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Abstract

Differentiated quality of service is a way for a website operator to provide different service levels to its clients. Traditional HTTP
request scheduling schemes can achieve this, but they schedule requests to manage only one server resource, such as CPU or disk I/
O. Actually, processing a request on the server will consume multiple resources. This paper presents a multiple-resource request sched-
uling algorithm, called mQoS, for differentiating the utilization of the server resource. The mQoS scheduler consists of several sub-sched-
ulers and a main scheduler. Each sub-scheduler manages a server resource to differentiate its utilization among the classes. The main
scheduler checks the availability of every server resource and triggers an appropriate sub-scheduler to balance the utilization of server
resources. The implementation of the mQoS gateway is based on Squid and Linux. The evaluation compares the mQoS scheduling with
no scheduling (nQoS) and single-resource request scheduling (sQoS). The mQoS scheduling reveals the accurate differentiation on every
server resource. In addition, the total server throughput in the mQoS scheduling is improved by 21%, compared with the sQoS sched-
uling. The average user-perceived latency of the mQoS scheduling is also shorter than other scheduling.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Web quality of service (QoS) is a way for a Web service
provider to differentiate its service levels to users. Through
service differentiation, a Web service provider can allow a
specific group of users, e.g., paid users, to get better server
throughput or user-perceived latency than other general
users. There are many ways of enforcing Web QoS. The
effort of some past researches was to modify the system
kernel or the server daemon of a Web server, a caching
proxy, or a cluster dispatcher for service differentiation.
These QoS-enabled boxes intercept HTTP requests, per-
form request classification and request scheduling for deal-
ing with the bottlenecked resource, such as bandwidth or
processing power.
0140-3664/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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There are two issues in the above schemes. The first issue
is where to deploy a QoS-enabled box. Many researches
have been proposed in modifying the system kernel [1] or
server daemon [2,3] of a Web server to have the capability
of scheduling HTTP requests. However, this solution is
hard to be deployed on a non-open operating system or ser-
ver daemon. Some researches have been proposed in enforc-
ing request scheduling on a dispatcher of a cluster server [4–
6]. The QoS-enabled dispatcher schedules requests to the
backend servers in a weighted round-robin fashion or
according to the server loads. Some researches have pro-
posed QoS-enabled content adaptation [7,8] or cache
replacement algorithms [9] on caching proxies instead of
request scheduling for service differentiation. The second
issue is what resource for a request scheduling to manage.
Common request scheduling schemes schedule requests by
managing the bottlenecked resource, such as bandwidth
or processing power. These request schedulers seem to per-
form the single-resource scheduling, which has a blind spot.
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Processing a request on a server needs to consume multiple
resources, e.g., CPU, disk I/O, and bandwidth, rather than
a single resource. In the single-resource scheduling, some
resources may be wasted, when the managed resource is well
utilized. A request scheduler should well utilize all resources
by scheduling requests for managing all resource utilization.
Some researches have discussed multiple-resource request

scheduling, but many of them are applied on grid computing
and multimedia applications [10–12], and few on HTTP
request scheduling [13–15].

Considering the issues of QoS deployment and multiple-
resource request scheduling, this paper presents a multiple-
resource request scheduling algorithm called mQoS, which
is deployed at a website gateway for controlling the requests
toward a Web server. Today’s gateways can perform fire-
wall packet inspection, intrusion detection, virus scanning,
and so on. A website operator can deploy a gateway for
preventing attacks and providing value-added services.
Hence, enforcing request scheduling at a website gateway
is practical, and that can provide service differentiation
without any modification on clients and the server.

There are three main functions in the mQoS gateway:
request profiling and server profiling, content-aware request

classification, and mQoS scheduling. The request profiling
finds out the amounts of the server resources consumed
by a request, whereas the server profiling measures the
capacities of the server resources. The request classification
mechanism inspects the headers or payloads of requests
and puts requests into proper class queues. Specially, a ser-
vice class has several queues, each of which stores specific
resource-intensive requests. That is, when m service classes
and n server resources exist, there are m � n queues. The
mQoS scheduling, derived from the Deficit Round Robin

(DRR) scheduling [16], composed of one main scheduler
and several sub-schedulers. One sub-scheduler, which has
some deficit counters, manages one server resource. How-
ever, differing from the traditional DRR scheduling, the
deficit counter of a class in a sub-scheduler can be decre-
mented by any sub-scheduler because a request would con-
sume multiple resources rather than a single resource. In
addition, the main scheduler maintains the availability of
the server resources in the resource availability counters.
The main scheduler hence knows which resource is the
most available and then triggers the corresponding sub-
scheduler to service specific resource-intensive requests.

