression, the LZW algorithm finds

the longest prefix of the uncompressed sequence

that is a chunk represented by some node N on

TS and outputs N to S � Z. TS is then grown by

adding a new node as a child of N. The new node’s

label is the next unencoded symbol in the

sequence.

At the end of compression, there are nþ q nodes

on TS.

The decompression procedure constructs the same

trie TS and uses it to decode S � Z. It is obvious that
both compression and decompression can be done in

time O(u). The following observation makes it possi-

ble to construct TS from S � Z in time O(n) without

decoding S � Z [2]. Note that, in order to construct TS
from S � Z, an additional symbol is stored in each

node. This additional symbol is the first symbol of the

node’s chunk.

Observation. The code S � Z½l�, 1 � l � n� 1, causes

creation of a new node numbered lþ q as a child of

node S � Z½l�.

� The first symbol of lþ q’s chunk is that of S � Z½l�’s
chunk.

� The last symbol or the label of node lþ q is the first

symbol of S � Z½lþ 1�’s chunk. (If S � Z½lþ 1� ¼
lþ q, then the first symbol of S � Z½lþ 1�’s chunk

is the same as that of S � Z½l�’s chunk.)

3. The Amir–Benson–Farach Algorithm

The Amir–Benson–Farach (ABF) algorithm [2] is an

effective scheme which finds the first pattern occur-

rence in LZW compressed sequence without decom-

pression. To facilitate pattern matching, the following

terms of a node on TS are defined with respect to

pattern P.

Definition 1. A chunk is a prefix chunk if it ends with a

nonempty prefix of P. Similarly, a chuck is a suffix

chunk if it begins with a nonempty suffix of P.

Definition 2. A chunk is an internal chunk if it is an

internal substring of P. That is, the substring pi � � � pj is
an internal chunk if 1 � i � j � m.

Definition 3. The prefix number of a chunk is the

length of the longest pattern prefix the chunk ends

with. Similarly, the suffix number of a chunk is the

length of the longest pattern suffix the chunk begins

with.

Definition 4. The internal range [i, j] of a chunk

indicates that the chunk is the internal chunk

pi � � � pj if 1 � i � j � m, or not an internal chunk if

i¼ j¼ 0.

If a node’s chunk is a prefix chunk, a suffix chunk, or

an internal chunk, the node is called a prefix node, a

suffix node, or an internal node, respectively. Prefix

number¼ 0, suffix number¼ 0, or internal range¼ [0,

0] means that the node is not a prefix node, a suffix

node, or an internal node, respectively.

The ABF algorithm consists of the preprocessing

part and the compressed text scanning part which are

described separately below:

A. Preprocessing:

The pattern is preprocessed to allow answering the

following queries:

1. Let S1 be a pattern prefix with prefix number Px

and S2 be a string with internal range I.

Q1ðPx; IÞ ¼ prefix number of S1S2 ð1Þ

2. Let S1 be a pattern prefix with prefix number Px

and S2 be a nonempty pattern suffix with suffix

number Sx.

Q2ðPx; SxÞ ¼
i; i is the smallest index of S1S2

where the pattern occurs

0; no pattern occurs in S1S2

8<
:

9=
;
ð2Þ

3. Let S1 be an internal substring of P and � 2 �.

Q3ðS1; �Þ ¼ internal range of S1� ð3Þ

AN EFFICIENT PATTERN MATCHING SCHEME 327

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

B. Compressed text scanning:

The compressed text scanning part is further divided

into two components: the LZW trie construction and

the pattern search. When constructing TS, each node is

assigned a node number, the first symbol of its chunk,

a label, a prefix number, a suffix number, and an

internal range. The pattern search part keeps track of

the largest partial match and finds out if the partial

match can be extended to a complete match. The

compressed text scanning procedure is described

below.

Initialize: variable Prefix 0

for l¼ 1 to n do

(Let Px, Sx, and I denote node S � Z½l�’s prefix number,

suffix number, and internal range, respectively.)

1. LZW trie construction:

1.1. Add a new node numbered lþ q to TS as a

child node of S � Z½l�. Let � denote the label of

node lþ q.

1.2. The first symbol of lþ q’s chunk is that of

S � Z½l�’s chunk.
1.3. Set � as the first symbol of S � Z½lþ 1�’s

chunk. (If S � Z½lþ 1� ¼ lþ q, then the first

symbol of S � Z½lþ 1�’s chunk is the same as

that of S � Z½l�’s chunk.)
1.4. If S � Z½l� is an internal node, set lþ q’s inter-

nal range [i, j] as Q3ðS1; �Þ, where S1 denotes
the string represented by S � Z½l�. Otherwise,
set lþ q’s internal range [i, j] as [0, 0].

