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Abstract

This paper demonstrates a strong equivalence of all permutation polytopes corresponding to strictly supermodular functions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout the paper, let p be a positive integer. A p-set function is a real-valued function λ on the subsets of
{1, . . . , p} with λ(∅) = 0. A p-set function is called supermodular if for every I, J ⊆ {1, . . . , p},

λ(I ∪ J ) + λ(I ∩ J ) ≥ λ(I ) + λ(J ); (1.1)

λ is called strictly supermodular if strict inequality holds in (1.1) whenever the sets I and J are not linearly ordered
by set inclusion, that is, I 6⊆ J and J 6⊆ I . Also, λ is called (strictly) submodular if −λ is (strictly) supermodular.

Supermodular/submodular functions have extensive applications in optimization and polyhedral combinatorics.
Some of the developments have occurred, in parallel, within the studies of specific contexts (at times, with
incomplete cross-referencing). One early reference is Choquet [3] who introduced submodular functions when
studying Newtonian capacities of subsets in R3. Edmonds [4], motivated by his work on matroids and their rank
functions, began the systematic study of submodularity while Shapley [13] established (independently) important
results through his investigation of cores of p-person games. Lovasz [8] provided an extensive survey which lists
many applications; in fact, he argued that the role of submodular functions in combinatorial optimization parallels
and enforces the role of convex functions in continuous optimization. Additional developments and applications can
be found in [1,2,5–7,9,10,12] and the references therein. Some of these applications augment (1.1) with additional
requirements, like monotonicity that is used in the definition of rank functions.
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Supermodularity gives rise to polyhedra with nice properties. More specifically, for each permutation σ of
{1, . . . , p} and t ∈ {1, . . . , p}, let Iσ (t) be the integers preceding t according to σ . Given a p-set function λ,
each permutation σ defines a vector λσ ∈ Rp with (λσ )k = λ[{k} ∪ Iσ (k)] − λ[Iσ (k)]. The permutation polytope
corresponding to λ, denoted Hλ, is the convex hull of the vectors λσ with σ ranging over all permutations of
{1, . . . , p}. Also, we consider the solution set of the linear system∑

j∈I

x j ≥ λ(I ) for each nonempty subset I of {1, . . . , p}, and (1.2)

p∑
j=1

x j = λ({1, . . . , p}), (1.3)

which we denote Cλ; in game theoretic terminology this polytope is called the core of the game corresponding to λ,
see [13]. Shapley [13] proved that when λ is supermodular, the above two polytopes coincide and that the λσ ’s are
the vertices of Cλ

= Hλ; he also characterized nonempty faces of these polytope in terms of tightness of constraints
that appear in (1.2) (see Theorem 3.1). Further algebraic and geometric properties of polytopes corresponding to
supermodular functions have been studied extensively (see the aforementioned references).

Example 1. Let n, n1, . . . , n p be positive integers and let θ1, . . . , θn be real numbers such that
∑p

j=1 n j = n and

θ1 ≤ . . . ≤ θn . For each subset I of {1, . . . , p}, let n I ≡
∑

j∈I n j and λ(I ) ≡
∑n I

i=1 θi = min{
∑

i∈J θi : J ⊆

{1, . . . , p}and|J | = n I }. Now, consider subsets I and J of {1, . . . , p}. As n I∪J = n I + n J\I , n J = n J\I + n I∩J and
n I ≥ n I∩J , we have that

λ(I ∪ J ) − λ(I ) =

n I +n J\I∑
i=n I +1

θi ≥

n I∩J +n J\I∑
i=n I∩J +1

θi = λ(J ) − λ(I ∩ J ), (1.4)

assuring that the p-set function λ is supermodular; further, if the θi ’s are distinct and I and J are not comparable by
set inclusion, the above inequalities are strict, assuring that λ is strictly supermodular.