The mQoS gateway is implemented on Squid and Linux.
The request and response modules of Squid are modified to
be capable of classifying and scheduling requests. In the
evaluation, the mQoS scheduling is compared with no
scheduling (nQoS) and single-resource request scheduling
(sQoS). The resource utilization, server throughput, and
user-perceived latency of every scheduling algorithm are
measured to demonstrate the effect of the mQoS schedul-
ing. From the test results, the mQoS scheduling reveals
its capabilities of differentiating server resource utilization,
maximizing the total server throughput, and sharing
resource.
The rest of this paper is organized as follows. Section 2
states the problems of resource management on a Web ser-
ver. Section 3 introduces the architecture of the mQoS
gateway and the designs of the request profiling and server
profiling, content-aware request classification, and mQoS
scheduling algorithm. Section 4 describes the implementa-
tion and evaluation of the mQoS gateway. Finally, Section
5 gives the conclusion and the future work of this research.

2. Problems of server resource management

The workload on a Web server will affect the utilization
of the server resource. In a light-load situation, every HTTP
request will get enough resources when being processed, but
there could be unused resources on the server. Conversely,
in a heavy-load situation, a request may be queued on the
server and wait for being processed. If the server resources
are inadequate for the requirements of the arrival requests,
an HTTP request would experience long queuing and pro-
cessing delay. For maximizing the utilization of the server
resources and avoiding extra delay simultaneously, the
resources on the server should be well managed.

Some researches have proposed admission control
schemes to prevent new arrival requests from accessing a
heavy loaded server [17–20]. With admission control, a ser-
ver would drop new arrival requests when its resources can-
not meet the requirements of the requests. However,
admission control itself is not sufficient to support service
differentiation because all arrival requests have the same
probability to access server resources. The purpose of ser-
vice differentiation is to allow different clients receive differ-
ent treatments, such as server throughput and response
time. For service differentiation, some researches have pro-
posed request scheduling algorithms to manage the work-
load on a server [1,2,18,21,22]. The general schemes of
the mentioned scheduling algorithms are to allocate differ-
ent amounts of concurrent connections, request rate, or
bandwidth among service classes.

A request entering a server requires several types of
resources, e.g., CPU, disk I/O, and bandwidth, when being
processed. The lack of any available resource would lead to
a bottleneck. In other words, if there are n kinds of
resources, there could be n kinds of bottlenecks on the ser-
ver. Many of the mentioned request scheduling algorithms
deal with the problems of single-resource scheduling. They
manage a single resource for maximizing its utilization and
differentiating its utilization simultaneously, but they can-
not avoid the bottlenecks derived from the other resources.
A resource can be managed well, while the other resources
may be still non-fully utilized or inadequate for new arrival
requests. Thus, a single-resource scheduling algorithm
could lead to an inefficient or overloaded server. Actually,
a request scheduling algorithm should consider the pres-
ence of multiple server resources. In the below, three
request scheduling schemes, no scheduling, single-resource
request scheduling, and multiple-resource request schedul-
ing, are discussed. The assumption for the discussion is that



Y.-D. Lin et al. / Computer Communications 31 (2008) 1993–2004 1995
there are three resources, CPU, disk I/O, and bandwidth,
on the server and a request will consume multiple
resources. Besides, there are three service classes of clients
issuing requests to the server, and the heavy-load situation
is considered.

2.1. No scheduling (nQoS)

The nQoS scheduling is without any resource manage-
ment scheme, such as admission control or request schedul-
ing, enforced for the service differentiation. The requests
originated from the three classes of clients contend for
the server resources. The server works on a first-come-
first-serve basis. The server workload of the nQoS schedul-
ing is shown in Fig. 1a. The vertical axis stands for the
resource utilization and c1, c2 and c3 stand for the class
1, class 2 and class 3, respectively. Due to the resource con-
tention, every class of clients gets a third of each server
resource. All server resource utilization is affected by the
workload, but there is no any service differentiation. The
pending requests would be queued on the server and wait
for being processed, causing extra resource consumption,
and prolonged user-perceived latency.