1.5. If j¼m, set lþ q’s suffix number as

m� iþ 1. Otherwise, set lþ q’s suffix num-

ber as Sx.

1.6. Set lþ q’s prefix number as Q1ðPx; I�Þ, where
I� is the internal range of �.

2. Pattern search:

If Prefix ¼ 0, Prefix Px

Else,

If Sx 6¼ 0,

// Check the pattern occurrence with

Q2(Prefix, Sx)

If Q2ðPrefix; SxÞ 6¼ 0, a pattern occurrence is

found

If I 6¼ ½0; 0�, Prefix Q1ðPrefix; IÞ. Else,
Prefix Px

To answer query Q3, we need to construct the suffix

trie of P, denoted by STP. Note that there are m

nonempty suffixes of P and the number of nodes in

STP isO(m
2). Moreover, there is a unique node on STP

which represents a specific substring of P (even if

the substring appears multiple times in P). It is

clear that query Q3ðS1; �Þ can be easily answered by

tracing STP.

One can reduce the space complexity of STP as

follows. A node on STP is said to be explicit if and

only if (iff) either it represents a suffix of P or it has

more than one child node. The nodes that are not

explicit are said to be implicit. One can construct

the compacted STP which contains only explicit

nodes of the uncompacted STP by eliminating all

implicit nodes in between two explicit nodes. The

space complexity can be reduced because the

number of explicit nodes on the uncompacted STP is

O(m) [2].

Queries Q1 and Q2 can be answered in constant

time during text scanning if two tables, each has

O(m2) entries, are constructed in advance [2]. Each

entry in the two tables requires O(log2m) bits. Ob-

viously, when m is large, these two tables require

significant amount of memory. In Section 4, we

present an efficient realization which requires only

O(m) bitmaps, each has m bits, to answer queries Q1

and Q2. Then, we generalize the ABF algorithm to

find all pattern occurrences in Section 5.

4. Bitmap-Based Realization

Let us consider the implementation of query Q2 first.

Given a pattern P ¼ p1p2p3 � � � pm of length m, we

need two sets of bitmaps where each bitmap has m

bits. The first set, called prefix bitmaps, consists of m

bitmaps that correspond to the m possible prefix

numbers 0; 1; 2; . . . ;m� 1. Let Ai ¼ a1i a
2
i � � � ami de-

note the ith prefix bitmap which corresponds to prefix

number i� 1. We assign aki ¼ 1 iff k � i and

pi�kþ1 � � � pi�1 is a nonempty prefix of P, that is,

pi�kþ1 � � � pi�1 ¼ p1 � � � pk�1. Note that pi�kþ1 � � � pi�1
represents a null string if k¼ 1. Clearly, with the

assignment, we have a1i ¼ 0 for all i, 1 � i � m,

aii ¼ 1 if 1 < i � m, and a
j
i ¼ 0 if j> i.

The second set of bitmaps, called suffix bitmaps,

consists of m� 1 bitmaps which correspond to the

m� 1 possible suffix numbers 1, 2, . . . , m� 1. Again,

the size of each suffix bitmap is m bits. Let

Bi ¼ b1i b
2
i � � � bmi be the ith suffix bitmap which corre-

sponds to suffix number i. Assign bki ¼ 1, iff

k � m� iþ 1 and pm�iþ1 � � � p2m�i�kþ1 is a nonempty

suffix of P, that is, pm�iþ1 � � � p2m�i�kþ1 ¼ pk � � � pm. In
other words, bki ¼ 1 iff the length-(m� kþ 1) prefix of

328 T.-H. LEE AND N.-L. HUANG

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

pm�iþ1 � � � pm is a nonempty suffix of P. Similarly, with

the assignment, we have bm�iþ1i ¼ 1 and b
j
i ¼ 0 if

j<m� iþ 1.

We now show that query Q2ðPx; SxÞ can be an-

swered with the two sets of bitmaps. Let Px ¼ i� 1

and Sx ¼ k. In other words, we have S1 ¼ p1 � � � pi�1,
S2 ¼ pm�kþ1 � � � pm, and S1S2 ¼ p1 � � � pi�1pm�kþ1 � � �
pm. Note that S1 ¼ p1 � � � pi�1 represents a null string

if i¼ 1. To answer query Q2, we first perform the

bitwise AND operation of Ai and Bk. Let R ¼
r1r2 � � � rm denote the result, that is, R ¼ Ai � Bk,

