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The Rouse—-Mooney model for coherent quasielastic neutron scatterings
of single chains well entangled in polymer melts
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Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050

(Received 18 February 2008; accepted 22 April 2008; published online 9 June 2008)

The dynamic structure factor (DSF) for single (labeled) chains well entangled in polymer melts has
been developed based on the Rouse-Mooney picture; the DSF functions derived from the Langevin
equations of the model in both discrete and continuous forms are given. It is shown that for all
practical purposes, it is sufficient to use the continuous form to analyze experimental results in the
“safe” g region (g being the magnitude of the scattering wave vector q) where the
Rouse-segment-based theories are applicable. The DSF form reduces to the same limiting form as
that of the free Rouse chain as ¢%a” or g>R?— o (a and R being the entanglement distance and the
root mean square end-to-end distance, respectively), confirming what has been expected physically.
The natural reduction to the limiting form allows the full range of DSF curves to be displayed in
terms of the reduced Rouse variable ¢*(Z,#)" in a unified way. The displayed full range represents
a framework or “map,” with respect to which effects occurring in different regions of the DSF may
be located and studied in a consistent manner. One effect is the significant or noticeable deviations
of the theoretical DSF curves from the limiting curve in the region ~4 > ¢*(Z,)*3> ~0.1 (a time
region where ¢ << 7}) to the faster side as ga is in the range 1-5. This is supported by the comparison
of the experimental results of an entangled poly(vinylethylene) sample with the theoretical curves.
The DSF functional forms predict plateaus with heights depending on the value of g—g-split
plateaus—as can be experimentally observed in the time region greater than the relaxation time 7§
of the lowest Rouse—-Mooney mode, when ga falls between ~1 and ~7. High sensitivity of the
distribution of the g-split plateaus to a enables its value to be extracted from matching the calculated
with the experimental results. The thus obtained a value for a well-entangled
poly(ethylene-co-butene) polymer is in close agreement with the rheological result. It is shown that
the fixed-end boundary conditions in the Rouse—-Mooney model are responsible for the correct

prediction of the distribution of the g-split plateaus. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2927870]

I. INTRODUCTION

Because of the large number of atoms and degrees of
freedom in a chain molecule, a polymer is rich in its dynam-
ics, with its relaxation-time distribution covering many
decades.'™ Various techniques have been used to study dif-
ferent aspects of polymer dynamics. In comparison with the
wide range that the viscoelastic-response measurements are
capable of probing, the neutron spin-echo spectroscopy for
studying the coherent scattering has a narrower time window
and is mainly suitable for probing certain aspects of chain
dynamics.6 Successful models have been developed describ-
ing the viscoelastic responses quantitatively over the whole
range: From the glassy-relaxation region to the flow
region.7_9 The physical pictures as contained in these models
may provide the approaches for analyzing the coherent
quasielastic (or dynamic) neutron scattering results.

The relaxation modulus G(¢) functional forms have been
given7_9 by incorporating a stretched exponential Kohl-
rausch, Williams, and Watts (KWW) form for the glassy-
relaxation process ug(f) into the extended reptation
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theoryz’lo_]2 (ERT) (for entangled systems) or the Rouse

theoryz’m_]6 (for entanglement-free systems) as the frame of
reference. The creep compliance J(r) curves' ™" and vis-
coelastic spectra G*(w) (Ref. 20) of nearly monodisperse
polystyrene melts have been recently7_9 quantitatively ana-
lyzed over the whole range in terms of the G(r) functional
forms. From the extensive J(¢) and G*(w) line-shape analy-
ses, it is clear that the Rouse modes of motion wg(7) is the
only dynamic process following the glassy-relaxation pro-
cess ug(?) in an entanglement-free system. As entanglements
begin to occur with increasing molecular weight, ug(f) is
replaced by the Rouse—-Mooney modes of motion®'*1%%!
() —modes of motion of an entanglement strand with both
ends fixed—as the first process right after uq(r). The u4(2)
process plays an important role in the success of the ERT,
quantitatively describing the transition from the glassy-
relaxation region to the rubberlike-to-fluid region—the
(1) = (1) = pe(t) region®™ "2—in the relaxation modulus
G(1).

Concurrently, dynamic neutron scatterings from single
(labeled) entanglement-free chains in polymer melts are well
described by the Rouse model, if the magnitude of the scat-
tering wave vector g is not too largeé’22 (g<=~15nm™! or

© 2008 American Institute of Physics
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gb= ~2, with b being the typical root mean square length of
a Rouse segment, b=(b?)*> for the studied polymers). For
g>~1.5 nm™!, deviations from the Rouse theory may be
due to the segmental interactions within and between
“Rouse” segments.23 In well-entangled systems, the single-
chain dynamic scatterings deviate in a characteristic way
from being described by the Rouse model even in the g=<
~ 1.5 nm™! region. The understandings gained from the stud-
ies of the viscoelastic responses G(z), J(t), and G*(w) (Refs.
2 and 7-12) suggest that dynamic scatterings from well-
entangled labeled chains may be studied in terms of the
Rouse-Mooney model. Restricted to the length scale of an
entanglement strand, a, the “static” (“structural”) and dy-
namic properties revealed by the scatterings are expected to
be independent of molecular weight. Indeed, experimental
results® have suggested that the dynamic-scattering line
shapes become independent of molecular weight if the
molecular weight is sufficiently large—i.e., if the polymer
system is extremely well entangled.

Il. DYNAMIC STRUCTURE FACTORS
OF ROUSE-SEGMENT-BASED MODELS

A. Free chains

The Rouse dynannc behavior is described by the Lange-
vin equatlon > for a chain consisting of beads connected
by springs with the entropic-force constant 3k7/ p2. 121
Consider a single Rouse chain—Ilabeled in experimental
measurements—with N, beads, whose positions at time ¢ are
denoted by {R,(r)}. With the beads’ displacements being
sums of Gaussian random steps, the dynamic structure factor
(DSF) of the single Rouse chain can be expressed by'®

No Ny

S(q,)——22<exp[zq (R,,() - R,(0)])

Nou=i m=1
Ng W,
1 0 0

2
=—2>2 eXp{ <(Rm(t)_Rn(0))2>:|- (1)

NOn 1 m=1

In terms of the Rouse normal modes,l’2 while the DSF de-
rived from Eq. (1) based on the discrete model is given in
Appendix A, the one based on the continuous model is given
by -®

No No
S(q,1) = — exp(= ¢*Dgt) X >, >, exp| - —b2|m n|
NO n=1 m=1 6
2q°Nyb* o1 (mpﬂ') (npﬂ')
> 5 oS cos| —
37 P Ny Ny

x{l_exp(}pf)”, 2)

with
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Nob* M?
7,= N =K 5. (3)
kT p? 3p
In Eq. (3), M is the molecular weight corresponding to N,
beads per chain, and the frictional factor K is given by (see
Appendix B)
© h? K2 3K2 @
T kTwm? kTwb T w2y
with m being the mass per Rouse segment. As explained in
Appendix B, the frictional factor K serves an equivalent role
as the parameter Z, (=3kTh?/{) that has often been used to
characterize the dynamic neutron scatterings and will be used
in the data analyses below.
If the free Rouse chain is trapped inside a domain with
a diameter of \rNob the DSF is obtained from Eq. (2) by
setting D;=0:

| No Ny q2
S(q.1) = — - > X exp| - gbzlm—n|

n=1 m=1

2q°Nyb? o1 (mpﬂ') (npﬂ')
——2—2005 — |cos| —
37 p N, N,

X[l—exp(_?:)}]. (5)

Eq. (5) will be used in Sec. VL.