2.2. Single-resource request scheduling (sQoS)

In the sQoS scheduling, a request scheduler manages the
utilization of one server resource. Fig. 1b shows the server
workload of the sQoS scheduling. The CPU resource is man-
aged for service differentiation, and the ratio of the resource
allocated to the three classes of clients is 6:3:1. In this exam-
ple, the sQoS scheduling indeed allocates the expected
amount of the CPU resource to the three classes of clients,
but it cannot take care the utilization of the other resources.
The sQoS scheduling will stop scheduling any request to the
server when the CPU resource is well utilized. However, the
disk I/O and bandwidth resources are actually still afford-
able for the new arrival disk I/O- and bandwidth- intensive
requests, respectively, causing the waste of these resources.
Fig. 1. Server resource utilization under different scheduling schemes.
Conversely, the sQoS scheduling will keep scheduling
requests to the server when it finds the CPU resource is avail-
able. However, the disk I/O and bandwidth resources may
be already fully utilized, causing an overloaded server and
potentially prolonged user-perceived latency.

2.3. Multiple-resource request scheduling (mQoS)

In the mQoS scheduling, a request scheduler manages all
server resources. The server workload of the mQoS sched-
uling is shown in Fig. 1c. The mQoS scheduling chooses the
appropriate requests to well utilize all resources and at the
same time allows the three classes of clients to use every
resource proportionally. The mQoS scheduling eliminates
the resource wasting or server overloading occurred in
the sQoS scheduling, and the total server throughput can
be improved. Due to scheduling the proper requests to
the server, each resource utilization under the mQoS sched-
uling is better than that under the nQoS scheduling. The
mQoS scheduling further avoids resource contention and
enables service differentiation.

In the above discussion, the mQoS scheduling seems to
be a better solution for server resource management. In this
paper, a mQoS scheduling algorithm for service differenti-
ation is presented. The mQoS scheduling algorithm has the
capability of managing multiple server resources and it is
deployed on a website gateway located in front of a Web
server. The arrival requests are queued and wait for being
scheduled on the mQoS gateway instead of the server. This
has the advantage of avoiding extra resource consumption
on the server. The server itself can concentrate on the
request processing only.

3. The mQoS gateway architecture and scheduling algorithm

The purpose of the mQoS gateway is to avoid resource
bottlenecks, provide differentiation of resource utilization,
and maximize the server throughput. To do this, the mQoS
gateway performs three tasks: request profiling and server
(a) nQoS scheduling. (b) sQoS scheduling. (c) mQoS scheduling.
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profiling, request classification, and request scheduling. The
request profiling and server profiling let the mQoS gateway
know the resource consumption of a request and the capacity
of each server resource. The request classification allows the
mQoS gateway to classify requests into different service clas-
ses. The request scheduling determines the order and the time
in which the mQoS gateway sends a request to the server.

The architecture of the mQoS gateway, as shown in
Fig. 2, is composed of three components: server prober,
request classifier, and request scheduler. The working flow
of the gateway is described as follows. Before the on-line
operation of the gateway, the server prober sends HTTP
requests one by one to scan all Web pages on the server.
The resource monitor program running on the server mon-
itors the resource consumption for every request and
reports this information to the server prober. The server
prober records the URLs and resource consumption of
the Web pages in the Web page table for the reference of
the request classifier. The QoS policy table defines the ser-
vice classes and their classification rules. Once the gateway
starts to work, it incepts arrival requests. The request clas-
sifier classifies the incepted requests into different service
classes according to the rules defined in the QoS policy
table. Then the request classifier refers to the Web page
table, tags the information of the resource consumption
to each request, and puts the tagged requests into the cor-
responding queues. The request scheduler checks the avail-
ability of the server resources. If the available server
resources are enough, the request scheduler fetches a
request from a proper queue and sends it to the server.
The detailed design of the server prober, request classifier,
and request scheduler are described below.