where � represents the bitwise AND operation. If

i> 1 and there is a cross-boundary pattern occurrence

starting at the jth position of S1, then it must hold that

pj � � � pi�1 is a prefix of P and pm�kþ1 � � � p2m�k�iþj is a
suffix of P. Since pj � � � pi�1 is a prefix of P, we have

a
i�jþ1
i ¼ 1. Similarly, pm�kþ1 � � � p2m�k�iþj is a suffix

of P implies b
i�jþ1
k ¼ 1. Consequently, the pattern

occurrence can be detected because it holds that

ri�jþ1 ¼ 1. To determine the first pattern occurrence,

we need only identify the rightmost 1 of R. Assume

that the rightmost 1 of R occurs in the lth position, that

is, rl ¼ 1 and ri ¼ 0 for lþ 1� i�m, then the first

pattern occurrence is found starting at the

ðjS1j � lþ 2Þth position of S1. There is no pattern

occurrence crossing the boundary of S1 and S2 if

rx¼ 0 for all x, 1� x�m. In case that i¼ 1, that is,

S1 is a null string, we have a
x
i ¼ 0 for all x, 1� x�m,

which implies rx¼ 0 for all x, 1� x�m. Note that the

implementation can actually find all cross-boundary

pattern occurrences. This function will be used in the

generalization to find all pattern occurrences pre-

sented in the next section.

Let us consider the implementation of query Q1. A

third set of m-bit bitmaps are required. For conveni-

ence, we number the nonempty suffixes of P so that

suffix k is of length k, 1� k�m. We need a bitmap to

be associated with each node on the compacted STP.

Consider the bitmap CN ¼ c1Nc
2
N � � � cmN associated

with a particular node N. Assign ciN ¼ 0 for all i,

1� i�m, if node N is the root node. The bitmap

associated with the root node is for the internal range

[0, 0]. Assume that node N is not the root node. It is

clear that node N represents a unique nonempty sub-

string of P. Assign cm�kþ1N ¼ 1, iff node N represents

suffix k or the node which represents suffix k is a

descendent node of N. Note that the above assignment

results in cm�kþ1N ¼ 1 iff the string represented by

node N is a nonempty prefix of suffix k.

With the prefix bitmaps and the bitmaps associated

with the nodes on the compacted STP, one can now

answer query Q1ðPx; IÞ. Let M be the node on the

LZW trie TS which represents string S2 with internal

range I. Also, let N be the node on the compacted STP
which either represents S2 or the string it represents is

the shortest string represented by any node on the

compacted STP which contains S2 as a prefix. NodeM

contains a pointer which points to the bitmap asso-

ciated with node N. To answer query Q1ðPx; IÞ, we
perform the bitwise AND operation of the prefix

bitmap corresponding to prefix number Px and the

bitmap pointed to by the pointer stored in nodeM. Let

R ¼ r1r2 � � � rm denote the result of the bitwise AND

operation. If ri ¼ 0 for all i, 1� i�m, then Q1ðPx; IÞ
returns the prefix number of node M. Assume that

ri ¼ 1 for at least one i. The answer of Q1ðPx; IÞ
equals k� 1þDep(M) if rk ¼ 1 and ri ¼ 0, kþ 1�
i�m, where Dep(M), the depth of node M, denotes

the length of the chunk represented by node M.

The correctness of the above implementation for

query Q1ðPx; IÞ can be proved as follows. Assume that

Px ¼ i� 1 so that S1 ¼ p1 � � � pi�1. If i> 1 and the

longest pattern prefix that is a suffix of S1S2 starts at

the jth position of S1, then it holds that pj � � � pi�1 is a
prefix of P and suffix m� iþ j contains S2 as a prefix.

As a result, we have a
i�jþ1
i ¼ 1 and c

i�jþ1
N ¼ 1 which

implies ri�jþ1 ¼ 1. In other words, such a prefix can

be detected by the bitwise AND operation. Since we

are looking for the longest pattern prefix, the right-

most 1 of R is selected. If the rightmost 1 of R is rk, the

symbol pi�kþ1 starts the longest pattern prefix whose

length is equal to k� 1þDep(M). If ri ¼ 0 for all i,

1� i�m, then the longest pattern prefix is completely

contained in S2 and its length is equal to the prefix

number of node M. Therefore, the above implementa-

tion does result in correct answer for query Q1.

To implement query Q3, we need the suffix trie STP.

The answer of Q3 can be obtained by tracing STP and

the space complexity of STP can be reduced to O(m),

as mentioned before.

Below are two examples.