For a partition π = (π1, . . . , πp) of {1, . . . , n} satisfying |π j | = n j for j = 1, . . . , p, let θπ =

(
∑

i∈π1
θi , . . . ,

∑
i∈πp

θi ). The convex hull of the θπ ’s is referred to as a (single-shape) partition polytope. This

polytope was shown to coincide with Hλ
= Cλ in [6]. In the special case where n = p (or equivalently, n j = 1

for j = 1, . . . , p), the partition polytope is the convex hull of the coordinate-permutations of θ = (θ1, . . . , θp) and
is referred to as the generalized permutahedron corresponding to θ . The standard permutahedron is obtained when
θ = (1, . . . , p), in particular, it is a permutation polytope corresponding to a strictly supermodular set function (see
[11,1] and [14, pp. 17–18 and 23]). �

The purpose of the current paper is to demonstrate that from an algebraic and combinatorial perspective all
permutation polytopes corresponding to strictly supermodular functions coincide. Specifically, it is shown that all
such polytopes are combinatorially equivalent (that is, their face-lattices are isomorphic) and they are algebraically
equivalent (which assures that the sets of tangential hulls of their faces coincide); see Section 2 for formal definitions.
One implication of these results is a simple characterization of the vertices and of the facets of these polytopes,
characterizations that have been observed by [13,2,4]. The combinatorial equivalence of the face-lattice of permutation
polytopes corresponding to restricted classes of strictly supermodular functions has appeared in the literature;
for example, [9, Theorem 4.2] establishes this (combinatorial) equivalence for a family of polytopes that arise
in some scheduling problems, [1, Section 3] proves the equivalence for permutahedra corresponding to vectors
θ = (θ1, . . . , θp) with distinct θi ’s (see Example 1), and [6, Corollary 2] generalized the equivalence to partition
polytopes where the corresponding θi ’s are distinct (again, see Example 1).

Sections 2 and 3 record, respectively, preliminaries about polytopes and about supermodular set functions.
Section 4 explores partition polytopes corresponding to strictly supermodular set functions.

2. Preliminaries on polytopes

Given a set C ⊆ Rp, a linear combination of points in C is a point x in Rp of the form
∑k

i=1 αi x i where k is a
nonnegative integer, the x i ’s are in C and the αi ’s are in R. If, in addition, (1)

∑k
i=1 αi = 0, (2)

∑k
i=1 αi = 1 and
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each αi ≥ 0, or (3) each αi ≥ 0, we call x a (1) tangential, (2) convex or (3) conic combination, respectively (where
the empty sum (when k = 0) is regarded as the zero vector). The tangential, convex and conic hulls of C , denoted
tng C , conv C and cone C are, respectively, the sets of all corresponding combinations of points of C . In particular,
tng ∅ = cone ∅ = {0} and conv ∅ = ∅. The set is convex if conv C = C , and a cone if cone C = C . The dimension
of a convex set C ⊆ Rp is the number of linearly independent vectors in its tangential hull. A polytope in Rp is the
convex hull of finitely many points in Rp. The Main Theorem for Polytopes (e.g., [14, Theorem 1.1, p. 29]) asserts
that a subset of Rp is a polytope if and only if it is bounded and is the solution set of a system of linear inequalities.

Given a polytope P in Rp, we say that a linear inequality
∑p

j=1 c j x j ≤ γ is valid for P if P ⊆ {x ∈ Rp
:∑p

j=1 c j x j ≤ γ }. A face of P is any set of the form F = P ∩ {x ∈ Rp
:
∑p

j=1 d j x j = δ} where
∑p

j=1 d j x j ≤ δ is
a valid inequality for P . A face F of P is proper if ∅ 6= F 6= P . Faces of dimension 0, 1 and (dim P) − 1 are called
vertices, edges and facets, respectively. For convenience, we refer to a vertex not only as a face of dimension zero, but
also as the single element that such a face contains. A number of standard results about faces of polytopes are next
recorded (see [14, Propositions 2.2 and 2.3, pp. 52–53, and Theorem 2.7 and following discussion, pp. 57–58]).

Proposition 2.1. Let P be a polytope in Rp. Then:

(a) P is the convex hull of its vertices,
(b) intersections of faces of P are faces of P,
(c) each face of P is the intersection of facets of P,
(d) a face F ′ of P is strictly included in a face F of P if and only if F ′

⊆ F and dim F ′ < dim F, and
(e) if P is a polytope with representation

n∑
j=1

Bk j x j ≤ bk for all k ∈ β, (2.1)

where β is a finite index set, then each facet F of P has a representation of the form F = {x ∈ P :
∑n

j=1 Cr j x j =

cr } for some r ∈ β.