3.1. Server prober

The mQoS gateway is deployed in front of any type of
Web servers. The gateway has to know the server resource
Fig. 2. Architecture of
consumption of a request and the capacity of each server
resource. For this, the server prober is used for request pro-
filing and server profiling. The request profiling is the pro-
cess of measuring the resource consumption of a request,
whereas the server profiling is the process of measuring
the maximum capacity of each server resource.

For measuring the resource consumption of a request,
the server prober sends HTTP requests one by one to scan
all Web pages on the server. Starting from the homepage,
the server prober recursively parses every Web page and
finds the URLs of the embedded objects and hyperlinks
until the website is traversed. During the traversing, the
monitor program running on the server monitors the
amounts of server resources consumed for each request
and reports this information to the server prober. As an
example, a query page consumes 15 U of CPU, 5 U of disk
I/O and 8 U of bandwidth per second. To increase the
validity of the measurement, the probed results are verified
before being used. That is, when the prober sends multiple
requests to the server concurrently, the amount of the
resource consumption is multiplied as the number of con-
current requests being processed on the server. Notice that
this information is not directly used by the request schedul-
ing algorithm because the actual percentage of the resource
consumption is not known yet.

In order to calculate the percentage of the resource con-
sumption of a request, the server prober has to measure the
maximum capacity of each server resource. Thus, the ser-
ver prober sends huge amount of specific resource-intensive
requests at the same time to the server and checks the
resource utilization. The maximum capacity can be mea-
sured when the resource is fully utilized. After all resource
capacities are measured, the actual capacities of the server
resources and the percentages of the resource consumption
of a request are derived. The maximum capacity of a server
resource can be derived from multiplying the number of the
concurrent requests on the server by the resource consump-
the mQoS gateway.
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tion of a request. As an example of measuring the CPU
capacity, if there is 100 requests being processed by a fully
loaded server and the CPU resource consumption of each
request is 15 U, then the maximum CPU capacity is
1500 U. The percentage of the CPU resource consumption
of a request can be also derived from dividing its CPU
resource consumption by the CPU capacity. In the above
example of a query page, its percentage of the CPU
resource consumption is 1% (derived from 15/1500). The
server prober finally records the URLs and resource con-
sumption information in the Web page table for the use
of the request classifier and request scheduler.

Notably, although the server may generate different
pages for a request due to the parameters attached with
the request. However, since the server usually uses the same
program to serve a request, the amount of resources spent
on generating these pages is similar [20]. Therefore, even
though the server may have infinite pages, it has finite
requests and scanning all requests in a server to get the
resources spent on each request should be practicable.
However, this work does not consider the influences of
caching and prefetching techniques on the resource con-
sumption of requests. The issue about the influences
deserves to an individual study.
3.2. Content-aware request classifier

The request classifier is used to identify the class and the
resource tendency for each request. The classification is
based on the predefined rules in the QoS policy table.
The header and payload of a request will be inspected by
the request classifier to check whether it matches a rule.
If yes, the request will be classified into this corresponding
class; otherwise, it will be compared with the other rules
until classified. Once a request is classified, its URL will
be inspected to match the URLs in the Web page table.
Fig. 3. mQoS
The purpose is to find out the expected resource consump-
tion and judge the tendency of the resource consumption.
For example, a request consuming 9% of CPU, 5% of disk
I/O and 7% of bandwidth is regarded as a CPU-intensive
request. After a request is matched with the QoS policy
table and Web page table, the request classifier tags the
information of the resource consumption to this request
and put it into an appropriate queue. Every service class
has several queues, each of which stores specific resource-
intensive requests. If there are m service classes and n server
resources, there are totally m � n queues. The requests wait
in the queues for being scheduled by the request scheduler.
3.3. Multiple-resource request scheduler

The request scheduler schedules the requests in the class
queues to manage the server resources in order to provide
service differentiation. The key idea of the mQoS schedul-
ing is derived from the deficit round robin (DRR) schedul-
ing for packet scheduling. A traditional DRR scheduler
serves the head-of-line (HOL) packet of every non-empty
queue which the value of the deficit counter is greater than
the packet size. If it is lower, then later the deficit counter is
incremented by a given value called quantum. A deficit
counter is decremented by the size of packets being served.
However, some considerations should be noticed on sched-
uling requests using the concept of the DRR scheduling.
The traditional DRR schedules packets to manage the
bandwidth of a link, whereas the presented mQoS sched-
uler schedules requests to manage the multiple resources
of a server. The utilization of the server resources has to
be balanced. None of the resources should be overused
or underused; otherwise a resource bottleneck would hap-
pen or a server resource would be wasted.

