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Abstract

Video-on-demand (VoD) environments frequently batch video requests to decrease I/O demand and increase throughput. Since users
may leave due to waiting too long, a good video scheduling policy has to consider not only the batch size, but also the user defection
probabilities and waiting times. Moreover, a practical VoD resource sharing scheme should endeavor to provide some free streams to
serve a high-priority clients requests immediately, since the high-priority clients might pay for the requested video. To tackle these prob-
lems, this work proposes a hybrid resource sharing model that integrates controlled multicasting and batching. The proposed hybrid
model applies a bandwidth borrowing and reserving scheme to give high-priority clients a prompt service, while still providing low-pri-
ority clients with a reasonable service. Furthermore, a novel probability model-based scheduling policy is proposed to alleviate the user
defection behavior and unfairness issue. Experimental results demonstrate that the proposed resource sharing scheme is effective and
feasible in terms of blocking probability of high-priority clients, the defection probability, service delay time and fairness to low-priority
users.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in communication and computer tech-
nology have increased the speed of transmission across the
Internet. Next-generation networks support transmission
rates that are higher than current rates. Therefore, the
explosive increase in commercial usage of the Internet
has led to a rapid growth in demand for video deliver tech-
nologies. In such a system implemented with client–server
architectures, viewers have the flexibility of specifying both
the video they want and the time when they wish to watch
the video.

A video-on-demand (VoD) system comprises a video ser-
ver with a video archive and several client machines linked
by a local area network. Users request their desired videos
0140-3664/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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using client software. The server delivers the requested video
to the user in an isochronous data stream in response to a
service request. Bar-Noy [1] identified two major bottle-
necks in current VoD system architecture:

� The limited number of broadcasting channels available
on the access network.
� The number of movies that a server can send

concurrently.

Many schemes, including resource sharing and schedul-
ing [2], admission control [3] and switched digital video
(SDV) architecture [4], have been developed to enhance
the efficiency of the VoD system. This work concentrates
on resource sharing and scheduling schemes as described
below.

Resource sharing can significantly enhance the perfor-
mance of VoD servers. Resource sharing strategies include
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batching [5], patching [6], piggy-backing [7] and broadcast-
ing [8]. Batching [5] is the most common resource sharing
scheme for VoD systems, since it groups users waiting for
the same video data and serves them by a multicast chan-
nel. This batching process can occur passively while the
users are waiting, or actively by delaying the service of
early-arriving users to wait for late-arriving users to join
the batch. In batching, requests to the same movies are
accumulated and served simultaneously. A video server
serves a batch of requests for the same video, all of which
arrive within a short period using one server channel by
using the multicast facility. Therefore, batching utilizes ser-
ver bandwidth and network resources efficiently.

Patching [6] dynamically expands the multicast tree to
include new requests, and thus decreases the request wait-
ing time, but increases the bandwidth and buffer spaces
required at the client’s site. Patching exploits buffers vid-
eos using the client’s disk space, decreasing the requested
waiting time. Therefore, patching strongly depends on
the ability of the client side’s disk space to cache the video
data.

Piggy-backing [7] request almost immediately by vary-
ing the play-back rate on the client side so that the request
can catch up with a preceding stream, thus lowering the
quality of the initial presentation. To preserve the display
quality of the video, the adjustment of the delivery rate
must be kept below 5%, which restricts the number of
channels that piggy-backing can adaptively merge to save
resources.

Broadcasting [8] splits a video into several segments, and
periodically broadcasts them in order on a dedicated chan-
nel. Therefore, broadcasting requires a high bandwidth and
buffer spaces at client sites. The server bandwidth require-
ment is independent of the number of users that the system
is designed to support. Nevertheless, this policy is only fea-
sible for very popular videos when utilizing periodic
broadcasting.