B. Entanglement strands

Here, we consider an extremely well-entangled system in
which both the labeled chains and the matrix chains are very
long with molecular weights much greater than the entangle-
ment molecular weight M,. In other words, N=Ny/N,>1,
with N, denoting the number of Rouse segments of a chain
and N, denoting the number of Rouse segments per entangle-
ment strand. Consider an entanglement strand of a labeled
chain in the system. We picture that the first bead R;(?) is
connected to the fixed origin O of a chosen coordinate sys-
tem by a bond vector b () and the last bead Ry, (1) is fixed at
such a position R, that statistically (R2> =N, bz—a where a
is referred to as the entanglement distance or length. En-
tanglement strands are linked one after another, each with its
end-to-end vector R, randomly oriented.*?® If the represen-
tative entanglement strand defined above stands for a par-
ticular one in the sequence, the origin O is equivalent to the
position of the last bead of the preceding entanglement stand
and RNe(t) is equivalent to the origin of the next entangle-
ment strand. In this way, beads on each entanglement strand
of a chain are counted in an equivalent manner.

As N>1, in the timescales as typically probed by the
neutron spin-echo spectroscopy—with a properly chosen
temperature—entanglement points may be regarded as fixed
as the chain does not have the chance to slip through the
links (the slip links of the Doi-Edwards model>%%). Then as
shown in Appendix C, under the condition R>g~!, the DSF
of the labeled chain can be expressed as
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N, N,
S@n=-2 S (explia- (R,(1) - R, (0))

en=1 m=1

1 N, N, 2
=2 3 exp| - (RO-ROP | (©)

en=1 m=1

where the Gaussian property of the beads’ movements has
been used. Although the term with n=m=N, in Eq. (6) being
independent of time does not represent a Gaussian dynamic
process, with respect to it, the second equality in Eq. (6)
remains valid.

Equation (6) is referred to as the Rouse-Mooney model
of coherent quasielastic scattering. In terms of the normal
modes,>*’ while the DSF derived from Eq. (6) based on the
discrete model is given in Appendix A, the one based on the
continuous model is given by

1 Ne Ne 2
S@n=1x 2 exp =L -

e n=1 m=1 6
2q°N,b? o1 . (mpfr) . (npﬂ')
- E — sin sin| ——
3772 p=1 p Ne Ne
-1
X{l—exp<f)]], (7)
7
with
N2b? M?
7= 5—2 =K. (8)
P 3kTwp 3p

There are two main differences between Egs. (2) and (7)
in form: First, the diffusion factor is absent from Eq. (7),
reflecting that the chain does not diffuse due to the entangle-
ment points being fixed as assumed. Second, because of the
changes in the boundary conditions, cosines in Eq. (2) [or
Eq. (5)] are replaced by sines in Eq. (7) (taking N as corre-
sponding to N,). While the diffusion motion does not occur
in either Eq. (5) or (7), the former is for a chain with both
ends free while the latter is for a strand with both ends fixed.
As explained in Appendix D, for q>N,b*> 1, Eq. (7) in the
short-time region (#<<7) reduces to the same limiting form
[Eq. (D3)] as the one that is obtained from Eq. (2) or (5) for
q’Noh>>1 in the equivalent way.

One may obtain the self-correlation function—as can be
probed by incoherent scattering—from Eq. (7) by setting
n=m. In the time region ¢ << 7§, the exponent is dominated by
the terms with large p. By replacing sin*(npm/N,) by the
average % and converting the summation over p into integra-
tion, one obtains

2 2 [ 2
q-N,b 1 —tp
Sself(q’t)=expl_ 372 ;|:1—6Xp( # >:|dp:|
0 1

2
=e><p[—<tzdj4)” } 9)

Equation (9) is identical to the one that is obtained from
Egq. (2) for the time region #< 7, in the equivalent way'*—in
the case of from Eq. (2), replacing cos*(npm/N,) by the
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average % Thus, even though in the literature the equation
[Eq. (9)] used to analyze the short-time incoherent scattering
data of entangled systems has been understood (or regarded)
as originating from the Rouse theory [Eq. (2)].° the analysis-
obtained results are equally applicable here—i.e., from the
perspective of the Rouse-Mooney model.

lll. APPLICABLE q REGION FOR ROUSE-SEGMENT-
BASED THEORIES

Before we analyze experimental results in terms of the
Rouse and Rouse—Mooney models given above, it is advis-
able to point out some recent developments in the under-
standing and characterization of the Rouse or “Rouse” seg-
ment based on Monte Carlo simulations on entanglement-
free Fraenkel chains.”*’ It has been concluded that the
entropic-force constant on each segment is not a required
element to give rise to the Rouse modes of motion in G(z) of
an entanglement-free system. As the Fraenkel segment with a
sufficiently large force constant can be regarded as basically
equivalent to the Kuhn segment as far as the chain confor-
mation is concerned, this conclusion has provided an expla-
nation resolving the paradox that the molecular weights of
the Rouse segments and Kuhn segments, m and My, are of
the same order of magnitude.30 Thus, the “Rouse” segment
having a finite size can be determined experimentally—in
general much greater than a chemical segment; for instance,
m=850 for polystyrene and m=200-260 for
polyisobutylene,3(L32 the entropic (rubbery) aspects of poly-
mer viscoelasticity in reality are not directly related to the
entropic-force constant of the Rouse segment. In spite of
this, the Rouse-segment-based molecular theories can still be
profitably used in analyzing experimental results. The wide
use of the Rouse-segment-based molecular viscoelastic theo-
ries can be attributed to two main reasons: One is that their
equations of motion are solvable analytically'’2’10"3‘14 and
the other is the success of the theories in interpreting experi-
mental results—over the entropic region of viscoelastic re-
sponse. Here, we take a similar practical view of using the
Rouse-segment-based DSF functional forms given in this re-
port. Because the “Rouse” segment has a finite size, the Z;
values, although still extractable from analyses in terms of
these DSF functional forms, will eventually cease to be in-
dependent of ¢ when ¢ is sufficiently large. Thus, for safe
use of the DSF functional forms, one needs to adhere to the
criterion that the Z; values extracted from the experimental
DSF data at different ¢ values are in agreement with each
other.