The mQoS scheduler consists of a main scheduler and
several sub-schedulers, as shown in Fig. 3. A sub-scheduler
scheduler.
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services the class queues of a server resource for differentiat-
ing the resource utilization among the classes, and the main
scheduler triggers an appropriate sub-scheduler according
to the availability of the server resources. In a sub-sched-
uler, there are several deficit counters (DCs), each of which
is associated with a class to record the unused quantum.
However, differing from the traditional DRR scheduling,
the DC of a sub-scheduler can be decremented by any other
sub-schedulers because a request would consume multiple
resources rather than a single resource. Each sub-scheduler
has a round-robin pointer that indicates which class queue
to be serviced. When the round-robin pointer moves back to
the first class queue, every DC of this sub-scheduler is incre-
mented by the predefined quantum.

In the main scheduler, resource availability counters
(RACs) are used to record the availability of the server
resources. Each RAC contains the percentage of the avail-
ability of a server resource. By checking the RACs, the
main scheduler knows which resource is the most available
and then triggers the corresponding sub-scheduler to ser-
vice a specific resource-intensive request. Therefore, the
main scheduler can maximize the resource utilization and
balance the utilization among the resources.

3.4. Multiple-resource request scheduling algorithm

The mQoS scheduling algorithm works as follows. Ini-
tially, the value of each RAC is set to 100, which means
each type of server resource is 100% available. Each
round-robin pointer in these sub-schedulers moves to the
first class queue. In the traditional DRR scheduling, a
DC is incremented only when the round-robin pointer
moves to its corresponding queue. However, here all DCs
of a sub-scheduler are incremented at the same time by
Fig. 4. Pseudo code of the mQ
the predefined quantum because the DC of a sub-scheduler
could be decremented by another sub-scheduler. The main
scheduler checks the values of the RACs to find out which
resource is the most available. A sub-scheduler will be trig-
gered for scheduling the corresponding resource-intensive
requests to effectively utilize the most available resource.
The main scheduler randomly triggers a sub-scheduler,
when there is no resource more available than the others.

The triggered sub-scheduler inspects the resource con-
sumption information of the HOL request of the queue
which the round-robin pointer locates. If no request waits
in this queue, the sub-scheduler moves the round-robin
pointer to the next queue and the remaining deficit will
be carried over to the next service cycle in the DC. The
resource requirements of this request are then compared
with the values of the RACs. If any resource is not enough,
the sub-scheduler will move the round-robin pointer to the
next queue without scheduling this request. If all resource
requirements are satisfied, the sub-scheduler will check
the values of the DCs of the same class from all the sub-
schedulers to see whether this class has enough values in
the DCs. If no, the sub-scheduler will move the round-
robin pointer to the next queue without scheduling the
request. If yes, the sub-scheduler fetches the request from
the queue, decrements the amounts of the resource require-
ments from the DCs and RACs, and sends this request to
the server. When the response from the server comes back,
the RACs will be incremented by the amounts of the
resource requirements of the corresponding request to
reflect the releasing of the consumed resources. The main
scheduler continues to trigger a sub-scheduler. A sub-
scheduler continues to serve the requests from a queue until
the queue becomes empty, or the resource requirements
cannot be satisfied. Since the scheduler has to be aware
oS scheduling algorithm.
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of the responses, the mQoS scheduler is not proper to work
with direct routing.

The pseudo code of the mQoS scheduling algorithm is
shown in Figs. 4 and 5. Some details are ignored in the
pseudo code. The enqueuing module performs the request
classification to put a request into an appropriate queue.
The dequeuing module executes the mQoS scheduling algo-
rithm to schedule the requests in the class queues. The
response processing module checks the finish of a response
and increments the RACs.