With set inclusion as the partial order, the set of faces of a polytope P is known to be a lattice, and we refer to
this lattice as the face-lattice of P . Two polytopes are combinatorially-equivalent if there is a one-to-one dimension-
preserving isomorphism of the face-lattice of one onto the face-lattice of the other, where by isomorphism we mean
an inclusion-preserving map.

Let P be a polytope in Rp. For each nonempty face F of P , the normal cone of F , denoted NF , is defined by

NF ≡ {c ∈ Rp
: F = arg max

x∈P
cT x},

where arg maxx∈P cT x refers to the set of maximizers of the function on P that maps x ∈ P to cT x (this definition
differs from [14, p. 193], where NF is defined by {c ∈ Rp

: F ⊆ arg maxx∈P cT x}). The orthogonal complement C⊥

of a set C ⊆ Rp is the set {x ∈ Rp
: xT y = 0 for each y ∈ C}. Results about normal cones are next recorded (e.g., [6,

Proposition 2, p. 338]).

Proposition 2.2. Let P be a polytope in Rp.

(a) For a nonempty face F of P: NF is a nonempty cone in Rp, tng NF = (tng F)⊥ and dim F = p − dim(tng F)⊥.
(b) For nonempty faces F and G of P: F ⊆ G if and only if cl NF ⊇ cl NG .
(c) The map F → NF is one-to-one and {NF : F is a face of P} partition Rp.

The normal fan of a polytope P ⊆ Rd is defined by N (P) ≡ {NF : F is a nonempty face of P}. Two polytopes are
normally equivalent if their normal fans coincide. The following result states a known relationship between Normal
and combinatorial equivalence (e.g., [6, Proposition 3, p. 338]).

Proposition 2.3. Normal equivalence of polytopes implies combinatorial equivalence.

It can be shown that two normally equivalent polytopes have representations as the solution sets of systems of
linear inequalities, say Ax ≤ b and A′x ≤ b′, with A = A′ and identical parametrization of corresponding faces
through tightening inequalities determined by subsets of the set of rows of A = A′. Thus, normal equivalence assures
related algebraic representation beyond common combinatorial structure.



F.K. Hwang et al. / Discrete Applied Mathematics 156 (2008) 2336–2343 2339

3. Preliminaries on supermodularity

In this section, we record standard results about supermodular functions used for our development; see [5], where
they are given in a more general context. We include some elementary proofs for the sake of completeness.

Henceforth, let λ be a p-set function. We recall the definition of the polytope Cλ defined by (1.2) and (1.3). For
each I ⊆ {1, . . . , p}, let FI be the subset of Cλ obtained by tightening the inequality corresponding to I in (1.2), that
is,

FI ≡

{
x ∈ Cλ

:

∑
j∈I

x j = λ(I )

}
; (3.1)

of course, each such set is a face of Cλ.
A (possibly empty) sequence I1, I2, . . . , Ik of subsets of {1, . . . , p} is called a chain if ∅ ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂

{1, . . . , p}, in which case we refer to k as the length of the chain. Such a chain is usually augmented with I0 ≡ ∅

and Ik+1 ≡ {1, . . . , p}. We say that chain I ′

1, I ′

2, . . . , I ′

k′ is a subchain of I1, I2, . . . , Ik and that I1, I2, . . . , Ik is a
superchain of I ′

1, I ′

2, . . . , I ′

k′ , if {I ′

1, I ′

2, . . . , I ′

k′} ⊆ {I1, I2, . . . , Ik}; we say that I ′

1, I ′

2, . . . , I ′

k′ is a proper subchain of
I1, I2, . . . , Ik and that I1, I2, . . . , Ik is a proper superchain of I ′

1, I ′

2, . . . , I ′

k′ when the above inclusion is strict. The
maximal length of a chain is p −1 and every chain has a superchain of length p −1. We say that a chain I1, I2, . . . , Ik
is a representing chain of a subset F of Rp, if F = ∩

k
t=1 FIt . In this case, F is a face of Hλ (as an intersection of FI ’s).

The following theorem rearranges results in [13, Theorems 2, 3 and 5] (see Section 1 for the definition of Hλ).

Theorem 3.1. Suppose that λ is supermodular. Then Hλ
= Cλ and the nonempty faces of this polytope are precisely

the sets represented by chains.