In Fig. 1, DSF curves of an entanglement-free poly-
isobutylene (PIB) sample [M,=3870 and M, /M,=1.05
(Ref. 22)] at different ¢ values are compared to the results
calculated by substituting Ny=15 and b=1.255 (Ref. 30) into
Eq. (Al) and by substituting Ny=200 and 5=0.3323 into
Eq. (2)—the values of the N, and b are chosen such that
R*=K.M =N0b2=22.06 nm? is maintained.>*** Failure of
the Rouse model at large g being expected, in the compari-
son between theory and experiment, a Z; value is chosen by
matching the calculated and measured curves at as many low
q values as possible. The close matching between theory and
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FIG. 1. Comparison of the measured normalized DSF results (O, @, A, A,
O, M, ¢,and ¢ at g=0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, and 4.0 nm™', respec-
tively) of the PIB sample with the curves calculated from the Rouse model:
(—) from the discrete form, Eq. (A1) (with Ny=15 and b=1.255 nm, giving
R?=22.06 nm?); (---) from the continuous form, Eq. (2) (with Ny=200
and 5=0.3323 nm, giving R?=22.06 nm?). The comparison is made with
7,=0.808 nm* ns~!; the arrow marks the position of 7.

experiment at the ¢ < 1.5 nm™' region with a small difference
at g=1.5nm™! is made with the same Z, value
(0.808 nm*/ns) as used by Richter et al® In the
g<1.5nm™' region, the curves calculated from Egs. (A1)
and Eq. (2) agree well with each other. Thus, for all practical
purposes, the continuous model may be used for comparison
with the experimental results in the region g=<1.5. This re-
gion may be regarded as the applicable or safe region of the
Rouse theory. The justification for using the continuous
Rouse model in the safe g region does not mean that the
chain section that can be assigned as a Rouse or “Rouse”
segment is very small. The N, and b values chosen for sub-
stituting into Eq. (2) are merely some convenient numbers
arbitrarily chosen (also see Appendix B). We have found that
as long as R?=N,b? is maintained, virtually no difference can
be observed between the calculated DSF curves with differ-
ent N, values greater than 50 except at large ¢ values (3.0
and 4.0 nm™!). The above discussion also confirms the prac-
tice in the literature where the continuous form has always
been used in analyzing neutron spin-echo data in the safe g
region.

Equations (2) and (7) are both developed from the same
basis using the Rouse segment as the basic structural unit.
The Rouse segment lengths b estimated for the polymers
studied in this paper are of the same order of magnitude
(1.25—1.4 nm). Thus, the region g=< ~ 1.5 nm~!, where suc-
cessful comparison between Eq. (2) and experiment is made
in Fig. 1, can also be regarded as the safe g region for evalu-
ating the success of Eq. (7). All the analyses done below for
the entangled systems, except for the result of the
poly(vinylethylene) (PVE) sample at g=1.79 nm™!, basically
fall in the safe region. Although small differences between
Egs. (A5) and (7) can be noticed in the calculated curves
[over the plateau region for the poly(ethylene-co-butene)
(PEB-2) system studied below], the differences are much
smaller than the noise of the data.

J. Chem. Phys. 128, 224903 (2008)

$(q,t)/S(q,0)

time steps

FIG. 2. Normalized DSF curves calculated from Eq. (7) for entanglement
strands (both ends fixed; with N,=100 and »=0.5, giving a=5) are shown as
solid lines at the indicated g values. For comparison, the corresponding
curves calculated from Eq. (5) for free chains (with Ny=100 and »=0.5)
trapped in a domain of diameter a=5 are shown as dashed lines. The arrow
marks the position of 7 [for Eq. (7)] or 7 [for Eq. (5)].

IV. ENTANGLEMENT-RELATED CHARACTERISTICS
IN THE DSF LINE SHAPES

Equation (7) gives rise to unique DSF line shapes be-
cause of the existence of entanglement with a characteristic
length a. When the scattering wave vector q is of such mag-
nitude that ~10>ga> ~ 1, two characteristics can be iden-
tified in the DSF line shapes, as shown in Fig. 2. One occurs
in the time region, > 77; the other in the r<<7{ region. By
emphasizing these characteristics in analyzing the experi-
mental results in terms of Eq. (7), one may effectively extract
the value of a. To illustrate these two characteristics in
perspective, the DSF line shapes calculated from Eq. (7) at
q=0.5, 1, and 2 and shown in Fig. 2 are displayed in Fig. 3
as a function of the reduced Rouse variable ¢*(Z,t)".

As shown in Appendix D, under the condition ga> 1,
Eq. (7) in the time region << 7{ reduces to the limiting form,
Eq. (D3),'** which is a universal function of the reduced
variable ¢*(Z,t)">. As the condition is changed from
ga>10 to ga>1, obvious plateaus occur in the time region
t> 177, whose heights depend on the value of ga. The way
that the g-split plateaus are distributed is sensitive to the
value of a—as indicated by S(q,7>7)/S(q,0)=0.83 at
qa=2.5 vs S(q,t>17])/5(q,0)=0.075 at ga=10. This unique
relationship enables the entanglement distance a to be ob-
tained from matching the calculated and measured plateau
heights at different g values simultaneously.

The other characteristic occurring in the region <7 is
relatively subtle, requiring some careful explanations. As
shown in Fig. 3, the DSF at g=0.5 or ga=2.5 deviates in the
region of ~3>¢*(Z;)*>> ~0.2 from the limiting form
[Eq. (D3)] to the faster side. Similarly significant or notice-
able deviations occur as ga falls between ~1 and ~35; here,
we use the deviation at ga=2.5 as a representative case for
explanation.