Fig. 6 exhibits an example of the mQoS scheduling. In
this example, the requests are classed into three service clas-
ses: class 1, class 2, and class 3. The ratio of the service
weights of classes is set to 6:3:1, hence the quantum
assigned to each class is 60, 30 and 10, respectively. The
server resources to be managed are CPU, disk I/O, and
bandwidth. Because there are three service classes and
three server resources, totally nine class queues exist. The
initial stage is shown in Fig. 3. The main schedules ran-
domly triggers the CPU sub-scheduler. The CPU sub-
scheduler inspects the HOL request of the class-1 queue
and knows the resource requirements of this request are
(CPU: 6, disk I/O: 5, bandwidth: 3). The CPU sub-sched-
uler compares the amounts of the resource requirements
to the values of the RACs (CPU: 100, disk I/O: 100, band-
Fig. 5. Pseudo code of the mQ
width: 100) and concludes the server resources are enough.
Then it compares the resource requirements to the values
of the DCs of the CPU, disk I/O, and bandwidth sub-
schedulers for class 1 (CPU: 60, disk I/O: 60, bandwidth:
60) and concludes the values in the DCs are enough. The
CPU sub-scheduler now sends the request to the server
and decrements the DCs and RACs. The results of the
decrements on the DCs and RACs are shown in Fig. 6a.
Now the main scheduler triggers the bandwidth sub-sched-
uler because the bandwidth resource is the most available.
The bandwidth sub-scheduler sends the HOL request of the
class-1 queue to the server. The result after this request
scheduling is shown in Fig. 6b. Now the disk I/O resource
becomes the most available, hence the main scheduler trig-
gers the disk I/O sub-scheduler to send a request. Suppose
the server has finished responding the first request after the
request sent by the disk I/O sub-scheduler. The final values
of the RACs and DCs are shown in Fig. 6c.

4. Implementation and evaluation

4.1. Implementation

The implementation of the mQoS gateway is based on
the Squid package and Linux operating system. The Squid
oS scheduling algorithm.



Fig. 6. An example of the mQoS scheduling. (a) The CPU sub-scheduler sends a request. (b) The bandwidth sub-scheduler sends a request. (c) The disk I/
O sub-scheduler sends a request and then a response returns.
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package is modified to be capable of request classification
and request scheduling. Squid is of a single-process event-
driven architecture, which uses the select( ) system call to
simultaneously wait for events on all connections being
handled. When select( ) delivers one or more events, the
main loop of Squid invokes handlers for each ready con-
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nection. The performance and scalability of the mQoS
gateway is good because it does not need to fork a child
process for each request. The server prober and resource
monitor program are implemented as the server daemons
running on the gateway and server, respectively. When a
request enters the gateway, the iptable utility rewrites the
destination IP address and port number of this incoming
packet to redirect it to Squid. Such a redirection mecha-
nism makes the mQoS gateway works transparently to cli-
ents and the server. The Squid gateway performs request
classification and scheduling and sends the request to the
server. The Squid gateway then receives the response from
the server without caching the response and sends it to the
client.

The original Squid is a caching proxy used to cache the
responses from a Web server. It is deployed between clients
and servers to incept requests and responses. When a client
issues a request, Squid reads the request, parses the request,
and checks whether the response of this request is already
in the cache. If yes, Squid fetches the cached data from
the cache and sends it to the client. Otherwise, Squid pre-
pares to forward the request and sends the request to the
server. When the server returns a response, Squid reads
the response, parses the response, and stores or replaces
the response data in the cache. Squid then prepares to for-
ward the response and sends the response to the client.

In the mQoS gateway, the request and response process-
ing modules of Squid are modified to be capable of request
classification and request scheduling. The cache module of
checking in the request direction and the module of cache
storing or replacing in the response direction are bypassed.
Instead, the request classification is performed before
Squid prepares to forward a request. Afterward, the
request scheduling is performed before Squid sends a
request to the server. When Squid finishes reading and
parsing a response, the request scheduler updates the
resource availability counters and then prepares forward-
ing the response to the client.