Switched digital video (SDV) [4] technology fundamen-
tally changes the way digital video is delivered over cable
networks, enabling cable operators to offer a wider variety
of programming while effectively managing valuable hybrid
fiber coaxial (HFC) network bandwidth. SDV technology
decouples bandwidth from content by employing several
SDV servers, transmitting content to subscribers only in
areas where programs are being requested in real-time.
Although the SDV architecture employs several SDV serv-
ers to enhance the scalability, it only allocates a limited
number of channels allocated for each SDV server. More-
over, the problems with the conventional broadcasting
scheme are left unresolved, because the SDV architecture
also delivers videos by broadcasting.

Controlled multicasting [10] is a reactive instantaneous
VoD system, which assumes the bandwidth provided by
the server is unlimited, and that the clients’ buffer size is
not a constraint. The benefit of controlled multicasting
is that earlier requests can be served instantaneously with-
out waiting for later requests, as is necessary in batching.
However, controlled multicasting involves many channels,
because it can serve requested videos immediately. Kong
et al. [20] presented a new patching mechanism called
turbo-slice-and-patch (TSP), based on dynamic channel
assignment, to serve video stream services in a metropoli-
tan-scale network. They employed network multicast to
increase significantly the system’s scalability to cope with
the immense workload in a metropolitan scale streaming
service. TSP currently seems to be the best patching
scheme for providing high-quality video and economy of
scale in metropolitan-scale video streaming services.

The performance of these resource-sharing strategies
can be further enhanced if VoD servers can schedule the
waiting requests in an appropriate order. The scheduling
policies serve different batches first when a server channel
becomes available. First-come-first-served (FCFS) serves
the batch holding the oldest request with the longest wait-
ing time as soon as bandwidth becomes available. Maxi-
mum-queue-length-first (MQL) [11] serves the batch with
the largest number of pending requests (i.e., the longest
queue). FCFS is fair, because it treats each user equally,
irrespective of the popularity of the requested video. How-
ever, it has a low-system throughput, since it may elect to
serve a batch with fewer requests first while causes another
batch with more requests to wait. To address this issue,
MQL maintains a separate waiting queue for each video,
and delivers the video with the longest queue first. This pol-
icy maximizes server throughput, but is unfair to users
requesting less popular videos. Maximum-factored-
queued-length first (MFQL) [16] attempts to provide
reasonable fairness and high-server throughput. When a
server channel becomes free, MFQL delivers the video vi

with the longest queue weighted by a factor 1=
ffiffiffiffi
fi
p

, How-
ever, experimental results demonstrate that MFQL is not
fair in most situations, because it bases its choice only on
the queue length of the video. As is well known, popular
movies typically have longer queues than other videos.
Moreover, the effect of the factor fi is much smaller than
the queue length.

Each of the above-mentioned resource sharing strate-
gies has different benefits and flaws, and might therefore
complement each other. Therefore, this work presents an
adaptive hybrid resource sharing scheme that combines
the functionality of both controlled multicasting and
batching to tackle the above bottlenecks and gain the ben-
efits of both schemes. This work also utilizes a bandwidth
borrowing technique to manage the temporary bandwidth
crisis in the original controlled multicasting scheme. An
effective fair scheduling policy is also presented to enhance
the performance of the proposed VoD resource sharing
model.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the hybrid resource sharing scheme that
embeds channel borrowing, and channel reserving mecha-
nisms and a probability model-based scheduling policy.
The simulation result is given in Section 3. Conclusion is
made in Section 4.
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2. The hybrid video-on-demand resource sharing scheme

This work proposes a hybrid resource sharing scheme
that incorporates a probability model-based scheduling
mechanism and adaptive channel reserving and borrow-
ing mechanism. Fig. 1 illustrates the proposed scheme,
which utilizes controlled multicasting and batching
scheme for high- and low-priority clients, respectively,
to alleviate the shortcomings of contemporary video
architectures. For low-priority batching, a novel proba-
bility model-based scheduling policy based on the clients’
waiting time is applied to ensure fairness among the
requests. Conversely, controlled multicasting scheme is
combined with channel reservation and borrowing, so
that the available channels can be utilized fully by dynam-
ically varying the channel allocation based on the priority
of the request.