Imagine an “experimental” system of very high molecu-
lar weight, where entanglements could be “switched on and



224908-5 Rouse—Mooney model

$(9,1)/8(q.0)

107 100 101 102

qZ(Zdt)O.S

FIG. 3. Normalized DSF curves equivalent to those shown in Fig. 2 at
¢=0.5, 1, and 2 (or ga=2.5, 5, and 10) expressed as a function of the
reduced Rouse variable ¢*(Z,)"° [solid lines calculated from Eq. (7);
dashed lines from Eq. (5)]. Also shown is the limiting curve calculated from
Eq. (D3) (dotted line). The double-headed arrows mark the positions of
gH(Z,7) 2 =¢*(Z,)*=q%a*/ w, while the upward arrow indicates the
position of ¢*(Z,7,)"*=6.

off:” If entanglement is on, the system is extremely well
entangled—thus, both ends of each entanglement strand can
be assumed as fixed—and its entanglement distance a is as-
sumed such that ga=2.5. If entanglement is off, the dynamic
behavior of the system is described by the Rouse theory un-
der the condition gR>1. In the entanglement-free situation,
because gR> 1, the DSF over the short-time region is well
described by Eq. (D3). As entanglement is switched on, due
to the imposition of the condition ga=2.5, the above de-
scribed deviation from Eq. (D3) shows up. Such a deviation
is expected to be observed by monitoring the apparent Z,
values that can be extracted from comparing the experimen-
tal curves at ga=2.5 with Eq. (D3). In the entanglement-free
situation, the apparent Z, values at different ¢ values should
be the same as gR>1 in all cases. In comparison, the appar-
ent Z,; value in the entangled situation should be larger due to
the deviation from Eq. (D3) to the faster side at ga=2.5
(Fig. 3). Here, we have assumed that the line shapes at
ga=2.5 in the region ~3>¢*(Z,t)’>> ~0.2 is sufficiently
similar to that of Eq. (D3); in other words, they can be
closely superposed on each other by a horizontal shift. Such
an assumption, in actual analyses of experimental data,®3>¢
could be easily practiced without knowing about it because
small differences could be easily buried in the noise of neu-
tron spin-echo data. For this reason, the obtained Z; value is
referred to as an apparent one. The above discussion of the
existence of deviation from the limiting form [Eq. (D3)] will
be illustrated by comparing the results of an entangled PVE
sample36 with the theoretical curves below.

J. Chem. Phys. 128, 224903 (2008)
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FIG. 4. Comparison of the measured normalized DSF results (O, @, A, A,
[, and M at ¢=0.69, 0.89, 1.06, 1.38, 1.55, and 1.79 nm™, respectively) of
the PVE sample with the curves (—) calculated from Eq. (7) (with Z,
=0.2214 nm* ns™! and the combination of N,=100 and b=0.453 nm, giving
a=4.53 nm); with the curves (---) calculated from Eq. (D3) (as done by
Richter et al.*® with Z,=0.28 nm* ns™!). The arrow marks the position of 7.

V. COMPARISON OF THEORY AND EXPERIMENT

Neutron spin-echo results of two entangled systems re-
ported in literature will be compared to the theoretical curves
calculated from Eq. (7): The PVE sample [M,,=8.0 X 10* or
M, /M,~20; M,,/M,=1.02 (Ref. 36)] and the PEB-2 with
two ethyl branches per 100 carbons) sample [M,,=1.9 X 10
or M, /M,~195; M,,/M,<1.02 (Ref. 24)]. The PVE system
is for testing Eq. (7) over the region from r<<7{ to <7,
while the PEB-2 system is for testing Eq. (7) over the region
from r<17{ to r> 7.

A. Lack of a common short-time region

As pointed out above, based on Eq. (7), DSF curves with
different ga in the range 1-5 do not share a common curve in
the region of ~4 > ¢*(Z,;1)*>> ~0.1. However, in the litera-
ture, the neutron spin-echo data in this region have often
been treated as all following Eq. (D3).

In Fig. 4, the neutron spin-echo results of the PVE
sample are compared to the curves calculated from Eq. (7) at
different ¢ values (ranging from ¢=0.69 to 1.79 nm™!
or from ga=3.13 to 8.11 using the rheological value
a=4.53 nm in the calculations).z’33 In the calculation for a
continuous model, the combination of N,=100 and
b=0.453 nm may be arbitrarily chosen as long as
a=4.53 nm is maintained. With the same Z, value
(0.2214 nm*/ns), simultaneous close agreements between
experimental results and theoretical curves at different g val-
ues appear to be obtainable. Also shown in Fig. 4 is the
comparison with the curves calculated from Eq. (D3) as
made by Richter ef al. with Z;=0.28 nm*/ns:*® While ex-
perimental results are in close agreement with the calculated
curves at the small ¢ values (0.69, 0.89, and 1.06 nm™),
significant differences at the large ¢ values (1.38, 1.55, and
1.79 nm™') can be clearly observed. Thus, in the approach of
Richter er al., different (apparent) Z,; values have to be used
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FIG. 5. Comparison of the measured normalized DSF results (the same as in
Fig. 4) of the PVE sample with the curves (—) calculated from Eq. (7) (the
same as in Fig. 4), both expressed as a function of the reduced Rouse
variable, g>(Z,#)"?. The arrows from the top to the bottom mark the posi-
tions of ¢*(Z,7)"*=q** 7 at ¢=0.69, 0.89, 1.06, 1.38, 1.55, and
1.79 nm™', respectively.

to achieve agreements with Eq. (D3) at different ¢ values as
opposed to the same Z,; being used in obtaining the shown
simultaneous agreements with Eq. (7). To further illustrate
the subtleness regarding the discussed deviations from
Eq. (D3), we show both the experimental results and the
curves calculated from Eq. (7) as a function of the reduced
Rouse variable ¢*(Z,)!"? in Fig. 5. In the 3 ~4>¢*(Z,;1)%>
>(.2 region, the experimental data points, though somewhat
noisy, can be observed to shift to the faster side at smaller ga
as the calculated curves do. To account for statistical noise,
we carried out a more careful analysis of the experimental
results as described in the following:

In analyzing any set of DSF results here, clearly two
factors need to be considered: (1) The effect of entanglement
if the molecular weight is greater than M, and (2) the failure
of a Rouse-segment-based theory [either Eq. (2) or (7)] at
sufficiently large ¢ values as shown in Fig. 1. The deviation
of Eq. (7) from Eq. (D3) is an issue of entanglement. The
agreements between the data points and the theoretical
curves can be expressed in terms of the ratios of the experi-
mental values to the calculated values; a perfect correlation
is indicated by the ratio of 1. The correlations between the
data points and Eq. (7) (with Z,=0.2214 nm*/ns as deter-
mined presently) at different g values are compared to those
based on Eq. (D3) (with Z,=0.28 nm*/ns as determined by
Richter et al.) in Fig. 6. In general, for the comparison with
Eq. (7), one would show the ratio distribution by adjusting
the Z, value such that the average of the ratio values at

different ¢ values is 1. However, at g=1.55 and 1.79 nm~!,
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FIG. 6. The ratios of the normalized DSF data of the PVE sample to the
values calculated from Eq. (7) (the left panel; the same as in Fig. 5) vs the
ratios of the same data to the values calculated from Eq. (D3) (the right
panel; the same as in Fig. 4). The arrows (in the left panel) mark the
positions of ¢*(Z,7)"*=g?a?/ m.