Example 1. Let P¼abcab. Tables I and II show the

prefix bitmaps and the suffix bitmaps of P, respec-

tively. As an example of query Q2ðPx; SxÞ, assume that

S1 ¼ abca and S2 ¼ bcab. Consequently, we have

Px ¼ 4, Sx ¼ 4, and R¼ 01001. For this example,

the first pattern occurrence starts at the first position

of S1. In fact, as indicated by the two 1’s appeared in

R, there are two pattern occurrences in S1S2.

Example 2. Let P¼ababc. Table III shows the prefix
bitmaps of P. For ease of description, we use the

AN EFFICIENT PATTERN MATCHING SCHEME 329

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

uncompacted suffix trie STP of P as illustrated in

Figure 1. The bitmaps associated with the explicit

nodes of STP are given in Table IV. As an example of

query Q1ðPx; IÞ, assume that S1 ¼ abab and S2 ¼ ab.

Consequently, we have Px ¼ 4, and I¼ [1, 2] (or

[3, 4]). In our implementation, I¼ [1, 2] (or [3, 4])

is represented by node 2 of STP. Since Px ¼ 4 corre-

sponds to the prefix bitmap 00101 and the bitmap

associated with node 2 of STP is 10100, we have

R¼ 00100. As a result, the answer of query Q1(4,

[1, 2]) (or Q1(4, [3, 4])) is 3� 1þ jS2j ¼ 2þ 2 ¼ 4.

As another example, if S1 ¼ ab and S2 ¼ bab, then we

have Px ¼ 2 and I¼ [2, 4] (the bitmap to be used is the

one associated with node 9 of STP). Therefore,

R ¼ 00100� 01000 ¼ 00000. In this case, the answer

of query Q1(2, [2, 4]) is 2, that is, the prefix number

of bab.

Let us consider now examples of query Q3ðS1; �Þ.
Assume that S1 ¼ ab which is represented by node 2

of STP. If � ¼ b, then we have Q3ðS1; �Þ ¼ ½0; 0�
because there is no transition from node 2 to any

node with label b. However, if � ¼ c, then we have

Q3ðS1; �Þ ¼ ½3; 5� which is represented by node 10

of STP.

5. Generalization to All Pattern
Occurrences

The pattern occurrence checking in the ABF algo-

rithm is only performed cross two consecutive data

blocks to report the first occurrence. To generalize the

ABF algorithm to find all pattern occurrences, we

need to consider all pattern occurrences cross two

consecutive data blocks and those inside a data block

as well. Our implementation presented in Section 4

allows detection of all pattern occurrences cross two

consecutive data blocks. Therefore, the remaining

work is to detect all pattern occurrences inside a

data block. The generalization is designed to also

report the absolute positions of pattern occurrences.

To detect all pattern occurrences inside a data

block, we add two fields, called pattern inside flag

(PIF) and pattern inside pointer (PIP), to every node

on the LZW trie TS. The PIF flag is an indication of

existence of pattern occurrences inside a node’s chunk

and the PIP pointer is used for backtracking to find the

positions of all pattern occurrences inside the chunk.

For the root node, its PIF is 0 and its PIP pointer points

Table I. Prefix bitmaps.

Px Prefix Bitmap # Bitmap

0 NULL 1 00000
1 a 2 01000
2 ab 3 00100
3 abc 4 00010
4 abca 5 01001

Table II. Suffix bitmaps.

Sx Suffix Bitmap # Bitmap

1 b 1 00001
2 ab 2 00010
3 cab 3 00100
4 bcab 4 01001

Table III. Prefix bitmaps.

Px Prefix Bitmap # Bitmap

0 NULL 1 00000
1 a 2 01000
2 ab 3 00100
3 aba 4 01010
4 abab 5 00101

Table IV. Bitmaps associated with explicit nodes.

Explicit node Bitmap

0 00000
2 10100
5 10000
6 01010
9 01000
10 00100
11 00010
12 00001

Fig. 1. The uncompacted suffix trie STp of P¼ababc.

330 T.-H. LEE AND N.-L. HUANG

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

to the node itself. Assume that a new node M is to be

added as a child of node N. The PIP pointer of M

inherits the PIP value of N if N is not a final node,

that is, a node whose chuck ends with the complete

pattern P. To identify final nodes, we let the prefix

number of a final node equal m. In case N is a final

node, the PIP pointer of M points to N. Similarly, the

PIF ofM inherits that of N unless the PIF of N is 0 and

M is a final node. In this case, we set the PIF ofM to 1.

It is not hard to see that, with these additional fields,

one can trace back the LZW trie to find all pattern

occurrences inside a chuck. The trace-back ends once

a node with PIP pointer points to the root node, that is,

PIP¼ 0, is reached.