A triplet (I, K , J ) of subset of {1, . . . , p} is called λ-flat if I ⊂ K ⊂ J and

λ(I ) + λ(J ) = λ(K ) + λ(L) where L = I ∪ (J \ K ). (3.2)

We observe that when λ is supermodular, strict supermodularity means that there exist no λ-flat triplets. The next
lemma provides a necessary condition and a sufficient condition for flatness; the results and their proofs appear in [7,
Lemma 3.1].

Lemma 3.2. Suppose that λ is supermodular and I and J are subsets of {1, . . . , p}.

(a) If (I ∩ J, I, I ∪ J ) is λ-flat, then FI∩J ∩ FI∪J ⊆ FI ∩ FJ .
(b) If FI ∩ FJ 6= ∅, then FI∩J ∩ FI∪J = FI ∩ FJ and either I and J are linearly ordered by set inclusion or

(I ∩ J, I, I ∪ J ) is λ-flat.

The next two lemmas provide important tools for understanding the chain-representation of nonempty faces of
permutation polytopes corresponding to supermodular set functions. The first lemma and its proof appear in [7,
Lemma 3.3].

Lemma 3.3. Suppose that λ is supermodular. Let I1, . . . , Ik be a chain and let I ′

1, . . . , I ′

k′ be nonempty proper subsets

of {1, . . . , p} with F ′
= (∩k

t=1 FIt ) ∩ (∩k′

t=1 FI ′
t
) 6= ∅. Then there exists a superchain of I1, . . . , Ik which is a

representing chain of F ′.

A variant of the next lemma appears in [7, Lemma 4.4] with a stronger assumption about λ and a stronger condition
in (c).

Lemma 3.4. Suppose that λ is supermodular on subsets of {1, . . . , p}, I1, . . . , Ik is a chain and s ∈ {1, . . . , k}. Then
the following are equivalent:

(a) ∩
k
t=1 FIt = ∩

k
t=1,t 6=s FIt .

(b) FIs−1 ∩ FIs+1 ⊆ FIs , and
(c) (Is−1, Is, Is+1) is λ-flat.
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Proof. (b) ⇒ (a): This implication is trite.
(c) ⇒ (b): Suppose that (Is−1, Is, Is+1) is λ-flat. Let Js ≡ Is−1 ∪ (Is+1 \ Is). As Is ∩ Js = Is−1 and Is ∪ Js = Is+1,

the λ-flatness of (Is−1, Is, Is+1) and part (a) of Lemma 3.2 imply that FIs−1 ∩ FIs+1 ⊆ FIs ∩ FJs ⊆ FIs .
(a) ⇒ (c): Suppose that (a) holds. Again, let Js ≡ Is−1 ∪ (Is+1 \ Is). As I1, . . . , Is−1, Js , Is+1, . . . , Ik is a chain,

F ≡ (∩k
t 6=1,t 6=s FIt ) ∩ FJs is a nonempty face (Theorem 3.1) which is contained in the face F ′

≡ ∩
k
t=1,t 6=s FIt =

∩
k
t=1 FIt . It follows that ∅ 6= F ⊆ FIs ∩ FJs . As Is and Js are not linearly ordered by set inclusion, Is ∩ Js = Is−1 and

Is ∪ Js = Is+1, part (b) of Lemma 3.2 implies that (Is−1, Is, Is+1) is λ-flat. �

4. Permutation polytopes corresponding to strictly supermodular functions

Lemma 4.1. Suppose that λ is strictly supermodular on subsets of {1, . . . , p}. Then:

(a) if I1, . . . , Ik are distinct subsets of {1, . . . , p} with ∩
k
t=1 FIt 6= ∅, then I1, . . . , Ik are linearly ordered under set

inclusion,
(b) if I1, . . . , Ik are distinct subsets of {1, . . . , p} with ∩

k
t=1 FIt 6= ∅, then for every s ∈ {1, . . . , k}, ∩

k
t=1,t 6=s FIt 6=

∩
k
t=1 FIt , and

(c) if I1, . . . , Ik , I ′

1, . . . , I ′

k′ are subsets of {1, . . . , p} with ∩
k
t=1 FIt = ∩

k′

t=1 FI ′
t
6= ∅, then k = k′ and {I1, . . . , Ik} =

{I ′

1, . . . , I ′

k′}.