4.2. Evaluation

The effect of server resource management is discussed
theoretically in Section 2. Here the implementations of
the nQoS, sQoS, and mQoS scheduling are practically eval-
uated on server resource utilization, server throughput, and
user-perceived latency. The evaluation environment con-
sists of a traffic generator, a gateway, and a Web server.
The gateway and server platforms are Pentium III
700 MHz systems with 256 MBytes main memory and
100 Mbps Ethernet network adaptors. Spirent’s Avalanche
software and SmartBits platform are used as the traffic gen-
erator. Avalanche emulates a large number of clients to
issue HTTP requests to the server and gathers the statistics.
The gateway performs the traditional DRR scheduling to
manage the CPU resource of the server for the sQoS sched-
uling, or the mQoS scheduling algorithm to manage the
CPU, disk I/O, and bandwidth resources. In the nQoS
scheduling, the gateway only forwards requests and
responses between the traffic generator and the server with-
out any processing. The Web server is based on Apache
and PHP. There are three kinds of pages in the server,
and different pages will lead to different consumptions of
the multiple resources when being accessed. The accesses
to the pages of CGI scripts are CPU-intensive. The accesses
to the pages of photos are disk I/O-intensive. The accesses
to the pages of streaming media are bandwidth-intensive.
In the evaluation, three service classes are defined in the
QoS policy table, and the ratio of their quanta is set to
6:3:1. The workload contains three kinds of resource inten-
sive requests, but the traffic generator issues more CPU-
intensive requests than the other types of requests in order
to test the capabilities of the mQoS scheduling.

4.2.1. Differentiation on the resource utilization

Different request scheduling schemes result in different
utilization of the server resources, shown in Fig. 7. From
observing Fig. 7a, in the nQoS scheduling, every class gets
a third of every server resource due to the resource conten-
tion. Although three resources are well utilized, there is no
differentiation on the resource utilization among three clas-
ses. From observing Fig. 7b, in the sQoS scheduling, the
gateway schedules requests to well utilize the CPU resource
of the server and simultaneously to differentiate the
resource utilization to the ratio of 6:3:1. However, the gate-
way stops sending requests to the server when the CPU
resource of the server is well utilized, causing the waste
of the disk I/O and bandwidth resources of the server. In
Fig. 7c, the mQoS scheduler sends appropriate requests
to the server to well utilize the three server resources. Fur-
thermore, the differentiation of the resource utilization is
evidently observed from that every server resource is uti-
lized by the three classes according to the defined ratio of
6:3:1.

4.2.2. Differentiation on the server throughput

The amount of the utilization of every server resource
will affect the server throughput, as presented in Fig. 8.
In the nQoS and mQoS scheduling, the maximum total
throughput is close to 300 requests per second which is lim-
ited by the server capacity. However, in the sQoS schedul-
ing, due to the waste of the disk I/O and bandwidth of the
server, the total throughput is only 260 requests per second.
The mQoS scheduling improves the total throughput by
21% from the sQoS scheduling. Another finding is that
there is no differentiation on the server throughput among
the three classes in the nQoS scheduling. However, the
sQoS and mQoS scheduling reveal the differentiation on
the server throughput because they schedule requests for
different classes. The ratio of the server throughput of the
three classes is close to 6:3:1.

In Fig. 8, the server throughput of the nQoS scheduling
is close to that of the mQoS scheduling. This is because the
maximum server throughput is limited by the server capac-
ity. The workload in the nQoS and mQoS scheduling make



Fig. 7. Server resource utilization of the nQoS, sQoS, and mQoS
scheduling. (a) Resource utilization in the nQoS scheduling. (b) Resource
utilization in the sQoS scheduling. (c) Resource utilization in the mQoS
scheduling.
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the server resource well utilized. In nQoS scheduling, the
server faces uncontrolled heavy request arrival rate,
Fig. 8. Server throughputs of the nQoS, sQoS, and mQoS scheduling.
whereas in the mQoS scheduling, the server faces the sched-
uled request arrival rate which can well utilize the server.
Due to the uncontrolled request arrival rate, the nQoS
scheduling has the longer user-perceived latency than the
mQoS scheduling.

The throughput improvement in the mQoS scheduling
results from the fact that the gateway sends appropriate
requests to the server to effectively utilize the three server
resources. Fig. 9 compares the types of outstanding
requests between the sQoS and mQoS scheduling. In the
sQoS scheduling, the gateway does not try to balance the
utilization of the server resources. However in the mQoS
scheduling, the main scheduler takes effect to balance the
utilization on every resource. Also the three sub-schedulers
differentiate the utilization of every resource among the
three classes with a ratio close to 6:3:1.