Note that, since we allow the prefix number of a node

to be equal to m, we need to add an additional prefix

bitmap corresponding to prefix numberm. The contents

of the bitmap are assigned with the same algorithm

described in Section 4. It is clear that the value of the

variable Prefix may equal m too. However, it does not

cause any problem because the bitmap corresponding to

prefixnumberm is the sameas thebitmapcorresponding

to prefix number k, such that pm�kþ1 � � � pm is the longest

suffix of P which is also a proper prefix of P, that is, a

prefix which is not P itself. Note that pm�kþ1 � � � pm
represents a null string if k¼ 0.

For convenience, we also allow the suffix number of

a node to be equal to m. As a consequence, another

bitmap corresponding to suffix number m is added to

the set of suffix bitmaps. Again, the contents of the

added suffix bitmap are assigned according to the

algorithm described in Section 4 and the additional

suffix bitmap does not cause any problem because

a1i ¼ 0 for all i, 1� i�m þ 1.

To report the absolute positions of pattern occur-

rences, we can rely on the depth fields of nodes on the

LZW trie TS and a global variable COUNT which

stores the number of bytes in text S that have been

scanned. Computation of the depth field is simple. The

depth of the root node is 0. When node M is added

as a child of node N, the depth of M equals that of

N plus one. With the depth fields, we know the posi-

tion of a node inside a chuck, which, together with

the global variable COUNT, can be used to determine

the absolute positions of pattern occurrences. The

overall generalized algorithm is described below.

A. Preprocessing:

The prefix bitmaps and the suffix bitmaps are com-

puted. Also, the compacted suffix trie STP of pattern P

with the associated bitmaps are determined.

B. Compressed text scanning:

Initialize: Prefix 0, COUNT 0

for l¼ 1 to n do

(Let Px, Sx, I, F, and D denote node S � Z½l�’s prefix

number, suffix number, internal range, PIF, and depth,

respectively.)

1. LZW trie construction:

Add a new node numbered lþ q to TS as a child of

S � Z½l� and compute its prefix number, suffix num-

ber, internal range, the first symbol, label, depth,

PIF, and PIP.

2. Pattern search:

If Sx 6¼ 0,

Check cross-boundary occurrences with the bit-

wise AND operation for query Q2(Prefix, Sx).

Let R ¼ r1r2 � � � rm be the result of the bitwise

AND operation.

for k¼ 1 to m do

If rk ¼ 1, report the position: COUNT � k þ 2

If F¼ 1 and Px ¼ m, report the position:

COUNT þ D� mþ 1

N S � Z½l�’s PIP
While N 6¼ 0

Report the position: COUNTþDep(N)�mþ 1

N N’s PIP

Prefix Q1ðPrefix; IÞ // Note that the answer of

Q1ðPrefix; IÞ is Px, if the

result of bitwise AND op-

eration for Q1ðPrefix; IÞ
is all-zero

COUNT COUNT þ D

Note that the algorithm can be applied in a com-

munication network environment where data arrive in

packets. It can take the reordered packets and scan

their payloads on-the-fly. The only modification is that

intermediate states should be saved after a packet is

processed and fetched to continue the scanning pro-

cess when a new packet is received. The intermediate

states include Prefix,COUNT, and the partial code that

has not been processed if a code is separated and

contained in consecutive packets.

6. Related Works

A different bitmap-based implementation for LZW

compressed pattern matching was proposed in Refer-

ence [8]. For convenience, we call it the Kida scheme.

Two functions, that is, F and Output, were defined for

the scheme. The F function defines state transitions

from a set of active states with an input chunk and the

AN EFFICIENT PATTERN MATCHING SCHEME 331

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

Output function emits matching results associated

with state transitions. Its detailed operation can be

found in Reference [8].

To implement the F function, we need an m-bit

bitmap M̂ðuÞ for each LZW node, where M̂ðuÞ de-
notes the bitmap for the node representing chunk

u ¼ u1 � � � ujuj such that the ith bit of M̂ðuÞ is a

1 iff p1 � � � pi ¼ ujuj�iþ1 � � � ujuj or pi�jujþ1 � � � pi ¼
u1 � � � ujuj. To implement the Output function, we

need an m-bit bitmap U(u) and two values lps(u)

and prev(u) for each LZW node. U(u) denotes the

bitmap for the node representing chunk u such that the

ith bit of U(u) is a 1 iff 1 � i � minfjuj;m� 1g and
the mth bit of M̂ðu½1 : i�Þ is a 1. lps(u) denotes the

longest prefix of u that is a pattern suffix and prev(u)

denotes the longest proper prefix of u whose suffix is

the pattern P.