The incoming client’s request is initially categorized as
a high- or low-priority task. High-priority requests
access the video data using the proposed channel bor-
rowing and reserving scheme if necessary, while the
low-priority requests access the video data through the
proposed probability-based scheduler. When a client
requests a video, the video server first specifies the prior-
ity of the request. If the request is low-priority, and the
controlled multicasting channels are not overloaded,
then the server services the request immediately. The
server places the low-priority requests into the scheduler
when the controlled multicasting channels are
overloaded.
Fig. 1. The architecture of the hybrid priori
If the request belongs to the high-priority task group,
and sufficient free controlled multicasting channels are
available, then the server allocates a channel and serves
the request immediately. A channel can also be allocated
from any free reserved channels if no controlled multicast-
ing channels are available.

2.1. Integration of controlled multicasting and channel

borrowing

A controlled multicasting [10] scheme assumes that infi-
nite server channels are available, and enables two clients
that request the same video at different times to share a
channel. However, the late-arriving client is permitted to
use another free channel to download the portion of the
video segment that was received by the early-arriving cli-
ent. Unlike other batching schemes, controlled multicast-
ing does not delay an earlier request that is still sharing a
channel when it received a higher-priority request.

Clients are divided into two different priority groups
according to their certification guarantees. The clients in
different classes have different QoS guarantees, where only
the high-priority clients are assumed to have to pay for the
requested videos. Therefore, the controlled multicasting
scheme is dedicated to clients in the high-priority group,
while the batching scheme serves low-priority clients who
access videos for free. Each video is divided into several
parts according to the broadcasting scheme. That is, each
channel is divided into fixed time slots for transmitting a
specific part of a video. The videos in the two priority
ty-based VoD resource sharing scheme.
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groups are broadcast in turn. The controlled multicasting
and batching scheme are integrated by altering the mode
in each channel after fix time slot.

High-priority clients are preferred for accessing channels
in the controlled multicasting mode, while low-priority
class clients are preferred for accessing channels in batching
mode. The low-priority clients can access channels in the
controlled multicasting mode if the current network load-
ing is not heavy. Channel borrowing is utilized to enable
high-priority clients to share a channel that is currently
serving low-class clients by eliminating the topmost layer
of the ongoing streams that serve low-class clients in the
controlled multicasting mode. The shared channel is
employed to catch up the missing video segment received
by the early-arriving high-priority clients.. The broadcast-
ing scheme broadcasts each video in turn. This approach
is appropriate only for popular videos, and consumes more
server resources than the proposed scheme, in which the
channel access mode can be changed. In contrast, the pro-
posed scheme is thus more flexible than broadcasting, and
can utilize both controlled multicasting and batching
modes.

2.2. Adaptive channel reserving mechanism

Channel borrowing [9] has been presented to handle
temporary bandwidth crises in controlled multicasting by
borrowing bandwidth from other ongoing streams. A scal-
able layer video coding technique is employed to code
video streams into multiple layers, comprising the base
layer and several enhanced layers, as defined in the
MPEG-2 coding standard. A layer corresponds to a partic-
ular QoS. Some of the topmost ongoing video streams are
eliminated during a temporary bandwidth crisis to accom-
modate new streams. These missing layers are restored
when bandwidth becomes available after a regular or patch
stream is dropped.

This work proposes an adaptive channel reserving
mechanism to reserve free channels for the incoming
high-class clients to increase their priority and reduce their
blocking probability. Since the proposed hybrid resource
sharing scheme reserves an appropriate number of free
channels for the expected incoming high-priority clients
during the next time period, determines the number of
reserved channels for the high-class clients during the next
time period from the current network traffic load using the
following equation:

Rrðt þ 1Þ ¼ K � Str � bðtÞ � n̂Hðt þ 1Þ
n̂Lðt þ 1Þ ; ð1Þ

where Str denotes the total number of the server streams; b

is the blocking probability for class 1 video during the cur-
rent time period; n̂Hð�Þ and n̂Lð�Þ represent the predicted
numbers of high- and low-priority clients during the next
time period, respectively, and K is a constant less than 1.
Notably, the values of n̂Hð�Þ and n̂Lð�Þ are predicted by
the weighted moving average method.
2.2.1. Weighted moving average method