4.2.3. Differentiation on the user-perceived latency

User-perceived latency is the time between issuing a
request and receiving a response back at the client.
Fig. 10 shows the user-perceived latency of the nQoS,
sQoS, and mQoS scheduling. For the nQoS scheduling,
there is no differentiation on the user-perceived latency
among the three classes. Because the heavy workload leads
to requests queued on the server, the average latency is
longer than mQoS scheduling. For the sQoS scheduling,
although the user-perceived latency is differentiated, the
average latency is longer. For the mQoS scheduling,
Fig. 9. Types of requests sent to the server by the sQoS and mQoS
scheduling. (a) Types of requests sent by the sQoS scheduling. (b) Types of
requests sent by the mQoS scheduling.



Fig. 10. User-perceived latency of the nQoS, sQoS, and mQoS scheduling.

Fig. 11. Decomposition of the user-perceived latency in the mQoS
scheduling.
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besides the mQoS gateway differentiates the resource utili-
zation, the user-perceived latency is also differentiated but
the ratio is not exactly 6:3:1. Furthermore, the average
user-perceived latency of the mQoS scheduling is shorter
than those of the nQoS and sQoS scheduling.

4.2.4. Decomposition of the user-perceived latency

The user-perceived latency in the mQoS scheduling
mainly consists of the gateway queuing time and server pro-
cessing time. The gateway queuing time is the time between
accepting a request from the client and scheduling this
request to the server at the gateway. The server processing
time is the time between accepting a request from the gate-
way and sending the response to the client at the server.
Fig. 11 shows the decomposition of the user-perceived
latency in the mQoS scheduling. The server processing time
is almost the same among the three classes, whereas the queu-
ing time of every class is different. Different queuing times
lead to the differentiation on the user-perceived latency.

5. Conclusion and future work

Resource management on a Web server allows a website
operator to control the utilization of the server resources
and provide differentiated quality of service. Traditional
single-resource request scheduling cannot manage multiple
server resources well, that leads to resource wasting or
overloading. This research presents a multiple-resource
request scheduling algorithm, mQoS, deployed at the web-
site gateway to provide service differentiation. The mQoS
gateway consists of a server prober, a request classifier,
and a request scheduler. The server prober profiles the
resource consumption of every Web page and the capacity
of every server resource. The content-aware request classi-
fier determines the resource tendency and the service class
of requests, and puts them into different class queues.
The mQoS scheduler consists of several sub-schedulers
and a main scheduler. Each sub-scheduler manages a server
resource and differentiates the resource utilization among
the classes. The main scheduler checks the availability of
the server resources and triggers an appropriate sub-sched-
uler to balance the utilization among the resources. The
mQoS scheduling algorithm is work-conservative to the
server to keep the server resources well utilized. However,
it is non-work-conservative to the class queues because
the scheduler remains idle when there are no enough
resources for servicing a request.

The mQoS gateway is implemented on Squid and Linux.
The mQoS scheduling is compared with no scheduling
(nQoS) and single-resource request scheduling (sQoS).
The nQoS scheduling owns no differentiation, and the
sQoS scheduling owns the differentiation only on the utili-
zation of one server resource. However, the mQoS schedul-
ing holds the differentiation on the utilization of every
server resource. Because all server resources are well uti-
lized in the mQoS scheduling, the total server throughput
is improved by 21%, compared with the sQoS scheduling.
Moreover, the user-perceived latency is also differentiated
among the classes in the mQoS scheduling due to the differ-
entiation of the gateway queuing delay. The evaluation
reveals that the mQoS scheduling has the capabilities of
differentiating the server resource utilization, maximizing
the server throughput, and sharing resource.

In the future, we will consider the influences of caching
or prefetching techniques on estimating the resources con-
sumption of requests. Besides, we will revise the presented
mQoS scheduling algorithm to support a cluster of servers.
The more complex multiple-resource, multiple-server
request scheduling algorithm can be implemented on a ser-
ver load balancer. The issues of service differentiation,
resource utilization, and server load balancing should be
completely considered in the design of the new algorithm.
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