Another scheme which can find all pattern occur-

rences and be implemented with bitmaps was pre-

sented in Reference [5]. For convenience, we call it

the Navarro–Raffinot (NR) scheme. The NR scheme

is a general technique to perform pattern matching in

the text presented as a sequence of chunks which

either have just one symbol or are formed by con-

catenating previously seen chunks. The chunks are

processed one by one. A description, denoted by

D(B)¼ (L, O, Su, Pr, M), is computed for each new

chunk B, where

� L ¼ jBj ¼ the length of B in symbols

� O¼Offs(B)¼ the length in symbols of the text that

had been processed when B appeared

� Su ¼ SuffðBÞ ¼ fjxj;P ¼ xByg [fjxj; jxj >
0 ^ jzj > 0 ^ P ¼ xz ^ B ¼ zyg

� Pr ¼ PrefðBÞ ¼ fjxBj;P ¼ xBy ^ jyj > 0g[
fjzj; jzj > 0 ^ jyj > 0 ^ P ¼ zy ^ B ¼ xzg

� M¼MatchesðBÞ ¼ fjxj;B ¼ xPyg

The NR scheme can be realized with two sets of

bitmaps, Pref(B) and Suff(B), for every chunk B. The

length of every bitmap for Pref(B) and Suff(B) is equal

to m, the pattern length. When applied to pattern

search in LZW compressed sequences, the numbers

of bitmaps for Pref(B) and Suff(B) are equal to the

number of nodes on the LZW trie, just like the Kida

scheme. The matches inside each chunk B, that is,

Matches(B), can be represented by either bitmaps or

arrays of numbers. We assume that Matches(B) are

represented by arrays of numbers. The reason to

represent Matches(B) as an array of numbers is that

O(log2b) bits take less space than O(b) bits, where b is

the maximum chunk length.

Once the description of the new chunk is computed,

it is used to update the state of the search. The state of

the search contains the matches that have already

occurred and the potential matches in progress, that is,

� ResðS0Þ ¼ fjxj; S0 ¼ xPyg
� ActiveðS0Þ ¼ fjxj; jxj > 0 ^ jyj > 0 ^ P ¼ xy^

S0 ¼ zxg

where S0 denotes the text already processed at any

moment of the search. When the search process is

over, it holds that S0 ¼ S, the original text. Hence,

when the text processing is complete, Res(S) is the

answer. The initial state of the search is Resð"Þ ¼
Activeð"Þ ¼ ;, and S0 ¼ ", where " denotes the empty

string.

Both the Kida scheme and the NR scheme are

variations of the ABF algorithm and use the technique

of bit-parallelism for realization. The two related

works are compared with ours in the following

section.

7. Experimental Results

In this section, we compare the space requirement and

the throughput performance of our proposed general-

ized scheme, the NR scheme, the Kida scheme, and

the one that performs decompression followed

by pattern searching with the Knuth–Morris–Pratt

(KMP) algorithm [9].

Consider the space requirement first. In our pro-

posed generalized scheme, the number of bitmaps,

including prefix bitmaps, suffix bitmaps, and the

bitmaps associated with the nodes on the compacted

suffix trie STP is O(m). Each bitmap has m bits. The

number of nodes on the compacted suffix trie STP is

O(m). Each node can be identified by a number of size

O(log2m) bits. The LZW trie TS takes space O(t),

where t is the number of nodes on TS. The prefix

number, the suffix number, and the internal ranges

stored in every node of TS are replaced by three

pointers, each of size O(log2m) bits, which point to

the appropriate bitmaps. The node number and the PIP

pointer of each LZW node take space O(log2t) bits.

The depth of each node takes space O(log2b) bits,

where the maximum chunk length b is equivalent

to the maximum node depth on TS. Therefore, the

space complexity of our generalized algorithm is

O(m2 þ tlog2mþ tlog2t þ tlog2bþ mlog2m) bits.

In the Kida scheme, each LZW node carries two m-

bit bitmaps, M̂ðuÞ and U(u). Therefore, the total

332 T.-H. LEE AND N.-L. HUANG

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

number of bitmaps required is O(t) and the bitmaps

take space O(tm), which increases proportional to

the size of the LZW trie. In addition, each LZW

node carries lps(u), prev(u) and a node number, and

the suffix trie STP is required for computing lps(u).