Eq. (7) may be at the borderline of failure of a Rouse-
segment-based theory that becomes serious at larger ¢
(Fig. 1). Thus, the ratio distribution shown in Fig. 6 is pre-
sented in such a way that the average of the ratio values at
the four smaller g values is 1—the Z; value as used in the
comparison of experiment and theory shown in Figs. 4 and 5
has been determined this way. This allows room for devia-
tions from Eq. (7) at ¢=1.55 and 1.79 nm™! to show up if
noticeable failure of the Rouse-segment-based theory exists.
As opposed to the large deviations at g=1.38, 1.55, and
1.79 nm~! in the case of comparing with Eq. (D3) (right
panel of Fig. 6), one observes close correlations in the case
of comparing with Eq. (7) with only small noticeable devia-
tions at g=1.55 and 1.79 nm~! (left panel of Fig. 6). These
small deviations are of magnitude similar to those that can be
observed in a similar comparison—under the same condition
that the average of the ratio values at the four smaller
q values is l—between the data of the PIB sample and
Eq. (2) at similar ¢ values (1.5-2 nm™') and over the same
ranges of ¢*(Z,t)*> as shown in Fig. 7. Furthermore, the
value Z,=0.2214 nm*/ns obtained from matching the DSF
curves with Eq. (7) is in close agreement with the values
[Z2,=0.238(*20%) (Ref. 37)] obtained from analyzing the
incoherent neutron scattering results of the protonated
sample in terms of Eq. (9). The existence of deviation from
the limiting form is also indicated by the Z,; value
(0.28 nm*/ns) obtained by Richter et al. at the three lowest ¢
values (Fig. 4) being significantly larger than these two
mutually consistent values.

The above analyses support that Eq. (7) is as valid for an
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FIG. 7. Comparison of the ratios of the normalized DSF data of the PVE
sample to the values calculated from Eq. (7) (the left panel; the same as in
Fig. 6) and the ratios of the data of the PIB sample to the values calculated
from Eq. (2) (the right panel) at similar ¢ values and over similar ranges of
q*(Zt)"2. The arrows mark the positions of ¢*(Z,7})"*=¢?a?/ 7 (in the left
panel) and ¢*(Z,)"?=¢*R?/r (in the right panel).

entangled system as Eq. (2) is for an entanglement-free sys-
tem as far as the r<<7{ region is concerned. In other words,
the comparison of the data of the PVE sample with Eq. (7)
supports the existence of deviation from the limiting form in
the range 5>¢qa>1 as discussed in Sec. I'V. This conclusion
does not support the observation of the crossover from «
relaxation to Rouse dynamics claimed by Richter et al.* on
the basis of the g dependence of the Z,; values obtained from
their analyses in terms of Eq. (D3).

We have used the rheological value of a in Eq. (7) to
calculate the curves for the PVE sample shown in Figs. 4-7.
As the t<<7{ to t<<7 region is not very sensitive to a small
change in a, using a value larger by 20% as shown possible
by monitoring the g-split plateaus below does not lead to a
different conclusion.

B. g-split plateaus

The dependence on the entanglement length a is not as
strong in the time region << 7 as in the 1> 7 region, where
the g-split plateaus occur. By monitoring the agreement be-
tween experiment and theory regarding the g-split plateaus,
one may adjust the a value to be substituted into Eq. (7). In
Fig. 8, the neutron spin-echo results of the PEB-2 sample at
509 K are compared to the curves calculated from Eq. (7)
using a=4.0 nm, which is about 16% greater than the rheo-
logical value of 3.44 nm obtained at 413 K.>* The compari-
son is made with Z,=7 nm*/ns, which is quantitatively con-
sistent with the incoherent scattering results.®® Under this
condition, there are four features in the shown comparison
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FIG. 8. Comparison of the normalized DSF results (O, @, A, A, and [J at
¢=0.3, 0.5, 0.77, 0.96, and 1.15 nm™!, respectively) of the PEB-2 sample
with the curves calculated from Eq. (7) (with the combination of N,=100

and »=0.4 nm, giving =4 nm), both expressed as a function of the reduced

Rouse variable, ¢*(Z,t)"?. The comparison is made with Z,=7 nm*ns~'.

The upward arrows from the top to the bottom mark the positions of
G (Z, ) 2=¢*a* m at ¢=0.3, 0.5, 0.77, 0.96, and 1.15 nm™!, respectively.
The limiting curve for ga— o [Eq. (D3)] is shown as the dashed line; the
downward arrow indicates the position of ¢*(Z,7,)"?=6.

between theory and experiment: (1) In the short-time region,
the data points at different g values “group” together in the
same region as the curves calculated from Eq. (7). Because
there are too few data in the short-time region, the deviations
of Eq. (7) from Eq. (D3) in the region cannot be assessed in
this case as in the case of the PVE sample. However, within
the noises of the data points, the experimental results are not
in disaccord with the analyses of the results of the PVE
sample given above. (2) The positions in time of the steep
declines as clearly identifiable at the g values: 0.96 and
1.15 nm™" are in close agreement with the theoretical predic-
tions. (3) The heights of the plateaus and their distribution in
the long-time region 1> 7| as a function of ¢ are well pre-
dicted by the theory. The plateau height level depends on the
unitless quantity ga only. The large separation between the
two plateaus at the two largest ¢ values (0.96 and 1.15 nm™)
corresponds to a change that can be caused by an ~20%
difference in the a value if ¢ is kept the same. Thus, the close
matching of the g-split plateau distribution between experi-
ment and Eq. (7) represents a high-resolution determination
of the a value. (4) At different ¢ values, the general positions
of turning from a steep decline to a plateau are in agreement
with the predictions of Eq. (7), despite the noise associated
with the data points. The turns are sharper in the theoretical
curves than in the experiment results. In a consistent and
systematic way at different ¢ values, the experimental values
deviate from the calculated curves to the higher side around
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the bending point; the data points converge with the calcu-
lated plateaus at long times. The above listed features indi-
cate that the Rouse-Mooney model as presented in this paper
has captured the basic elements of the mechanism for the
relaxation of the DSF curves and their converging to a pla-
teau. The systematic deviations are most likely due to less-
than-perfect validity of the model. As shown in Fig. 8, the
bending points occur at times longer but not much longer
than r=74, and higher experimental values start to appear at
the timescales of 7{. These deviations from the theoretical
curves suggest that any improvement on the model should
affect the slowest mode of the Rouse—-Mooney process most,
lengthening its effective relaxation time.