Proof. (a) Let I1, . . . , Ik be distinct subsets of {1, . . . , p} with F ≡ ∩
k
t=1 FIt 6= ∅. We will show that all pairs of

distinct sets in the list are linearly ordered by set inclusion. Indeed, let r and s be two distinct elements in {1, . . . , k}.
Then FIr ∩ FIs ⊇ F 6= ∅. As λ is strictly supermodular, there exist no λ-flat triplets, and part (b) of Lemma 3.2 implies
that Ir and Is are linearly ordered by set inclusion.

(b) The strict supermodularity of λ assures that there are no λ-flat triplets. Consequently, the equivalence (a) ⇔ (c)
in Lemma 3.4 implies (b).

(c) Suppose that I1, . . . , Ik , I ′

1, . . . , I ′

k′ are subsets of {1, . . . , p} with F ≡ ∩
k
t=1 FIt = ∩

k′

t=1 FI ′
t

6= ∅. By part
(a), the sequences I1, . . . , Ik and I ′

1, . . . , I ′

k′ are each linearly ordered by set inclusion. Hence, by possibly permuting
the sets in each group we may assume that I1, . . . , Ik and I ′

1, . . . , I ′

k′ are chains. Consider an enumeration of the

distinct sets in {I1, . . . , Ik, I ′

1, . . . , I ′

k′}, say I ′′

1 , . . . , I ′′

k′′ . Then ∩
k′′

t=1 FI ′′
t

= F 6= ∅ and, again by part (a), after possible
permutation we may assume that I ′′

1 , . . . , I ′′

k′′ is a chain. As I1, . . . , Ik and I ′

1, . . . , I ′

k′ are subchains of I ′′

1 , . . . , I ′′

k′′ with

∩
k′′

t=1 FI ′′
t

= ∩
k
t=1 FIt = ∩

k′

t=1 FI ′
t
= F 6= ∅, part (b) implies that {I ′′

1 , . . . , I ′′

k′′} = {I1, . . . , Ik} = {I ′

1, . . . , I ′

k′}. �

The next theorem and its corollary establish a one-to-one correspondence of chains and nonempty faces of Hλ where
λ is any given strictly supermodular set function.

Theorem 4.2. Suppose that λ is strictly supermodular on the subsets of {1, . . . , p}. Then for every nonempty face
F of Hλ there is a unique collection {I1, . . . , Ik} of distinct subsets of {1, . . . , p} with F = ∩

k
t=1 FIt ; further, in

such a representation the subsets I1, . . . , Ik are linearly ordered under set inclusion, that is, with possible relabeling
I1, . . . , Ik is a chain.

Proof. Nonempty faces of Hλ have representations as intersections ∩
k
t=1 FIt (parts (c) and (e) of Proposition 2.1),

and by part (a) of Lemma 4.1, the sets I1, . . . , Ik in such a representation are linearly ordered by set inclusion. The
uniqueness of these representations follows from part (c) of Lemma 4.1. �

Corollary 4.3. Suppose that λ is strictly supermodular on subsets of {1, . . . , p}. Then chains are in one-to-one
correspondence with the nonempty faces of Hλ, with chain I1, . . . , Ik mapped into the face ∩

k
t=1 FIt .

Proof. Theorem 3.1 asserts that for a chain I1, . . . , Ik , ∩
k
t=1 FIt is a nonempty face of Cλ

= Hλ and each nonempty
face has such a representation. The fact that the correspondence of chains onto faces is one-to-one follows from
Theorem 4.2. �
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For a subset I of {1, . . . , p} we let eI be the characteristic vector of I , that is, eI is the vector in Rp with (eI ) j = 1
if j ∈ I and (eI ) j = 0 if j ∈ {1, . . . , p} \ I . Also, for a chain, I1, . . . , Ik , let

L(I1, . . . , Ik) =

{
z ∈ Rp

:

(
eIt

)T
z = 0 for t = 1, . . . , k + 1

}
(4.1)

and

N (I1, . . . , Ik) ≡

{
k+1∑
t=1

βt eIt : βt < 0 for t = 1, . . . , k and βk+1 ∈ R (unrestricted)

}
. (4.2)

Theorem 4.4. Suppose that λ is strictly supermodular on the subsets of {1, . . . , p}, and let F be a face of Hλ with
representing chain I1, . . . , Ik . Then:

(a) dim F = p − 1 − k,
(b) tng F = L(I1, . . . , Ik), and
(c) NF = N (I1, . . . , Ik).