Since n̂Hð�Þ and n̂Lð�Þ can both be considered as time ser-
ies, this work predicts the value of the next time interval
using a well-known time series predictor, the weighted
moving average method [19], which has been reported to
perform well on time series prediction [19]. A time series
is a sequence of numerical values indexed by increasing
time unit. The conventionally adopted time series predic-
tion techniques in the literature include the ‘average’
method, which determines the mean of the past m measure-
ment periods:

�k ¼
Pm�1

j¼0 kðt � jÞ
m

; ð2Þ

and the weighted moving average, which increases the
weight of the last measurement period:

k̂ðt þ 1Þ ¼ ð1� qÞ � �kþ q � kðtÞ; ð3Þ

where q = 1 and �k represents the average calculated in
Eq. (2).

2.3. The probability model-based scheduling policy

Since the batching scheme leads to different videos in the
same priority class waiting for service, another selecting
mechanism is required to choose the next video to serve
in the same priority group. Wu et al. [22] assumed that
the user can wait for an infinite time. This assumption is
impractical, because the client cannot reasonably wait for
an unknown long time after having paid to watch a video
on the Internet. This study proposes a practical probability
model-based scheduler, called the largest effective waiting
time first scheduling policy, to minimize user defection
and unfairness.

If the probability that a client leaves the system at t sec-
onds is p(t), then the probability for the client leaving the
system within t seconds is given by

DðtÞ ¼
Z t

pðxÞdx: ð4Þ

Assume that a client requests a video and does not can-
cel it within T seconds, and that the conditional probability
for this client leaving the system after T seconds is given by

qðtÞ ¼ 1

cðT Þ pðtÞ; ð5Þ

where c(T)=1 � D(T) denotes the probability that the cli-
ent will not cancel the request after T seconds.

The selection criteria for each video queue can then be
expressed as:

vi ¼
X
ðtj � qðtjÞÞ; ð6Þ

where tj denotes the current cumulative waiting time for
client j.

This work assumes the user defection behavior is nor-
mally distributed as in [16]. However, Eq. (6) must still
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be solved quickly to make this approach feasible in prac-
tice, particularly when the calculation involves an integra-
tion, as in Eq. (4). This study proposes a simplified
computation strategy that adopts an approximate cubic
polynomial to replace the integration, as presented in Eq.
(4) below.

The probability function of a variable x, normally dis-
tributed with mean l and standard deviation r, can be
expressed as:

pðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�ðx�lÞ2=ð2r2Þ: ð7Þ

The cumulative distribution function is

DðxÞ ¼
Z x

�1
pðx0Þdx0: ð8Þ

As mentioned earlier, the cumulative distribution func-
tion is in an integral form and is computationally expen-
sive. Hence, this study proposes a cubic polynomial,
g(x)=a + bx + cx2 + ex3 to approximate the original
cumulative distribution function, as presented in Eq. (8).

The derivation of the coefficients in the cubic polyno-
mial, g(x)=a + bx + cx2 + ex3, can be completed by the
following error function:

EðxÞ ¼
Z 1

�1
ðaþ bxþ cx2 þ ex3 � DðxÞÞ2pðxÞdx: ð9Þ

Let

In ¼
Z 1

�1
xnpðxÞdx ¼ 1

r
ffiffiffiffiffiffi
2p
p

Z 1

�1
xne�

x�lð Þ2

2r2 ; ð10Þ

and

J n ¼
Z 1

�1
xnpðxÞDðxÞdx

¼ 1

2pr2

Z 1

�1
xne�

ðx�lÞ2

2r2

Z x

�1
e�
ðt�lÞ2

2r2 dt dx ð11Þ

The computation of Eq. (9) can then be further trans-
formed into a linear matrix:

a

b

c

e

2
6664
3
7775 ¼

I0 I1 I2 I3

I1 I2 I3 I4

I2 I3 I4 I5

I3 I4 I5 I6

J 0

J 1

J 2

J 3

���������

2
6664

3
7775; ð12Þ

where the values of I0, I1, I2, I3, I4, I5 and I6 can be derived
by Eq. (10), and J0, J1, J2 and J3 can be obtained by Eq.
(11). Since the coefficients of the cubic polynomial are te-
dious to derive from Eq. (12), we set z ¼ x�l

r and rewrite
Eqs. (7) and (8) as follows to simplify the calculation:

pðzÞ ¼ 1ffiffiffiffiffiffi
2p
p ez2=2; ð13Þ

DðzÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z z

�1
ez02=2 dz0: ð14Þ

The cubic polynomial that approximates the cumulative
distribution function thence becomes
gðzÞ ¼ aþ bzþ cz2 þ ez3: ð15Þ
After substituting for z in Eq. (15) using x�l

r , we obtain

gðxÞ ¼ aþ b
x� l

r
þ c

x� l
r

� �2

þ e
x� l

r

� �3

; ð16Þ

and the error function becomes

E ¼
Z 1

�1
ðaþ bzþ cz2 þ ez3 � DðzÞÞ2pðzÞdz; ð17Þ

Since D(z) is symmetric at ð0; 1
2
Þ, it can be shown that

a ¼ 1

2
; ð18Þ

and

c ¼ 0: ð19Þ
Meanwhile, the error function as given in Eq. (9) is

expressed as:

E ¼
Z 1

�1

1

2
þ bzþ ez3 � DðzÞ

� �2

p zð Þdz: ð20Þ

Notably, the difference between the cubic polynomial and
the cumulative distribution function becomes zero when
appropriate values are chosen for b and e in Eq. (20). Restated

oE
ob
¼ 0 ¼ oE

oe
: ð21Þ

Eq. (23) indicates that:Z 1

�1

1

2
þ bzþ ez3 � DðzÞ

� �
zpðzÞdz ¼ 0; ð22Þ

andZ 1

�1

1

2
þ bzþ ez3 � DðzÞ

� �
z3pðzÞdz ¼ 0: ð23Þ

Eq. (12) can now be recast as,

b

e

� 	
¼

I2 I4

I4 I6

J 1 � 1
2
I1

J 3 � 1
2
I3

�����
" #

; ð24Þ

where

In ¼
Z 1

�1
znpðzÞdz; ð25Þ

and

J n ¼
Z 1

�1
znpðzÞDðzÞdz: ð26Þ

The values of In and Jn are now determined. Since

ð�zÞnpð�zÞ ¼ �znpðzÞ; ð27Þ
when n is odd, thus

I2n�1 ¼ 0; 8 n 2 N : ð28Þ
When n is even, In becomes a recurrence relation as follows:

Inþ2 ¼ ðnþ 1ÞIn: ð29Þ
Thus, we obtain
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I2 ¼ 1; I4 ¼ 3; I6 ¼ 15: ð30Þ

Next we let

Kn ¼
Z 1

�1
znp2ðzÞdz: ð31Þ

It can be shown that

J nþ1 ¼ nJ n�1 þ Kn; ð32Þ

and

J 1 ¼
1

2
ffiffiffi
p
p ; J 3 ¼

5

4
ffiffiffi
p
p : ð33Þ

Accordingly, Eq. (24) can be expressed as:

b

e

� 	
¼

1 3

3 15

1
2
ffiffi
p
p

1
4
ffiffi
p
p

�����
" #

¼ 1

24
ffiffiffi
p
p

15

�1

� 	
; ð34Þ

and the cubic polynomial as given by Eq. (16) becomes

gðxÞ ¼ 1

2
þ 5

8
ffiffiffi
p
p x� l

r

� �
� 1

24
ffiffiffi
p
p x� l

r

� �3

: ð35Þ

Accordingly, the tedious computation of Eq. (4) can be
replaced by the simplified cubic polynomial form, as given
in Eq. (35).

The proposed VoD server selects the video to serve
based on its vi value as given in Eq. (6). The video with
the largest vi value is served first.