Similarly, we can use the compacted version of STP,

which takes spaceO(mlog2m). Each lps(u) takes space

O(log2m) bits; each prev(u) and each node number

take space O(log2t) bits. In order to compute the

matching positions in the uncompressed text, the

depth of each LZW node needs to be stored, which

takes space O(log2b) as our proposed generalized

scheme. In summary, the space complexity of the

Kida scheme is O(tmþ tlog2mþ tlog2t þ tlog2bþ
mlog2m) bits. The term O(tm) indicates that the space

requirement increases significantly as m increases if t

is large. In a system where each character is repre-

sented by 8 bits, t is initially 256 before compression

starts. After compression, t is often much larger than

256 for a large file.

In the NR scheme, the number of elements stored in

Res(S) is O(r) and each element requires O(log2u)

bits, where r is the number of pattern occurrences in

the text. Each LZW node carries a description. Thus, it

requires O(t) descriptions and each of them carries an

identifier of size O(log2t) bits. Besides, each of the

O(t) description contains five elements, L, O, Su, Pr,

and M. The element L is equivalent to the depth field

in our generalized scheme and requires O(log2b) bits.

Assume that the number of pattern occurrences inside

an LZW chunk is upper bounded by a constant so that

the size of the element M is O(log2b) bits. Note that

there are O(t) bitmaps of Su and O(t) bitmaps of Pr,

each of the bitmaps has m bits. The space requirement

of these two sets of bitmaps is O(tm), which increases

proportional to t as the Kida scheme. Another sig-

nificant difference between the NR scheme and our

generalized scheme is that r affects the space require-

ment of the NR scheme, but not ours. This effect

will be studied later. Since the element O in the

description is not necessary for every node, we

assume that it is omitted and instead a global counter

COUNT is adopted in comparison. In summary,

the space complexity of the NR scheme is

O(tmþ tlog2tþ tlog2bþ rlog2u) bits.

In the following experiments, all variables and

constants are taken into account to compare the space

requirement in practice, unless special test case is

stated. In the first test case, we ignore the space

requirement of the NR scheme caused by r, that is,

we intentionally let r¼ 0. The text used in test case 1

is dfrgntfs.exe (an executable file in Windows) whose

uncompressed size is 104,960 bytes. Comparison of

the space requirements of the three schemes for test

case 1 is shown in Figure 2. It can be seen that in

comparison with the NR scheme, our generalized

scheme requires less storage if the pattern length is

longer than 25; in comparison with the Kida scheme,

it requires less storage if the pattern length is longer

than 10.

In the following test cases, we take the influence of

r into account to compare the space requirement of the

NR scheme and our proposed scheme. We use

case2.txt (a randomly generated text file with 3,000

patterns inserted) of uncompressed size 296,126 bytes

and case3.txt (another randomly generated text file

with 18,000 patterns inserted) of uncompressed size

1,705,714 bytes as the texts in test cases 2 and 3,

respectively. Figures 3 and 4 show, respectively, the

space requirements under these two test cases for

different pattern lengths. As shown in Figures 2–4,

Fig. 2. Comparison of space requirements for test case 1.

Fig. 3. Comparison of space requirements for test case 2.

AN EFFICIENT PATTERN MATCHING SCHEME 333

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

our proposed scheme is preferable for applications

with moderate and long patterns, such as ClamAV

signatures [10].

In Figure 5, we show the space requirements

for pattern length m¼ 25 with various numbers of

patterns inserted in dfrgntfs.exe. The uncompressed

size of the modified dfrgntfs.exe is 249,860 bytes. As

one can see, the space requirement of the NR scheme

increases as r increases, whereas the space require-

ment of our proposed scheme is insensitive to the

value of r.

Next, we consider the throughput performance. We

implemented each scheme in Cþþ and carried out the

experiments on a PC with an Intel Pentium 4 CPU

operated at 2.80GHz with 512MB of RAM running

Microsoft Windows XP operating system. In the

fourth test case, we use dosx.exe (an executable

file in Windows) as our text which contains no pattern

at all. The uncompressed size of dosx.exe is

53,856 bytes. In the fifth test case, we insert various

numbers of patterns with m¼ 4 in dosx.exe at ran-

domly selected positions. The experimental results of

test cases 4 and 5 are shown in Figures 6 and 7,

respectively. As one can see, the processing time of

our scheme is the least in test case 4. The reason is that

in our scheme, the prefix bitmap for each LZW node is

a bitmap in the set of prefix bitmaps that can be

computed in the preprocessing stage, and so

are the suffix bitmap and the bitmap associated with

the node on the compacted suffix trie STP. Therefore,

the bitmaps for each LZW node are precomputed in

our scheme, whereas they are computed in the text

scanning stage in both the Kida and the NR schemes.

Figure 7 shows that, for test case 5, the performance of

our scheme is only slightly better than those of the

Kida and the NR schemes. The reason is that the time

Fig. 4. Comparison of space requirements for test case 3.