From the line-shape analyses of viscoelastic responses
G(1) and G*(w) in terms of the ERT,>”'? it is known that the
chain-slippage (through entanglement links) process uy(z) is
responsible for the decline in modulus right after the end of
the Rouse-Mooney process u,(7). Due to the relaxation of
ux(2), the modulus drops from pRT/M, [modulus at the end
of uu(t)] to 4pRT/5M, in G(r). The relaxation time of the
ux(t) process, 7y, decreases linearly with decreasing
molecular weight. The 7y for the PEB-2 sample with M,
=1.9X 10’ is estimated to be about 100 times larger than
7% any effect that can come from (1) should be far be-
yond the time windows of the DSF measurements. In other
words, the PEB-2 sample with M,,=1.9X 10> may be con-
sidered as a well-entangled system suitable for comparing its
neutron spin-echo results with Eq. (7). As observed in the
study of a series of PEB-2 samples,40 when the molecular
weight is low enough, the heights of the plateaus at different
q values drop more and the slopes on the plateaus are en-
hanced with decreasing molecular weight. These symptoms
suggest an effect involving the uy(r) process, which relaxes
the fixed-end assumption more with decreasing molecular
weight. In particular, at M, =1.24X 10* (the smallest mo-
lecular weight studied in Ref. 40), the 7y value is only about
six times 7|; the effect of ux(z) is well within the time win-
dows of the DSF measurements. Thus, as expected, consid-
erable drops in the heights of the plateaus are observed in the
case of the sample with M, =1.24 X 10*,

VI. DISCUSSION
A. The g-split plateaus and the boundary conditions

As opposed to Eq. (7) being for strands with both ends
fixed, Eq. (5) is for chains free at both ends, yet trapped in a
domain with a diameter of V’Wob. Here we compare Egs. (5)
and (7) under the situation that the domain diameter for the
former is the same as the entanglement length for the latter,
namely, a= \"/Eb= VNyb. As shown in Appendix D, both Egs.
(5) and (7) converge to the same limiting form [Eq. (D3)] in
the time region of <7, or 7{ (7; and 7| are the same as N,
and N, are treated as equivalent here) for ga>1 (or ga
> 10). However, in the region ~7>ga> ~ 1, Eq. (5) gives a
very different distribution of g-split plateaus from Eq. (7)
(Figs. 2 and 3). The comparison of Egs. (D1) and (D2) indi-
cates that in the short-time region, Egs. (5) and (7) converge
to the limiting form [Eq. (D3)] from the opposite sides (see
Fig. 3). As opposed to Eq. (7) being successful, as shown in
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Sec. V, Eq. (5) is far from being able to describe the experi-
mental results. The drastic differences between Egs. (5) and
(7) indicate that the fixed-end boundary conditions are an
essential ingredient—confinement alone is not sufficient—
for the observed distribution of the g-split plateaus. This con-
clusion logically leads to the mechanism of chain slippage
through entanglement links as pictured in the Doi—-Edwards
model—as a chain conformation, say, deformed, has to relax
completely eventually without involving a chain break-and-
link process. Extensive studies' 124 of polymer
viscoelastic responses—including the successful prediction
of the damping factor in the studies of nonlinear
viscoelasticity1’2’41_44—have supported the slip-link picture
as embodied in the Doi—Edwards model."**® The analyses of
the spin-echo results as presented in this paper further
support the model on the microscopic level.

B. Comparisons with existing models

Models have been developed for understanding the co-
herent dynamic scatterings of single entangled chains by de
Gennes,45 Ronca,46 and des Cloizeaux.?” These theories have
been used to explain the g-split plateaus with different de-
grees of success; performances of these theories have been
czompared.6’24’48 As de Gennes’ theory has often been used
for data analyses in the literature and appears to give the
entanglement length closest to the rheological value among
the three theories, we shall mainly focus on its comparison
with Eq. (7).

de Gennes’ theory and Eq. (7) are based on different
starting points: As opposed to the fixed-end boundary condi-
tions for each entanglement strand in the latter case, de
Gennes’ theory imposes a tensile force 3kT/a (as given by
the Doi—Edwards theoryl’z’26 for maintaining the primitive-
chain contour length L=R?/a) on both ends of the chain. de
Gennes’ theory considers fluctuations of the segmental den-
sity along the primitive chain, which has the average value
given by Ny/L=N,/ a:Ng'5 /b, and terms it as “local repta-
tion.” The sort of process considered by deGennes is physi-
cally similar to those responsible for the wuy(r) and wg(r)
processes in the ERT.>"""? The local reptation is regarded in
de Gennes’ theory as responsible for the main dynamics ob-
served in the coherent scattering from one reptating chain, if
the chain is extremely well entangled. Both the present pro-
posed Rouse—-Mooney model and de Gennes’ picture expect
that, given enough time, reptation will eventually be fully
carried out randomizing the whole primitive chain or tube.
The main difference between the two is that the former fo-
cuses on the dynamics within one step length of the primitive
chain as opposed to the latter being intended for dynamics
beyond one step length. In de Gennes’ picture, the slip-link
“structure” and the existence of the Rouse—Mooney process
(including chain motions perpendicular to the primitive path)
before chain slippage has the chance to take place are
ignored. In accord with this picture, the condition ¢’a*><<1
<¢°R? has been used at several approximation steps in the
derivation of de Gennes’ theoretical result.

After making additional approximations, de Gennes
obtained a DSF function consisting of two separate terms:
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FIG. 9. Comparison of the normalized DSF results (O, @, A, A, and [J at
¢=0.3, 0.5, 0.77, 0.96, and 1.15 nm™, respectively) of the PEB-2 sample
with the curves calculated from de Gennes’ equation (with @=4.9 nm), both
expressed as a function of the reduced Rouse variable, ¢*(Z,)">. The
comparison is made with Z,=7 nm*ns~'. The limiting curve for ga— %
[Eq. (D3)] is shown as the dashed line. The arrow marks the position of
2 12_
q (Zqu) =6.

A time-dependent term characterized by the time constant
Tq:36/qu4—independent of the length scale a—is to ac-
count for the relaxation in the short-time region. The other
term (the so-called creep term), which can justifiably be re-
garded as time independent for a well-entangled sample, is
responsible for the existence of plateaus at long times.

The comparisons of the experimental results of the
PEB-2 sample with de Gennes’ equation as well as with
Eq. (D3) are shown in Fig. 9.*° The comparisons at different
q values are made using the same values of Z;
(=7 nm*/ns)*** and a4 (=49nm) as obtained by
Wischnewski and Richter (Fig. 1 of Ref. 24) for giving an
“optimum” fit. Note this Z; value and that used in the com-
parison with Eq. (7) shown in Fig. 8 are equal, both being
consistent with the incoherent scattering results.”® With
a=4.9 nm, the results shown in Fig. 9 cover the range from
ga=147 to 5.64 as opposed to the condition g’a><1
<¢’R? required in the development of de Gennes’ theory.
This represents a fundamental inconsistency that would un-
dermine the soundness of the analysis in terms of de Gennes’
theory.