2.4. Time complexity analysis

2.4.1. Time complexity of the probability model-based

scheduling policy

Based on Eqs. (4)–(7), and 35, the selection criteria for
each video queue, as given by Eq. (6), can be recast as

vi ¼
Xn

j¼1

tj � e�
ðtj�lÞ2

2r2

1
2
� 5

8r
ffiffi
p
p ðtj � lÞ þ 1

24r
ffiffi
p
p ðtj � lÞ3

: ð36Þ

The total counts of instructions required for the probability
model-based scheduling policy adopted in the low-priority
batching scheme can be obtained by solving Eq. (36). The

required instructions consist of 3n additions, 9þ l2

2r2

� �
n

multiplications, 5n divisions and n square root operations.
Here, n indicates the number of incoming clients, and l and
r represent the predefined average client waiting time and
the standard deviation of the client waiting time,
respectively.

2.4.2. Time complexity of the adaptive channel reserving

mechanism
Based on Eqs. (1)–(3), the number of reserved channels

for the high-class clients during the next time period, as
given by Eq. (1), can be written as

Rrðt þ 1Þ ¼ K � Str � bðtÞ
m � kðt þ 1Þ �

Pm�1
j¼0 kðt � jÞ

m � kðtÞ �
Pm�1

j¼0 kðt � jÞ
: ð37Þ
Eq. (37) demonstrates that the total counts of instructions
required for the adaptive channel reserving mechanism em-
ployed in the controlled multicasting method are 3 + 2m

additions, 6 + 2m multiplications and 1 division. Here, m

denotes the number of the past cumulative measurement
periods.

We thus conclude that the additional computational
load on the server required for the probability model-based
scheduling policy and the adaptive channel reserving mech-
anism, as shown in Fig. 1, is the greater of O(n) or O(m).
The added computation overhead compared with human
response is insignificant.
3. Simulation

3.1. Simulation scenarios

This study considered a scenario based on the operation
in YouTube, in which the video server contains the general
videos and updates videos within a fixed period of time. Yu
et al. [12] and Veloso et al. [13] analyzed a wide variety of
media workloads on the Internet. They accumulated the
workloads from both the client and the server sides in the
Web, VoD, P2P, and live streaming environments between
1998 and 2006. The media content was delivered via Web/
P2P downloading or unicast/multicast streaming. Both
Veloso et al. [13] and Sripanidkulchai et al. [14] reported
that live streaming media systems follow stretched expo-
nential (SE) distribution. The SE distribution lays out an
analytical foundation to establish scheduling methods for
delivering the rapidly increasing quantity of Internet media
content. Therefore, this study assumed that the VoD sys-
tem frequently updates contents in our simulation scenar-
ios, matching the characteristics of a SE distribution.
Similar to the scenarios in [16–18], the proposed VoD sys-
tem was assumed to contain 100 videos, each 120 min long.
The server capacity was in the range 50–500 [16,17], and
the client arrival rate was exponentially distributed in the
range 20–60 per minute [16,19,20]. The compared schemes
are the primitive hybrid scheme that integrates controlled
multicasting and batching (AHVoD1), the hybrid scheme
embedded with channel borrowing mechanism (AHVoD2),
the proposed hybrid system embedded with channel bor-
rowing and reservation mechanisms (AHVoD3), controlled
multicast (CM) [10], and turbo-slice-and-patch (TSP) [20].
Notably, TSP is chosen here because it is currently the
state-of-the art patching scheme for providing high-quality
video and economy of scale in metropolitan-scale video
streaming services.
3.2. Performance metrics

The resource sharing and scheduling policies were ana-
lyzed by the performance metrics adopted in [16], as
described below.
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� Blocking probability: the probability that an arriving
high-priority client leaves the system without being ser-
viced due to the lack of a server stream.
� Defection probability: the probability that an arriving

low-priority client leaves the system without being
served because the waiting time exceeds that acceptable
to the viewer. The defection probabilities obviously vary
according to the video. Let ri represent the defection
probability for video i. The mean defection probability
can thus be expressed as:

�r ¼
XN

i¼1

ri=N : ð38Þ

Meanwhile, the user defection behavior is modeled with
normal distribution with a mean value of 5 min and a
standard deviation of one.
� Average latency time: the latency of a client is the period

that elapses between the arrival of the video request and
the time when the service to the display device is initi-
ated. The latency time measure considers only non-
defecting clients.
� Unfairness: the unfairness is defined as follows. [16]
unfairness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðri � �rÞ2=ðn� 1Þ
s

: ð39Þ

In many batching polices, the clients wait longer for the less
popular, cold videos than for the more popular, hot videos.
Higher unfairness values correspond to less fair policies. If
all videos are treated equally, then the unfairness as given
by Eq. (39) should be small.
3.3. Simulation result

Experiments were performed with arrival rates in the
range 20–60 requests per minute, and the server capacity
fixed at 200 streams. The server capacity was then varied
as 100–500 streams with the arrival rate fixed at 50 requests
per minute.

Figs. 2 and 3 compare the blocking probability of high-
priority clients in the three proposed methods and the con-
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Fig. 2. Blocking probability of high-priority clients for the three proposed
schemes and controlled multicasting scheme at varied arrival rates.
trolled multicasting model. The proposed hybrid system
embedded with channel borrowing and reservation mecha-
nisms (AHVoD3) performed better than the hybrid scheme
embedded with channel borrowing mechanism (AHVoD2),
the primitive hybrid scheme (AHVoD1), controlled multi-
cast (CM) and the above-mentioned state-of-the art patch-
ing mechanism (TSP). As revealed in Figs. 2 and 3, TSP
and CM performed poorest because they always allocate
a channel to a client who requests a video, regardless
whether the client has high or low priority. Assigning a
channel to each low-priority client obviously significantly
reduces of number of available channels for incoming
high-priority clients.

In contrast, the three proposed schemes ensure that the
controlled multicasting channels are allocated to the high-
priority clients first, and permit access by the low-priority
clients only when they are not overloaded. Furthermore,
the hybrid embedded with channel borrowing mechanism
alone also significantly outperformed the primitive hybrid
scheme. Thus, the channel borrowing and adaptive channel
reservation mechanism adopted in this work indeed
boosted the performance of the proposed resource sharing
system. Fig. 3 shows that the channel borrowing and
reserving mechanisms rectify the deterioration problem
on blocking probability of high-priority clients when the
server capacity is equal to or larger than 300, because they
have more channels that can be reserved or borrowed by
high-priority clients.

Figs. 4 and 5 show the defection probabilities of low-
priority clients for the three proposed schemes and the
representative scheduling schemes MFQL and FIFO.
The primitive hybrid scheme (AHVoD1) performed worse
than MFQL, because the prompt service of high-priority
clients in controlled multicast operating mode reduces
the defection probability of low-priority clients operating
in batch mode. The hybrid scheme embedded with channel
borrowing mechanism (AHVoD2) performed slightly bet-
ter than the hybrid system embedded with channel bor-
rowing and reservation mechanisms (AHVoD3), because
AHVoD3 reserves some channels for high-priority clients,
moderately reducing the defection probability for low-pri-
ority clients.
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Fig. 4. Defection probability of low-priority clients at varied arrival rates.
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Figs. 6 and 7 illustrate the service delay times of low-pri-
ority clients for the three proposed schemes, MFQL and
FIFO. These figures indicate that the three proposed
schemes had shorter service delay times than MFQL and
FIFO, since they allow low-priority clients to access the
video immediately when the server is not overloaded.
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Fig. 6. Service delay time of low-priority clients at varied arrival rates.
Notably, the hybrid system embedded with channel bor-
rowing and reservation mechanisms (AHVoD3) performed
better than the hybrid scheme embedded with channel bor-
rowing mechanism (AHVoD2), because its channel bor-
rowing and reservation mechanisms allocate free channels
more effectively, and assigns more channels operated in
controlled multicasting mode assigned to low-priority
clients.