Proof. As I1, . . . , Ik is a chain, the vectors eI1 , . . . , eIk+1 are obviously linearly independent. Now, the set
L(I1, . . . , Ik) is the orthogonal complement of the subspace spanned by the vectors eI1 , . . . , eIk+1 ; as these vectors
are linearly independent, it follows that dim L(I1, . . . , Ik) = p − k − 1 and [L(I1, . . . , Ik)]

⊥ is the linear span of
eI1 , . . . , eIk+1 .

For t = 1, . . . , k + 1 and x ∈ FIt , (eIt )x = λ(It ). As tng F = {α(x − y) : x, y ∈ F and α ∈ R}, for each

z ∈ tng F = tng [∩
k
t=1 FIt ] and t = 1, . . . , k + 1,

(
eIt

)T
z = 0. Thus, tng F ⊆ ∩

k+1
t=1 {z ∈ Rp

: (eIt )Tz = 0} =

L{I1, . . . , Ik}. Thus, dim F = dim(tng F) ≤ dim L(I1, . . . , Ik) = p − k − 1.
Next, the chain I1, . . . , Ik has a superchain of length p − 1 (just like any other chain). Thus, there exist subsets

Jk+1, . . . , Jp−1 of {1, . . . , p} such that I1, . . . , Ik, Jk+1, . . . , Jp−1 are distinct and linearly ordered by set inclusion.
For s = k, k + 1, . . . , p − 1, let Fs = F ∩ (∩s

t=k+1 FJt ). We then have that

F = Fk ⊃ Fk+1 ⊃ · · · ⊃ Fp−1;

the weak inclusions are trite and the strict inclusions follow from the unique representation of faces by chains
established in Corollary 4.3. It follows that

dim F = dim Fk > dim Fk+1 > · · · > dim Fp−1

(part (d) of Proposition 2.1), implying that dim F ≥ p−1−k. As we have seen that dim F ≤ p−1−k, it follows that
dim(tng F) = dim F = p − k − 1 = dim L(I1, . . . , Ik), proving (a). Further, as tng F and L(I1, . . . , Ik) are linear
subspaces of Rp that are linearly ordered by set inclusion (tng F ⊆ L(I1, . . . , Ik)) and have the same dimension, we
conclude that they are equal. So, (b) has been verified.

Finally, to prove (c), let c be a vector in N (I1, . . . , Ik) and we will show that c ∈ NF . As c ∈ N (I1, . . . , Ik), c has
a representation

∑k+1
t=1 βt eIt with β1, . . . , βk negative and βk+1 unrestricted. For x ∈ Hλ, cT x =

∑k+1
t=1 βt (eIt )Tx =∑k+1

t=1 βt (
∑

j∈It
x j ) ≤

∑k+1
t=1 βtλ(It ) and equality holds if and only if

∑
j∈It

x j = λ(It ) for t = 1, . . . , k; so

arg maxx∈Hλ cT x = ∩
k
t=1 FIt = F , that is, c ∈ NF . To see the reverse inclusion, let c ∈ NF and we will show

that c ∈ N (I1, . . . , Ik). As NF is a cone, NF ⊆ tng NF (for u ∈ NF , u = 2u − u ∈ tng NF ). It follows from
Proposition 2.2 (part (e)), the established part (b) of the current theorem, and the first paragraph of the current
proof that NF ⊆ tng NF = (tng F)⊥ = [L(I1, . . . , Ik)]

⊥
= {

∑k+1
t=1 βt eIt : βt ∈ R for t = 1, . . . , k + 1}. So,

c has a representation c =
∑k+1

t=1 βt eIt and it remains to show that β1, . . . , βk are negative. Fix s ∈ {1, . . . , k}

and let F s
≡ (∩k

t=1,t 6=s FIt ). The unique chain-representation of faces assures that F = ∩
k
t=1 FIt ⊂ F s , so

there is a vector x s in F s
\ F . As c ∈ NF , F = arg maxx∈Hλ cT x ; further, for all x ∈ F = ∩

k
t=1 FIt ,

cT x =
∑k+1

t=1 βt (eIt )T x =
∑k+1

t=1 βt (
∑

j∈It
x j ) =

∑k+1
t=1 βtλ(It ). As x s

6∈ F and x s
∈ F s

= ∩
k
t=1,t 6=s FIt , we

have
∑k+1

t=1 βtλ(It ) > cTx s
=

∑k+1
t=1,t 6=s βt (

∑
j∈It

x s
j ) + βs(

∑
j∈It

x s
j ) =

∑k+1
t=1,t 6=s βtλ(It ) + βs(

∑
j∈It

x s
j ), and

therefore βsλ(Is) > βs(
∑

j∈It
x s

j ). As
∑

j∈It
x s

j ≥ λ(Is) it follows that βs < 0. �
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Table 1
The λσ ’s for Example 2