The characteristic time in de Gennes’ equation is located
at the fixed position ¢*(Z,7,)"*=6 in Fig. 9 as opposed to the
position of the relaxation time of the lowest Rouse—-Mooney
mode, as given by ¢*(Z;75)"*=¢%a?/, moving to the right
side with increasing g in Fig. 8. These positions are indicated
by arrows in Figs. 8 and 9. To a large degree due to this
difference, while the curves calculated from Eq. (7) move
closer to Eq. (D3) with increasing g over the range 1~4
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>q*(Z,t)*3>0.1, the curves calculated from de Gennes’
equation deviate more from it. This contrast represents a gap
between the short-time and long-time regions in de Gennes’
theory. Thus, Richter ef al.******® have resorted to Eq. (D3)
to determine the Z, value needed in comparing the experi-
mental results with de Gennes’ equation emphasizing com-
parisons over the long-time region where the g-split plateaus
occur. The difference between using Eq. (D3) and using
Eq. (7) to determine the Z,; value and its consequence for
drawing conclusion have been analyzed and discussed in de-
tail in Sec. V A for the PVE sample. The discussed gap is
very much responsible for the large deviations of the experi-
mental results on the high side from de Gennes’ equation
over the short-time region at ¢=0.96 and 1.15 nm~' and on
the low side at g=0.3 and 0.5 nm™! as can be clearly ob-
served in Fig. 9. Including the plateau regions, unlike in the
comparison between experiment and Eq. (7), the observed
deviations from de Gennes’equation do not appear to be sys-
tematic at different ¢ values. This may be unavoidable due to
the inconsistency between the range of ga as emerging from
the analysis-obtained results and that covered by de Gennes’
theory.

The natural reduction of Eq. (7) to Eq. (D3) allows us to
display a full range of DSF curves as a function of the re-
duced Rouse variable ¢*(Z,#)"? in a unified way as shown in
Fig. 3. This is a property not shared by the other theories.
The shown full range forms a framework or “map,” with
respect to which different regions of the DSF curves at dif-
ferent g values can be located and studied in a consistent
manner. One may notice that the Langevin equation and nor-
mal modes involved in deriving Eq. (7) are the same as in
deriving the wu,(f) relaxation processz’10 as part of the ERT.
Thus, data analyses in terms of Eq. (7) can benefit directly
from the past studies of polymer viscoelasticity in terms of
the ERT.>"™"

The entanglement length a calculated from the plateau
modulus Gy has been regarded as a characteristic quantity
related to entanglement. It has been well established that the
number of entanglement strands per cubed entanglement
length n, is a universal constant.>*****! In addition to the
theoretical distinctions of Eq. (7) pointed out above, the a
value obtained from analyzing the DSF results of the PEB-2
sample in terms of Eq. (7) is closer to the rheological value
than in terms of the other theories. For PEB-2 at 509 K, the
a values obtained from the various anallyses24’48 are 4 nm
[Eq. (7)], 4.6-4.9 nm (de Gennes), 4.74 nm (Ronca), and
5.98 nm (des Cloiseaux) versus the rheological value of
3.44 nm at 413 K.>! Exempt from effects of the slower
ERT modes of motion (1), wp(r), and uc(t), a likely reason
for the a value of a well-entangled system obtained from
analyses in terms of Eq. (7) to be slightly higher than the
rheological value is the temperature difference. For instance,
in the case of PEB-17.6 [poly(ethylene-co-bulene) with 17.6
ethyl branches per 100 carbons],2’3 331 calculations from the
plateau modulus values give a=4.71 nm at 413 K and a
=3.75 nm at 298 K. This example suggests that an ~100 K
difference in temperature can cause a difference in the a
value as large as 25%. Such an effect may be responsible for
the difference between 4 nm at 509 K as obtained from ana-
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lyzing the DSF curves in terms of Eq. (7) and the rheological
value of 3.44 nm at 413 K for the PEB-2 polymer.

Vil. SUMMARY

The theoretical DSF function forms based on the Rouse
and Rouse—Mooney models, both discrete and continuous,
are given and their calculated results are compared in this
paper. It has been shown that it is sufficient to use the con-
tinuous Rouse-Mooney model to analyze the coherent neu-
tron scatterings from single well-entangled chains in the ¢
region where a Rouse-segment-based theory is applicable. In
the analyses, a=\e"Neb and Z,=3kTb?/{ are the only adjust-
able parameters, wherein for all practical purposes, an arbi-
trary pair of sufficiently large N, and small » may be chosen
(Appendix B).

Two characteristics are identified in the DSF functional
form for well-entangled single chains [Eq. (7)]: One is the
deviations from the limiting form [Eq. (D3)] in the region
~4>¢*(Zt)°>> ~0.1 (corresponding to a time region from
1<7{ to 1<7}) to the faster side as ga is in the range 1-5.
The other is the g-split plateaus that can be experimentally
observed in the time region 7> 7] when ga is between ~1
and ~7, allowing a high-resolution determination of the a
value. The validity of these two characteristics is well sup-
ported by the comparisons between theory and experiment at
different g values in the respective regions. The entangle-
ment length a extracted from analyzing the DSF line shapes
of the studied well-entangled PEB-2 polymer is in agreement
with the rheological value within 20%. It is shown that the
small difference may be due to the large difference between
the temperatures at which the two values are respectively
determined.

From this study, it is shown that the fixed-end boundary
conditions assumed for the dynamic behavior of a well-
entangled entanglement strand are essential for obtaining the
distribution of the g-split plateaus as observed experimen-
tally by the neutron spin-echo spectroscopy. This strongly
supports that the Rouse-Mooney model is applicable micro-
scopically as it has been shown to be so macroscopically in
the studies of viscoelastic-response functions.>”~'? This also
represents a support on the microscopic level for the mecha-
nism of chain slippage through entanglement links as em-
bodied in the Doi-Edwards theory.