Figs. 8 and 9 illustrate the comparison of unfairness
for the low-priority clients in the five resource sharing
schemes. The three proposed schemes were found to be
fairer than MFQL, because the proposed scheduling pol-
icy schedules each video by the waiting time and leaving
probability of each client in that video queue. Therefore,
the proposed scheduling policy selects the next video to
be served based on the maximum waiting time and the
maximum leaving probability. Interestingly, the hybrid
system embedded with channel borrowing and reserva-
tion mechanisms (AHVoD3) performed better than
AHVoD2 and AHVOD1, because its channel borrowing
and reservation mechanisms effectively allocate the free
channels operated in controlled multicasting mode,
increasing the possibility of low-priority tasks accessing
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Fig. 8. Unfairness of low-priority clients at varied arrival rates.



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500

Server Capacity

AHVoD1 AHVoD2 AHVoD3 MFQL FIFO

Fig. 9. Unfairness of low-priority clients under varied server capacity.
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the video data, thereby serving more low-priority videos.
Although FIFO is the fairest scheme among the five
schemes, the proposed three hybrid system can achieve
lower defection probability and short service delay time,
as indicated in Figs. 3–6.
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Fig. 11. Defection probability of the clients under varied server capacity.
To measure the effectiveness of the proposed scheduling
policy, a further series of test was run under batching mode
wherein all the clients were treated identically. The pro-
posed scheduling policy (LETF) was compared with
MFQL and FIFO. Figs. 10 and 11 compare the defection
probability of the clients under the three scheduling poli-
cies. As expected, the proposed scheduling policy effectively
reduced the defection probability. Since the proposed
scheduling policy based on the probability model builds
the video queue according to the waiting time and leaving
probability of each client, it selects the next video to serve
before the client leaving the system by waiting for a long
time.

The proposed scheduling policy has a shorter service
delay time than MFQL and FIFO, as indicated in Figs.
12 and 13. This is because the scheduler can effectively
schedule the video queue with the maximum waiting time
multiplied by the maximum leaving probability. A longest
queue often has the largest value for this factor.

Figs. 14 and 15 compare the unfairness of the proposed
scheduling policy with MFQL and FIFO. Clearly, the leav-
ing probability of the clients in the queue and the waiting
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Fig. 13. Service delay time of the clients under varied server capacity.
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time of the incoming clients makes the proposed scheduling
policy fairer than MFQL, but slightly less fair than FIFO.
The selection criteria for the next video to serve in Eq. (6)
reveals that the queue with longest waiting time and highest
leaving probability value is served next. A client who
waited for a long time, and has high probability of being
defected by the system, should ideally be served first.
4. Conclusions

This study proposes a scheduling model that allows
high-priority clients who pay for the requested videos
to receive them quickly from the VoD server, while also
giving service to users who access the videos for free. A
hybrid VoD resource sharing system along with a band-
width borrowing technique is proposed to reduce the
probability of defection and the waiting times of clients
in different priority groups. Furthermore, an adaptive
bandwidth reserving mechanism is also presented to
improve the efficiency of the VoD server in using free
streams. Additionally, a probability-based scheduling
policy, called largest effective waiting time first, is pro-
posed to improve the fairness of the batch scheduler,
and decrease the probability of defection. A series of
simulations was run to compare the proposed hybrid
VoD resource-sharing model with the controlled multi-
casting and MFQL scheduling model. The proposed
hybrid model was found to lower the blocking probabil-
ity of high-priority clients. The defection probability and
delay latency of low-priority clients were found to be
lower in the proposed scheme than in MFQL. Experi-
mental results show that the proposed bandwidth bor-
rowing and adaptive channel reservation model can
decrease the blocking probability of high-priority clients
and the defection probability of low-priority clients.
Meanwhile, the proposed probability-based scheduling
model not only has the lowest defection probability,
but also the best fairness, for low-priority clients. The
superiority and the feasibility of the proposed hybrid
resource-sharing scheme are thus verified. Notably,
Lehtonen et al. [23] reported that controlled multicast
framework does not enable Internet-wide control for
multicast sources and receivers, and is not completely
secure. Future work will focus on resolving these two
issues.
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