Fig. 5. Comparison of space requirements for different
number of pattern occurrences (m is fixed to be 25).

Fig. 6. Performance comparison for test case 4.

Fig. 7. Performance comparison for test case 5.

334 T.-H. LEE AND N.-L. HUANG

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

for reporting search results dominates the perfor-

mance when there are pattern occurrences in the

text. Also, the experiments show that our scheme,

the Kida scheme, and the NR scheme have better

performance than the decompress-then-search algo-

rithm in both test cases 4 and 5 because the former

three schemes do not need to decompress the com-

pressed file.

As our proposed scheme, all the related schemes

can be modified for a communication network envir-

onment. The processing times of our proposed scheme

and the related schemes are influenced by the arrival

pattern of packets. If the next packet arrives before the

current packet finishes being processed, the perfor-

mance of each scheme is approximately the same as

that presented above. The difference is slight increase

of processing time spent in fetching the packets.

8. Conclusion

In this paper, we report our work on compressed

pattern matching which can process LZW compressed

sequences with no decompression to report all pattern

occurrences in the uncompressed sequences. It can be

applied to detection of malwares and confidential

information leak in LZW compressed files directly.

A summary of the highlights of our work is:

� We present an efficient bitmap-based realization of

the well-known ‘‘almost optimal’’ ABF algorithm.

� Our realization is then generalized to detect all

pattern occurrences and report the absolute match

positions.

� Precise analysis is presented to compare the space

complexity of our proposed scheme with two re-

lated CPM schemes, namely, the Kida scheme

and the NR scheme. The space complexity of

our scheme is O(m2 þ tlog2mþ tlog2t þ tlog2bþ
mlog2m), whereas that of the Kida and the NR

schemes are O(tmþ tlog2mþ tlog2t þ tlog2bþ
mlog2m) and O(tmþ tlog2t þ tlog2bþ rlog2u),

respectively.

� Experiments are conducted to compare the space

requirements and throughput performance of our

proposed generalized scheme with the decompress-

then-search scheme, the Kida scheme, and the NR

scheme. In throughput performance comparison,

our scheme is slightly better than the Kida scheme

and the NR scheme when scanning a file with

pattern occurrences. For a file with no pattern

occurrence, our scheme has the best throughput

performance, which is about five times better than

that of the decompress-then-search scheme.

� In the space performance comparison, our scheme

requires less storage than both the Kida scheme and

the NR scheme for patterns of length longer than

25. Therefore, our proposed scheme is preferable

for applications with moderate and long patterns,

such as ClamAV signatures. Moreover, the space

requirement of our proposed scheme is insensitive

to the number of pattern occurrences in the text.

An interesting further research topic is to design

efficient algorithms to match regular expressions

in LZW or other Ziv–Lempel family compressed

sequences.

References

1. Welch TA. A technique for high-performance data compres-
sion. IEEE Computer 1984; 17(6): 8–19.

2. Amir A, Benson G, Farach M. Let sleeping files lie: pattern
matching in Z-compressed files. Journal of Computer and
System Sciences 1996; 52: 299–307.

3. Tao T, Mukherjee A. Pattern matching in LZW compressed
files. IEEE Transactions on Computers 2005; 54(8): 929–938.

4. Ho MH, Yen HC. A dictionary-based compressed pattern
matching algorithm. In IEEE Proceedings of the 26th Annual
International Computer Software and Applications Confer-
ence, Oxford, England, 2002; 873–878.

5. Navarro G, Raffinot M. A general practical approach to pattern
matching over Ziv-Lempel compressed text. In Proceedings of
10th Annual Symposium on Combinatorial Pattern Matching,
Springer-Verlag: London, UK. Lecture Notes in Computer
Science 1999; 1645: 14–36.

6. Ziv J, Lempel A. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 1977;
23: 337–343.

7. Ziv J, Lempel A. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory
1978; 24: 530–536.

8. Kida T, Takeda M, Shinohara A, Arikawa S. Shift-And
approach to pattern matching in LZW compressed text. In
Proceedings of 10th Annual Symposium on Combinatorial
Pattern Matching, Springer-Verlag: London, UK. Lecture
Notes in Computer Science 1999; 1645: 1–13.

9. Knuth DE, Morris JH, Pratt VR. Fast pattern matching in
strings. SIAM Journal on Computing 1977; 6(2): 323–350.

10. Clam AntiVirus (ClamAV) website http://www.clamav.net

AN EFFICIENT PATTERN MATCHING SCHEME 335

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:325–335

DOI:10.1002/sec