Determining Permutation σ λσ

({1}, {2}, {3}) (1, 3, 6)T

({1}, {3}, {2}) (1, 4, 5)T

({2}, {1}, {3}) (2, 2, 6)T

({2}, {3}, {1}) (2, 2, 6)T

({3}, {1}, {2}) (2, 4, 4)T

({3}, {2}, {1}) (2, 4, 4)T

Theorem 4.4 implies that the vertices of a partition polytope corresponding to a strictly supermodular set function
are represented by the p! chains of length p (corresponding to the permutations of {1, . . . , p}) and the facets are
represented by chains of length 1 (corresponding to the 2p

− 2 nontrivial subsets of {1, . . . , p}; see [13,2].
Recall the definition of permutahedra in Example 1.

Corollary 4.5. All permutation polytopes corresponding to strictly supermodular functions are both normally and
combinatorially equivalent; in particular, each is both normally and combinatorially equivalent to the standard
permutahedron.

Proof. Let λ be strictly supermodular on the subsets of {1, . . . , p} and let F be a face of Hλ. Recall the notation
N (P) for the normal fan of a polytope P . By Corollary 4.3 and part (c) of Theorem 4.4, F has a unique representing
chain, say I1, . . . , Ik , and N (I1, . . . , Ik) = NF . We conclude that N (Hλ) ⊆ N ≡ {N (I1, . . . , Ik) : I1, . . . , Ik
is a chain on {1, . . . , p}}. To see that this inclusion holds as equality observe that if I1, . . . , Ik is a chain on
{1, . . . , p}, the above arguments show that N (I1, . . . , Ik) = NF for F = ∩

k
t=1 FIt . Thus, with λ strictly

supermodular, N (Hλ) = N is independent of λ, that is, all such permutation polytopes Hλ are normally equivalent.
As normal equivalence of polytopes implies combinatorial equivalence (Proposition 2.3), we also conclude that
all of these polytopes are combinatorially equivalent. The last conclusion of the corollary now follows from the
fact that the standard permutahedron is a permutation polytope corresponding to a strictly supermodular function
(see Example 1). �

In view of Corollary 4.5, one may conjecture that generalized permutahedra (see Example 1) generate all
permutation polytopes, at least in the sense that each permutation polytope is combinatorially equivalent to some
generalized permutahedron. But, the next example demonstrates that this is not the case.

Example 2. Suppose that p = 3 and λ is defined on subsets of {1, 2, 3} with λ({1}) = 1, λ({2}) = 2, λ({3}) = 4,
λ({1, 2}) = 4, λ({1, 3}) = 6, λ({2, 3}) = 8, λ({1, 2, 3}) = 10. It is easy to verify that λ is supermodular. It is noted
that λ is not strictly supermodular as λ({1, 3}) + λ({2, 3}) = 14 = λ({3}) + λ({1, 2, 3}).

Table 1 lists the λσ ’s with σ ranging over the six permutations over {1, 2, 3}; it shows that there are precisely four
distinct vectors. As neither is in the convex hull of the other three, we have from part (a) of Proposition 2.2 that these
are the vertices of Hλ. Thus, Hλ has exactly four distinct vertices.

A generalized permutahedron in R3 is determined by 3 parameters, say η1, η2 and η3; the generalized
permutahedron is then the convex hull of the six coordinate-permutations of the vector (η1, η2, η3). It is easy to
verify that each coordinate-permutation of the vector (η1, η2, η3) is a vertex and the number of such vectors is six
when the η j ’s are distinct, three if two η j ’s coincide and are different from the third, and one if all η j ’s coincide. As
Hλ has four vertices, in either case the generalized permutahedron is not combinatorially equivalent to Hλ, implying
that it is neither normally equivalent to Hλ. �
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