Equation (7) reduces to the limiting form Eq. (D3) natu-
rally allowing a full range of DSF curves to be presented in
terms of the reduced Rouse variable ¢*(Z,)"? in a unified
way. The displayed full range represents a framework or
map, with respect to which different regions of DSF may be
located and studied in a consistent manner.
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APPENDIX A: THE DISCRETE ROUSE
AND ROUSE-MOONEY MODELS

The DSF based on the discrete Rouse model is given
by™

1 Ny Ny q2
S(a.0) =~ exp(= ¢*Dgt) X > > exp| - b} m—n|

0 n=1 m=1 6
Ny-1
2q2b2 0
- E f(m7p’N0)f(n7p7N0)
-1
X[l—exp(—)}], (A1)
Tp
where
kT
Dg=—, (A2)
Nod
Nl K spr Nl spr
,D,Ny) = —sin| — | - inl — ], (A3
finpg=3 ol 2= 3 o 7). a9
and
M’
T, = p=1,23,...,Ny—1. (A4)

K :
P 12NE sin(par/2N,)

The DSF of the discrete Rouse-Mooney model is given
by>2

1 Ne Ne 2
S(q.t) = N X > > expl| - q—l72|m—n|

e n=1 m=1 6

22Nl
- q_ 2 h(m7p7Ne)h(n9p,N€)
6Ne p=1

el

(AS)

with

(A6)

¥ =K : , p=123,....N,—1. (A7

P 12N sin(p#/2N,) P (A7)

As expected, when N,— o or N,—x, Egs. (Al) and
(A5) reduce to Egs. (2) and (7), respectively, and Egs. (A4)
and (A7) to Egs. (3) and (8), respectively.

APPENDIX B: DYNAMIC PARAMETERS
IN ROUSE-SEGMENT-BASED THEORIES

In a Rouse-segment-based theory (the Rouse theory or
the ERT), the relaxation times can be expressed as a product
of the frictional factor K and a structural factor,zﬂ’12 which is
a function of molecular weight M and/or entanglement mo-
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lecular weight M,. From analyzing the viscoelastic results in
terms of a Rouse-segment-based theory, K is the key dy-
namic parameter that can be extracted. For instance, in the
case of using the ERT to analyze the viscoelastic responses:
G(1) and J(1) of entangled nearly monodisperse polystyrene
melts, the obtained K values [for the wy(¢/ 7y), wg(t/ 75), and
et/ 7¢) processes] are independent of molecular weight as
expected from the theory (see Table 1 of Ref. 7).>""" From
analyzing the G(¢) and G*(w) line shapes of entangled poly-
styrene binary-blend solutions in terms of the linear combi-
nation of the ERT and the Rouse theory, the values of K as
embodied in the two theories have been found to agree
within 20%.%%!? Very importantly, this agreement indicates
that the Rouse theory and the ERT have the same footing at
the Rouse-segmental level. [Note that the frictional factor for
the Rouse-Mooney process u,(t/74), denoted by K', is
larger than K by a factor Rg(M/M,) that depends on the
normalized molecular weight M/M,. As detailed in Refs. 2
9, 11, and 12, Rg(M/M,) being greater than 1—declining
from the plateau value of 3.3 at M/M,>10 to the limiting
value 1 as M /M ,— 1—represents dynamic anisotropy due to
topological constraint of entanglements. The following
discussion on K is also applicable to K'.]

Here, we would like to show that the frictional factor K
is equivalent to the parameter Z, that has often been
extracted from the coherent dynamic neutron scattering
studies. The entanglement distance a can be expressed as

a*=K.M,, (B1)

where K. is defined as the ratio of the mean square
end-to-end distance of a polymer to its molecular weight,

N, N,
S(q.0) = E E Z E_ (explig - (R, (1) - R,,(0))])

NOk—l =1

AR

=—> > > (explig- (RE(1) - R(0)]) + —2 2

Ok_l 1#k

NOklnlml

=—E 2 (expliq- (R, () - R (0))]>+ v 2 E exp(iq - R} (1))

NOn 1 m=1 k=1 n=1
L NN N,
-2\ 2 explia-Ry(1) )\ 2 exp(-iq- R,,(0)
0k=1 n=1 m=1

Because at any moment, the beads {R,(¢)} are distributed
randomly over R>g~!, the second and third terms of
Eq. (C1) are negligible, and Eq. (C1) reduces to the form
given by Eq. (6).

APPENDIX D: LIMITING DSF FORM IN THE
SHORT-TIME REGION WHEN g2N,b? OR q2N,b?> 1

When ¢>Nyb? or ¢°N,b>> 1, we may limit consideration
to the time region << 7 in Eq. (5) [equivalently in Eq. (2), as
Dy; is very small and exp(—g>Dgt) is practically equal to 1 in
the short-time region] or r<< 7{ in Eq. (7), respectively. In the
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K.=R%*/M, which can be determined by static neutron
scattering.1’2’33’50’51 One may also write

M
a’=N,b>=—p. (B2)
m
The combination of Egs. (B1) and (B2) leads to
b*=K.m. (B3)

Since K., is a constant, b? is linearly proportional to m. Using
this relation, Eq. (4) is obtained.

As being inversely proportional to K [Eq. (4)], Z;, may
replace K playing the role of the key dynamic parameter.
Even though in the neutron spin-echo studies of polymers,
the continuous Rouse model is always used as in this study,
Z, theoretically remains the relevant key dynamic parameter
because of the scaling relations {om and b*>e«m. For
example, Eq. (D3) is a universal function of ¢*(Z,t)".

APPENDIX C: THE BASIC DSF FORM OF A
WELL-ENTANGLED CHAIN UNDER THE CONDITION
qR>1

In a well-entangled labeled chain, as the entanglement
points (slip links) are regarded as fixed, the modes of motion
of an entanglement strand are isolated from those of others,
and segments belonging to different entanglement strands are
not correlated. Denoting entanglement strands by k and /,
and beads by n and m, the DSF of the labeled chain can be
reduced as follows:

NL’ Nt.”
> expliq-RE(n) )\ 2 exp(-iq-R.(0)
n=1 m=1

N N,

> > exp(-iq-R.(0)

=1 m=1

(C1)

short-time domain, the respective summations over p in the
exponents of these equations are dominated by large p.
Under p being large, the underlined terms in the factors

(pﬂ'm) (pﬂ'n) ((n—m)pﬂ')
2 cos cos| — | =cos| ———
Ny Ny Ny

((n + m)pﬂ')
+cos| —————
N,

(D1)
0

and
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) (pwm) ) (pﬂ'n) ((n—m)pﬂ')

2 sin sin| — | =cos| ————
N, N, N,

((n+m)p7r>

os| —————

e

(D2)

as, respectively, embodied in Egs. (2) [or Eq. (5)] and (7)
change sign rapidly, and their contributions become very
small and negligible. Thus, Egs. (2) [or Eq. (5)] and (7) lead
to the same result. By replacing the summations over m and
n by integrations and using the fact that the integrand has a
sharp peak at n=m, the following limiting form can be
derived:'

12 (7
S(q.1) = WJ du exp{—u - (l/Tq)l/zh(u(t/rq)‘l/2)},

0
(D3)
where
12 36
Tz Y
and
2 (% cos(xu) )
h(u)=—| dx———(1 —exp(-x7)). (D5)
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